欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

地震勘探的基本原理范文

时间:2024-01-19 15:08:23

序论:在您撰写地震勘探的基本原理时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

地震勘探的基本原理

第1篇

[关键词]地震资料解释 构造解释 岩性解释 教学实践

[中图分类号] G942 [文献标识码] A [文章编号] 2095-3437(2013)17-0141-03

地震勘探主要由采集、处理和解释三大环节组成,其中地震资料解释是地震勘探工程的最终环节。随着地震勘探技术、计算机技术以及成像技术的飞速发展,地震资料解释的内容也日益丰富和深化。目前,地震资料解释主要包括盆地分析、构造、地层、沉积以及油气勘探等多方面内容,成为盆地基础地质研究和油气勘探活动中不可缺少的重要方法。地震数据采集、处理、解释一体化、全三维解释、虚拟现实技术,使地震解释技术更加复杂、深入、有效。为了满足石油勘探过程中地震资料解释的要求,必须做好该课程的教学内容和教学方法的设计。

一、地震资料解释的任务

西安石油大学是以石油勘探与开发为主的工科院校,是培养未来石油工程师的摇篮。马在田院士认为“当前最缺少的是知识全面,系统掌握地震理论、方法,有相当石油地质知识水平的能够解决实践问题的领军型人才”。地震资料解释课程作为地球探测与信息技术专业的必修课程,几乎涉及所有基础地质和石油地质研究领域。在学生修完地震勘探原理、地震资料处理、测井原理与解释、构造地质学、沉积学、石油地质学等相关专业课基础上开设本课程。目前,在油气勘探领域,地震资料解释是结合钻、测井资料以及计算机成像技术将地震数据转化为地质术语,根据地震资料确定地质构造形态和空间位置,分析层间接触关系,推测地层的沉积环境、岩性和厚度,预测地层的含油气性,进行有利区评价和井位部署。在油气勘探过程中,地震资料是内容最为丰富、综合分辨率最高的钻前原始信息源。地震资料解释为地质家提供分析地下地质现象的“眼睛”。在开发过程中由于其突出的平面空间分辨率而具有重要意义。地震资料解释贯穿油气勘探开发的所有环节:盆地评价、含油气系统评价、成藏组合带评价、有利目标评价、开发方案的确立以及开发后期方案的调整。

许多重要的地质理论都离不开地震资料解释的发展,地震资料解释已成为一些新兴边缘学科的重要生长点。盆地分析的一些基本原理建立于早期对二维地震剖面解释的基础之上。地震地层学和层序地层学这2门学科也是建立在对沉积盆地地震解释的基础之上。[1]随着三维地震采集、处理、解释以及计算机技术水平的不断提高,研究人员可以利用三维地震的解释技术刻画沉积盆地的地形特征、沉积体系的三维几何形态及其沉积演化过程,从而诞生了新的学科――地震沉积学、地震地貌学。[2][3]

二、地震资料解释的内容

高等学校既是教学中心又是科研中心,教学与科研应协调发展。科研是教学的基础,是提高师资队伍素质和培养高素质人才的必由之路。教学的内容与教师的知识结构,必须及时更新,这样才能跟上时代的步伐。教学内容应根据科学研究的进展、实际情况的变化不断进行修订,将众多优秀的科研成果吸收进去。

(一)与地震资料解释相关的地震勘探原理

地震资料解释是地震勘探3大基本生产环节(采集、处理和解释)的最后环节。采集和处理环节需对野外采集的地震资料进行预处理、滤波、反褶积、速度分析、动-静校正、叠加和偏移等过程,为解释人员提供真实反映地下地质构造、地层、沉积环境的剖面或数据体。因此,为了做好地震资料解释,必须讨论地震记录的形成、褶积模型、有效波识别的主要标志、地震剖面特点、地震勘探分辨率等与地震资料解释关系密切的基本概念和理论问题。

(二)地震构造解释

20世纪70年代之前,由于地震资料和计算机技术的限制,地震资料主要用于构造解释为主,即利用地震资料提供的反射波旅行时、速度信息,查明地下地层的构造形态、埋藏深度和接触关系等。地震构造解释是地震资料解释的最初的,也是最基本的研究内容。因此,必须使学生掌握相关的基本概念和基本原理、基本方法。相关的概念、原理和方法如下:合成记录标定原理及方法,地震同相轴对比方法,断层剖面和平面识别方法、技术、解释方法及平面组合(如相干体技术、切片技术等),T0图的绘制、时深转换方法及构造图的绘制,拉张、挤压、剪切以及底辟构造背景下的典型构造样式的地震识别,地震剖面上的构造活动时期分析方法。

(三)地震岩性解释

由于构造油气藏的日益成熟,油气勘探与开发目标逐渐由构造油气藏转移到非构造油气藏。随着地震资料采集、处理以及计算机技术不断发展,20世纪70年代末,地震资料解释内容日益丰富,开始了地震资料岩性解释。地震岩性解释主要包括地震地层学、地震相分析和岩性预测三方面的内容。

1.地震地层学解释

地震地层学是以反射地震资料为基础,把地层学和沉积学特别是岩性、岩相的研究成果,运用到地震解释工作中,进行地层划分对比、判断沉积环境、预测岩相岩性的地层学分支学科。地震地层解释需要向学生讲授地震反射界面的类型和对比方法,地质界面的类型,地震反射界面的地质成因,各种地震反射界面的区分,地震反射界面的年代地层学意义和地震地层单元,地震层序划分的原则、级别、方法,地震界面与地质界面的桥式对比方法等基本原理、基本方法。

2.地震相分析

地震资料为勘探阶段提供极其重要的钻前原始信息,除了包含丰富的构造信息,还包含了丰富的地层和沉积信息。地震相分析是指根据地震反射的面貌特征进行沉积相的解释和推断。为了使学生掌握地震相分析技术,必须向学生讲授地震相的概念,主要的地震相参数,反射结构的类型及地质意义,几何外形的类型及地质意义,地震相划分与编图过程,地震相模式的概念,典型沉积体的地震识别,地震相向沉积相转换的思路、方法、原则、步骤。

3.岩性预测及流体识别

目前,岩性预测和流体识别属于储层预测技术主要研究内容,也是地震地质综合解释的重要内容。地震资料解释课程主要让学生了解利用速度信息和振幅信息解释岩性的一般原理、方法和步骤,并介绍目前国内外油气预测常用的烃类直接检测指数(DHI),如AVO、亮点、平点技术等。

(四)开发地震解释

开发地震技术是因油气田开发的需要而兴起,是勘探地震技术向油田开发阶段的延伸。随着油气田开发程度的提高,开发地震的重要性将更多地显现出来。开发地震技术总体上仍处于发展阶段,现有的一些方法,或因成像处理及解释手段不够完善,或因信噪比、分辨率及精确度不够高,只能应用于油气田早期开发。[4]开发地震学需要以高信噪比、高分辨率、高保真度资料(即所谓“三高”地震资料)为基础,地震资料处理、解释和研究一体化是开发地震学发展的重要方向,[5]开发阶段地震技术主要用于提高分辨率、提高储层描述和烃类检测精度、建立精细三维油气藏模型。[6]

三、教学手段与方法

地震资料解释既有复杂及系统的理论性,又有很强的实践性,既是一门科学,也是一门艺术和技术。[7][8]针对该课程具有专业面广、知识点多以及实践性强的特点,该课程的教学应理论和实践并重。注重培养学生的基本理论和动手能力,为社会培养受用人单位欢迎的物探专业人才。

(一)课堂教学

在教学中,可采用板书和多媒体教学相结合的方式,向学生讲授地震资料解释相关的基本原理、基本方法和技能。板书总结重要知识点,起到提纲挈领的作用。多媒体可以在整个教学中引入大量地震剖面、平面图实例,更好地吸引学生的注意力,帮助学生迅速而准确地理解重要知识点。多媒体在一堂课中可以大容量地丰富当堂内容,扩大学生知识面,而板书把大量内容的精髓展示到黑板上,以突出本节的重点,也能让学生在复习时有据可依。

(二)实践教学

知识、能力和技能的培养均来自于实践。各种实践教学环节对于地球探测与信息技术专业的学生成长至关重要,有利于培养学生的实践能力和创新能力。要培养高素质人才,就必须重视实践教学环节。地震资料解释课程的实践应从课堂实践和课程设计两个方面入手。

1.在课堂教学中,给学生一定测网的、能涵盖构造、地震层序、地震相等重要知识点的地震纸剖面,做好课堂知识点讲授和实践。利用大量实例引导学生实现新旧知识的衔接,引导学生在对学过知识进行复习的同时联系新的知识点投入学习,通过互动增强学生的对地震资料解释的感性。对于一些重要的概念结合实际地震资料,让学生自己分析、自己解决,培养学生的动手实践能力和创新思维意识。

2.地震资料课程设计是本课程的重要实践环节。力求使学生能够理解地震资料解释的基本原理和概念,掌握合成记录标定、断层剖面解释、层位闭合解释、断层组合、等T0图编制、时深转换、构造图的编制、地震相剖面分析、地震相平面图的编图、地震相转化沉积相的基本方法原理以及沉积相图的绘制等基本地震解释技能,初步具备利用地震资料独立开展含油气盆地地质分析的能力。

近年来,随着采集、处理以及计算机技术的不断发展,地震资料品质和分辨率不断提高,以及油气勘探与开发程度提高,地震资料解释所涉及的研究内容日益丰富,其研究内容从最初的构造解释到层序地层分析、地震相分析,然后再到岩性预测、物性参数预测、烃类检测。地震资料解释数据由叠后数据转到叠前数据。要求地震资料解释人员既要具备扎实的地球物理基础,又要掌握相应的石油地质知识。地震资料解释专业课程的教学应加强学生的基础理论、实践能力和创新能力的培养,提高教学质量,为社会培养受用人单位欢迎的物探专业人才。因此,必须结合地球探测与信息技术专业培养目标及当前和今后油气勘探实际需求,积极引入地震资料解释的科技发展新成果,合理规划教学内容。与生产实际紧密联系,注重从实践中找问题,从专业知识中找答案,带领学生从书本走向实践,以实践充实教学。

[ 参 考 文 献 ]

[1] Vail P R, Mitchum R M, Jr et al. Seismic stratigraphy and global changes in sea level, Parts 1-11[M]: AAPG Memoir, 1977, 26: 51-212.

[2] Posamentier H W. Seismic geomorphology and depositional systems of deep water environments: observations from offshore Nigeria,Gulf of Mexico,and Indonesia (abs.)[M]. AAPG Annual Convention Program, 2001, 10:160.

[3] Zeng H L, Hentz T F. High-frequency sequence stratigraphy from seismic sedimentology: applied to Miocene Vermilion Block 50 tiger shoal area offshore Louisiana[J]. AAPG Bulletin, 2004, 88(2): 153-174.

[4] 许卫平.关于开发地震技术发展的几点思考[J].石油物探,2002(1):11-14.

[5] 马在田.关于油气开发地震学的思考[J].天然气工业,2004(6):43-46.

[6] 刘振武,撒利明,张昕等.中国石油开发地震技术应用现状和未来发展建议[J].石油学报,2009(5):711-721.

第2篇

【关键词】地震检波器;惯性传感器;油气勘探

1.国内外发展现状

从80年代至现在,高分辨率地震、三维地震、发展开始成熟,而且井间地震、四维地震、多波多分量勘探等的新技术及方法方法开始应用,和勘探技术对应的检波器的型号也不断的发展,例如高性能压电检波器、四分量检波器、涡流检波器、四分量检波器等。初步统计得出,当前一共12个系列25种型号的检波器在油气资源地震勘探中使用。

国内地震检波器大约有五十多年的历史。五六十年代国内基本仿制苏联还有美国的检波器;七十年代国内自行研制地震检波器;八十年代主要为引进阶段,例如西安石油勘探总厂等。90年代以后,以增加高分辨率勘探为目的,物探局仪器总厂、西安石油勘探仪器总厂推出了一系列检波器,是的地震检波器的勘探得到扩展。近年来,MEMS技术发展很快,采用MEMS技术的数字地震检波器开始出现。ION公司以及SERCEL公司在2000年前后分别推出地震检波器,并且具有全数字的特点,开始在野外不断应用。数字检波器实质上是分辨率很高的微加速度计,国内对其研究还处于开始阶段。

2.高分辨率地震勘探对地震检波器的要求

2.1 地震勘探的基本原理

地震勘探基本原理如图1所示,激发之后地震波在遇到不同地层的分界面发生反射,设置在地面上的地震检波器把振动信号转换成电信号,电信号被地震数据采集系统检测,进行数字化并记录,通过分析地震数据就得到地震波运行的时间还有速度信息,进而得到地层分界面油气资源的埋藏深度。

图2为遥测地震油气资源勘探中的惯性传感器采集部分的结构,其采用24位的作为数据采集单元。

(1)信号只需要前一级的简单模拟过滤器,采用24位A/D进行转换,大大缩短模拟信号通道,有利于降低信号的失真度提高信噪比;

(2)对去假频(即防混叠)滤波器大大简化,提高滤波性能。

2.2 地震波的形成和衰减

将作业地层看成系统对待,震源激发出现的激发波形看成系统的输入信号,那么传输到达地面的地震波为系统的输出信号。输出信号主要由输入信号还有系统特性决定,即地震波波形为震源还有地层共同作用的产生的。地层对震波振幅、频率特性产生影响主要有三种。

2.3 分辨率公式

通常垂直分辨率的极限约等于主波长的1/4。当前使用的近似的时间分辨率公式,也就是“时间厚度”:

其中,—层速度,—视波长,—可分辨厚度。

以上公式前提是地震子波为理想的Ricker子波。相关证明得到:上述分辨厚度下,子波的过零点出现互相重合情况,叠加的合成波形在两个波峰位置产生波谷,波谷振幅为零,而且两个波峰分开。实际上地震子波不可能产生严格意义零相位的,并且反褶积没有将它其压缩成正峰。

3.动圈式检波器的讨论

3.1 检波器的动力学模型

检波器的动力学模型如下图,弹簧在检波器外壳上进行固定,弹簧上悬挂质量体,当存在地震信号时,外壳和大地一起振动,质量体通过弹簧带动做阻尼振动,力学方程如下:

3.2 噪声

在所有噪声源当中,一般环境噪声幅度最大,如刮大风检波器的噪声输出强度约20~80,小风达到为。安静地区大地振动的速度噪声峰峰值只,相应的噪声电压峰峰值。除了外界噪声源,检波器噪声包括惯性体的布朗噪声还有电阻热噪声。对于克量级的检波器,大地振动噪声高于布朗噪声4-5倍,因此检波器的布朗噪声能够忽略。电阻热噪声的噪声密度计算方法如下:

k—玻尔兹曼常数;T—绝对温度;R—线圈电阻值;检波器;线圈电阻;计热噪声密度只有。

3.3 常用的检波器组合方式

地震道通常是2-4个串检波器串并联,串并组合的方式及相关特点一般和石油勘探的目的相关。不同组合目的在于,利用有效波还有干扰波的不同,来干扰波进行抑制,并突出有效波。下表给出了不同检波器组合的性能特点。不同的检测波组合性能参数表如表1所示。

其中:n—检波器的总个数;—并联子串数;—子串检波器个数;;—为串组合的增益;—阻抗比(串组合和单只检波器的阻抗比值);—为动态增量,在具体勘探当中,要按照油气藏探区的干扰波类型还有其频率特性以及勘探目的层深度和其它因素来对检波器的组合方式进行设计,目的是找到适合此藏区的特定通频带的组合。具体的组合点数根据施工区的表层特点来决定,当表层干扰十分严重时,采用点数的数量比较大,例如沙漠区勘探组合点数一般大于30个。

3.4 谐波失真

第3篇

[关键字]:三维地震 煤田 勘测

1.引言

中国煤矿采区地震勘探技术历经将近 50 年的发展,出现了三次重大的技术飞跃,现已成为煤矿高效安全开采前构造勘探的首选技术,回顾煤矿采区地震勘探技术的发展历程,预计三维多波地震勘探技术的发展成熟,有望成为煤矿采区地震勘探技术的第四次技术飞跃,这还有待于在现有三维地震勘探技术不断发展完善的基础上,以期早日得到实质性的突破。

2. 三维地震勘测的原理

2.1 三维地震勘测原理

三维地震采是用高密度的、各种形式的面积观测系统,所以三维地震又叫面积勘探法。它是在二维地震勘测技术上发展而来的。与二维地震勘测相比,三维地震勘测获得的信息量非常丰富,且地震剖面分辨率高。

2.1.1 面积测量系统反射波时距

根据物理地震学的原理,地震波从炮点激发后,将会以球面波的形式向下继续传播。根据惠更斯原理,波遇到反射界面后,可以把反射界面上每一点看做是一个新震源,每个质点都激发球面波向前传播。对地面某个接收点 S 来说,它所接受的反射波,就是一系列来自反射界面的波的总和。

2.1.2 折曲测线观测系统反射波时距

有的地区由于地表条件限制,为了完成地震勘探任务,往往把测线布置成折曲测

线、波状测线及环行测线。这类测线的基础是弯曲测线,时距方程为 :

(2.1)

式中,V:介质速度;H:反射界面埋藏深度; :地震波垂直反射时间;l:炮检距。若已知激发点 和接收点S的平面坐标,则

(2.2)

(2.3)

其中, 表示激发点O的坐标, 表示接受点的坐标。可以看出,弯曲测线反射波时距曲线是一条与激发点和接收点的平面坐标有关的、复杂的空间曲线。但是,不管曲线多么复杂,只要能用数学公式模拟,就可通过解方程的方法把反射界面确定下来。

2.2 观测系统设计原理

三维观测系统主要有两大类:线束状观测系统和面积观测系统。

面积观测系统:接收点以网格形式全区密集采样分布,炮点是以较稀疏网格分布,或以相反的形式分布,它完全满足 3D 对称采样的观测系统,但缺点是费用太高,在实际生产中无法实现。线束型观测系统:接收点以一定采样间隔以一条或多条平行线的方式分布,激发点沿着炮线分布的观测系统。

2.3 叠加原理

2.3.1 水平叠加剖面

在用多次覆盖的方法采集得到的地震资料处理过程中,把共同反射点的许多道的记录经动校正并叠加起来,以提高讯噪比,压制干扰。用这种方法处理所得到的地震剖面叫水平叠加剖面。

水平叠加剖面是地震构造解释的主要是时间剖面,同时又是地震地层解释中应用最广的资料。

2.3.2 倾斜界面偏移归位的基本原理

首先,如图1所示,自激自收得到的反射信息对应的反射点位置可能来自以 1/2Vt 为半径,以自激自收点 O 为圆心的圆弧上的任一点。

根据上图可知,如果只有一道自激自收记录,而没有其它的资料来配合,那么就无法确定反射点在地下的准确位置。事实上,可以用反向射线追踪的方法来确定反射界面的位置。

3.总结

三维地震勘探是当今地震勘探的新领域和新技术,从设计、采集、处理到解释,都需要认真地分析研究各个阶段的主要矛盾,以科学、严谨的态度、务实的工作方法、保质保量地完成勘探地质任务才会取得好的地质效果。

参考文献

[1]胡建强.市区内不规则三维地震勘探[J].勘探家,1999,3(1):24~26.

第4篇

【关键词】反射波法;工程勘查;基本原理

1、浅层地质反射波法的基本原理

地震反射波法是基于反射波法中的最佳偏移距技术发展起来的一种常用浅地层勘探方法。这种方法可以利用多种波作为有效波来进行探测,也可以根据探测目的要求仅采用一种特定的波作为有效波。在这种方法中,每一测点的波形记录都采用相同的偏移距激发和接收。在该偏移距处接收到的有效波具有较好的性噪比和分辨率,能够反映出地质体沿垂直方向和水平方向的变化。

浅层地震反射波法是地震勘探方法中的一种。在地表向下激发地震波,当地震波向下传播遇到弹性不同的分界面时,就会发生反射,地震勘探仪器记录这些反射地震波。由于反射波在介质中传播时,其传播路径、振动强度和波形将随通过介质的结构和弹性性质的不同而变化,根据接收到的反射波旅行时间和速度资料,就能推断解释地层结构和地质构造的形态,而根据反射波的振幅、频率、速度等参数,则可以推断地层或岩石的性质,从而达到地震勘探的目的。

2、参数选择的基本原则

2.1数据采集

浅层地震勘探根据不同的地质环境和勘探要求,使用时采用的方法不同,应用的效果取决于野外工作参数(采样率、道间距、偏移距)的选择,震源能量等。这些参数由野外试验工作来选定。

1震源。在激发时,对震源一般有两个要求:一是激发力要竖直向下;二是激发装置或药包与大地耦合要好。

2检波器。接收设备(主要是检波器)除接触条件外,它的埋置尽量达到最佳的耦合,如果由于条件限制不能埋置在原设计点位时,沿测线方向位移1∕10道间距内或垂直于测线方向的1∕5道间距内。

3分辨率。为保证记录有效信号不畸变,每个最短周期内至少要采集4个样值,而且还要考虑记录长度问题,因为不能选择过高的采样率,以免点数太多,出现仪器存储容量不够或增加不必要的勘探成本。

4滤波器。工程数字地震仪一般均设有低通、高通、带通、全通等模拟滤波器。为提高地震记录的信噪比,改善记录频谱中高、低频能量的不平衡状况,可根据实际干扰波调查的结果,选择合适的滤波器,以压制干扰。

5最佳接收段。为了有效地避开面波、声波、直达波和折射波对反射波的干扰,可把接收地段选择在尽可能不受或少受各种干扰波影响的地段,这种最佳接收地段又称为"最佳时窗"。反射波振幅随炮检距的增大而减小,相位随炮检距的增大而基本保持不变。可见,最佳时窗的选取关键在于选取接收排列的两个端点,即选择偏移距和最大炮检距。根据经验确定,即最大炮检距不应大于主要目的层埋深的1~1.5倍。

6道间距。道间距的选取总原则是经过处理后能在地震剖面的相邻道上可靠地追踪波的同一相位并且不出现空间假频,根据采样有:

式中,K*min为最短视波长;V*为波传播的视速度;f*max为波的最高视主频。

7偏移距。偏移距选择由实验决定。下面是试验效果图,分别记录了0m、5m、10m偏移距的单炮记录。从图1中清晰发现0m偏移距的反射波的振幅和相位相比10m偏移距的效果差,受震源干扰大。综合比较,10m偏移距的单炮记录图受干扰波影响较小,反射波同相轴清晰连续,因此,选用10m偏移距会有更好的探测效果。

图1偏移距单炮记录

8覆盖次数。提高覆盖次数能够有效地提高记录的信噪比,高对多次波的压制能力,且对地震波的高频成分影响不大,因此数据采集中,要全面考虑记录的信噪比和勘探费用,在满足具有较高记录信噪比的条件下,应尽可能采用较低的覆盖次数。

2.2数据处理

地震资料数字处理是指用计算机对采集的原始资料进行以压制干扰、提高信噪比和分辨率、提取地震参数为目的的一整套处理方法和技术。它可为资料解释提供反映地下结构和岩性等的地震剖面和参数,它主要包括数字滤波、速度分析、校正、叠加和偏移处理。

3、工程实例

3.1场区物理条件

某工程勘查的地质目的,是查明场区的第四系厚度及分层、场区的基岩起伏形态及风化程度、隐伏断层走向及发育规模、不良工程地质现象等。

表1是各地层纵波的速度参数。由表1可见,各地层之间存在明显的波阻抗差异和波速差异,可形成反射界面,具备了浅层地震反射的地球物理条件。

3.2野外数据采集及数据处理

本次施工采用48道工程地震仪,用固有频率为40Hz的纵波检波器。根据勘探任务和地形条件,依据参数选择的基本原则,经过工区典型性试验,本次浅层反射波法采用共深度点6次覆盖观测系统,单边放炮方式。选择的工作参数为:偏移距10m,道间距5m,以模拟滤波全通方式进行记录,采样率0.1 ms,记录长度204.8ms。采用锤击震源多次叠加的激发方式。工区测线布置,横线六条,纵线六条,测线均匀布置在厂址区,并穿越重点工程部位。

3.3资料解释

图2是场区某测线的时间剖面,纵轴表示时间,横轴表示CDP号。从剖面图我们可以看出,反射层次齐全,同相轴连续,资料信噪比高,地层起伏变化清晰,剖面反映的地质现象是可信的。图3是厂址某测线的成果剖面图,纵轴表示高程,横轴表示测线长度。结合物探资料可作如下推断:1浅层覆盖物:波速在400~700m∕s之间,主要为粘土层,厚度在10m左右;2波速在800~1500∕s之间,主要为卵石层,厚度在5m左右;3强风化层:波速在1600~2300m∕s之间,主要是泥岩,厚度2~4m左右;4中风化层:波速在2400~3200m∕s之间,主要是砂泥岩互层,厚度20m左右;5微风化层:波速3300~3800m∕s,属于砂泥岩互层。

图2 厂址某测线的时间剖面

图3 厂址某测线的成果剖面

综合其他测线结果,可以看出:1 基岩埋深约在15m左右;2纵向上分层较为清楚;3泥岩层中央有薄层砂岩,薄砂岩与泥岩层呈指状交叉,有小透镜状的尖灭存在;4该场区不存在断层以及其他不良地质现象。

4、结束语

通过该工程实例,选择合理的工作参数,较准确地查明了第四系覆盖物厚度、强风化层厚度以及是否存在隐伏断层、不良工程地质等现象。

对于高分辨率勘探,一般精度要求较高,应尽量采用小道间距,小偏移距多次覆盖次数观测。在实际工作时,一定要根据当地的地质情况,通过典型性试验来选择参数;考虑到有些复杂的地质条件,比如地层起伏较大,上覆地层复杂时,则需要对多个地段做试验分析。

参考文献:

第5篇

关键词:工程物探;三维地震勘探;经济效益

作者简介:夏书兵(1976―),男,江苏省姜堰市人,河南省煤炭地质勘察研究院工程师。

中图分类号:P65 文献标识码:A doi:10.3969/j.issn.1672-3309(s).2012.02.37 文章编号:1672-3309(2012)02-88-02

引言

工程物探主要是对地表及地下100米左右的介质,通过相应的物理仪器和数字信号转换,以数据的分析和处理为手段,全面掌握目标体的物理特性和状态。一般情况下,工程物探主要以二维地震勘探为主,但其存在着地质信息假设过于苛刻等明显缺陷,相比之下,三维地震勘探技术则有着数据完整、信息量丰富等优势,因而在近些年来的勘探工作中得到了广泛的应用。本文对三维地震勘探技术的发展进行系统梳理,总结实践应用中的经验教训,为该技术的进一步发展和应用奠定基础。

一、三维地震勘探技术及其基本原理

地震勘探通过人工方法(例如炸药等)形成人工地震,并以科学仪器记录震动详情,从而估算地下构造的特点。三维地震勘探技术作为地震勘探的重要技术之一,是从二维地震勘探衍生而来,同时融合了物理、数学和计算机等的综合性应用技术,其主要包括地震数据资料采集、地震数据处理以及地震资料解释三个环节,各环节之间既相互联系又相互独立,从而构成了在计算机软硬件支撑下的系统工程。

三维地震勘探技术的基本原理与二维地震勘探技术相似,主要是通过地面上各沿线的地震勘探施工,使人工产生的地震波在地下传播,地面上的仪器开始同步记录地震波的传播和返回时间,再通过计算机进行数字信号处理得出目标物深度,综合测线的观察处理结果,从而得到直观反映地下岩层分界面起伏变化的地震剖面图。由于其勘探对象是地下半空间的三维地质体,因而在工程物探中具有显著优势,表现在:数据量相对丰富,包含了地震波的各种信息,有利于使用正反演技术以及岩性研究;数量完整性好,准确性较高,在通常地震波分辨率范围内,可基本查明相对复杂的地质构造;充分发挥了高科技装备的先进性能,有利于数据解释的自动化及人机联作的发展,可以大大减少人为因素的影响,具有较高的投入产出比。

二、三维地震勘探技术的国内外研究进展

三维地震勘探技术的优势,引起了国内外学者的广泛关注,促进了相关技术方法的快速发展。例如Andreas Cordsen[1]等学者,详细阐述了三维地震观测系统的设计以及施工要领,介绍了三维采集参数、三维观测系统的类型,并对其优点和缺陷进行了对比。Vermeer[2]深入研究了正交块状三维观测系统的地球物理参数配置,优化了MKB方法和LUG方法,减少了决策变量和约束条件。我国学者钱荣军[3]等以目标层信息为出发点,通过对表层结构地球物理模型和地下结构地球物理模型的分析优化,设计了地震采集参数。尹成等利用带约束条件的数学规划模型计算目标函数,实现了线束状三维观测系统的优化。

总的来看,由于三维地震勘探技术所具有的低成本、高精度和短周期等优势,使其在实践中得到了普遍应用和快速的发展。受技术力量以及设备投入等因素的影响,国外不仅在三维地震勘探技术的研究方面具有较大优势,而且在软件设计方面也处于领先地位,例如,著名的绿山地震设计软件、OMM软件等,而我国近年来在观测数据参数论证方面,虽然也取得了一定的成就,但在观测系统优化设计方面,仍然尚需进一步的研究。

三、三维地震技术的经济效益

三维地震技术的广泛应用不仅提高了地质勘探的精准性,而且取得了令人瞩目的经济效益。

(一)有效促进了我国地质矿藏开采等行业的深入发展

我国地形多样,地质状况复杂,对地质的精确勘探造成了困扰。三维地震技术的应用,提高了查明细微地质问题的能力。通过该技术的运用,可以提高矿业开采的利用率,不少多年开采的老矿区通过三维勘探技术,甚至发现了新的资源,从而为行业的发展注入了新的活力。

(二)有效缩短工程周期

三维地震勘探技术具有高精度和高分辨率的特点,其探测结果能提供较为精准的地质构造信息,因此大大提高了钻探成功率,有效缩短了工程周期。例如,在东濮地区的地质勘探过程中,通过三维地震技术的应用,勘测150km2地区的复杂地质问题仅需要原计划的一半。因此,三维地震技术的运用加快了地质勘探与开发,有效降低了地质勘探费用,为煤炭、石油开采等行业的繁荣发展提供了坚实的工程技术基础。

(三)三维地震技术有效降低了勘探成本

三维地震技术的不断发展,使其在勘探精度与效率等工程效益方面不断提高的同时,技术应用成本在不断降低,为工程单位节省了大量资金。以单位勘探成本为例,二维测线单位成本为6200元/ km ,而采用三维测线,其成本则仅需810元/km,降低了7.5倍,而且勘探效果更加完美。因此,对该技术的采纳与有效应用,极大减轻了相关企业单位的资金压力,提高了经济效益。

四、三维地震勘探在实践中存在的主要问题及原因

(一)三维地震勘探实践的局限性

三维地震勘探虽然在构造勘探方面有着其他勘探方法不可比拟的优势,但在实践中也存在种种局限。一方面,探测结果准确率有待提高。在大多数地震勘探任务中,一般要求其断层落差为5m,平面位置误差范围是±15m。然而,调查显示,既使在地质条件较好的华东地区,对落差区间5-10m之内的的断层进行的探测,其准确率尚不及70%。另一方面,存在着地震信息的缺失,所观测系统搜集到的信息难以有效显示落差较小的断层。同时,由于信息解释的不准确,导致所勘探出的断层位置与实际位置相比差距较大,这一点在断层落差较大或倾斜角度较大的地层中表现的尤为明显。另外,由于难以有效识别距离较近的断层,经常会把两条倾向相同的断层解释为一条大落差断层,甚至也会将两条角度完全相反的断层解释为一打小落差断层或无断层。这些情况的出现,严重影响了物探工作的科学性和可靠性。

(二)原因解析

三维地震勘探作为一种间接的勘探方法,除了技术上的局限之外,实际工作中的质量控制以及技术应用失当,是影响其准确性的重要因素,主要包括以下几个方面:

1、野外勘探质量控制以及观测系统设计缺陷。受当前排列分布面积大以及质量控制点较多等观测方式的影响,观测系统设计规范性较差,在客观上增加了质量控制的难度。特别是频频照搬或套用既定的观测系统,或是随意进行野外变现,极易造成炮距分布不均匀以及系统复杂多变等问题,严重拖慢了数据分析速度,最终影响偏移效果。

2、技术应用与地质条件的匹配问题。我国大多数地区的激发条件复杂多变,但是地震成孔工具较少,由此街面的成孔激发问题使原始资料的信噪比较低,从单炮甲级率来看,其效果很不理想。其他技术应用方面,例如,纵、横分辨率问题造成的构造遗漏、长波长静校正方法不理想造成的假断层探查结果、偏移成像问题等,都成为提高三维地震勘探效果的“拦路石”。

3、仪器设备的升级更新与实际应用未能做到协调一致。先进的仪器设备未必都能取得理想中的效果,例如,现在常用的集中逻控型数字地震仪,虽然其排列布置和处理技术更加合理、先进,理论性能得到了很大提升,但是由于很少考虑勘探过程中对可操作性以及可靠性等的实际需求,在应用中的效果却不甚理想,有时勘查效果甚至不如旧式的16位A/D转换遥测地震仪。

五、提高我国三维地震勘探经济效益的对策

地震勘探技术已进入了成熟阶段,短期内产生技术飞跃的条件尚不具备,因此,要提高三维地震勘探水平,就要抛弃“唯技术论”,以全新的视角和细致入微的工作来提升勘探水平。

(一)以体制创新为重点,全面提升勘探质量

技术趋同条件下,管理水平以及人员素质等非技术因素,成为提高三维地震勘探的突破口,而良好的工作体制是决定这一问题的关键。特别是强调实际工作中的权、责、利的辩证统一,就成为物探企业必须解决的重大现实问题,尤其是在物探这样一个国有企业处于优势地位的行业,更应该把体制创新作为重中之重,最大限度的实现“人尽其才、物尽其用”,为地震勘探工作创造坚实的制度环境。

(二)优化物探工作流程,对各环节进行严格的管控

三维地震勘探工作集数据收集、处理以及解释为一体,因此,在实际工作中必须从成本控制、人员配备、人机优化组合等环节着手,重视施工人员培训以及相关试验和生产过程的流畅有序,做到工作管理的动态化和监管适时化,全面保障各项细则落到实处,从而实现质量控制与施工成本的平衡,在确保地震勘探效果的同时,实现经济效益的提升。

(三)强化成熟技术的融合与集成研究

当前,三维地震勘探技术已相当成熟,各种仪器和软件配备都已做到了系统化,要在技术层面上提升地震勘探效果,就必须走集成化的道路,尤其是做好三维地震技术中采集、处理和解释三环节技术上的衔接和融合,形成实用的一体化技术,使各环节之间相互监管,实现立体化、综合化和动态化的勘探能力,从而快速锁定勘探目标,有效提高问题解决能力,全面提高勘探效益。

参考文献:

[1] Andreas Cordsen, Johnw.peire.陆上三维地震勘探的设计和施工[M].石油物探地球物理勘探局出版,1996.

第6篇

关键词:矿井;物探技术;突水预测;矿井电磁法;矿井地震法

1 矿井电磁法

1.1 矿井直流电法

直流电法勘探是以煤、岩层的导电性差异为基础,通过人工向地下供入稳定电流,观测大地电流场的分布规律,从而确定岩、矿体物性(如贫、富水区域)的分布规律或地质构造特征。

矿井直流电法的特点:a)理论方法成熟,施工技术简单,抗干扰;b)体积效应影响大,随着勘探深度的增大,分辨率急剧下降;c)施工效率低,工作量大。矿井直流电法可用于探测巷道掘进工作面前方富水体范围、划分顶底板岩层贫富水区域、确定工作面回采时的易突水地段、评价工作面回采时的水害安全性等。主要应用于浅部(小余500米)的水文勘探工作,如:第四系含水层、覆盖层厚度、断层裂隙带、岩溶、采空区等的勘查。

1.2 矿井瞬变电磁法

矿井瞬变电磁法是一种时间域的电磁探测方法。利用不接地回线向采掘空间周围的煤岩体中发射一次电磁场,用线圈或接地电极观测有该电磁场感应的地下涡流产生的二次电磁场的空和时间分布,来达到查明各种地质目标体的目的。

矿井瞬变电磁法的特点是:a)由于勘探环境限制,只能采用边长小于3米的多匝小线框,工作效率高;b )测量点距较密,降低体积效应的影响,提高国勘探分辩率;c)测量装置距探测目标体较近,测量信号的信噪比较高;d)具有一定的方向性,可利用现有巷道对准所量信号有目标地质进行探测。该技术具有快速、便捷、对低阻含水体敏感、定向性好等优点,在煤矿防治水方面具有良好的应用前景。

1.3 地质雷达

地质雷达是利用高频电磁波在岩体传播中遇到地质界面产生反射有特性探测异常地质体的一种方法。地质雷达由发射部分和接受部分组成,其基本原理是:发射机通过九射天线发射中心频率为12.5M至于1200M、脉冲宽度为0.1NS的脉冲电磁波讯号。当这一讯号在岩层中遇到探测目标时,会产生一个反射讯号。直达讯号和反射讯号通过接收天线输入到接收机,放大后由示波器显示出来。

1.4 无线电波透视技术

无线电波透视技术是根据地质体对电磁波有吸收能力不同进行探测的一种物探方法。可用于查找断层、无煤带、煤层变薄带、陷落柱、废弃采空区、喀斯特等。无线电波透视法是利用探测目标与周围介质之间的电性差异来研究确定目标置形态,大小及物性参数的一种矿井物探方法。因为电磁波在地下岩层中传播时,由于各种岩、矿石电性的不同,它们地电磁波能量吸收不同,它们对电磁波能量吸收不同,低阻岩层对电磁波具有较强的吸收作用,当波前进方向遇到断裂构造所出现的界面是,电磁波将在界面上产生反射和折射作用,造成能量的损耗。

1.5 矿井电剖面法

矿井电剖面法是通过观测和分析煤层及其底板岩层横向电性变化来确定和裂隙发育带的位置。其特点是装置形式多样化,施工方法灵活,其中偶极剖面法分辨率相对最强。常用井下施工方法有复合对称四极剖面法、多极距偶极剖面法、多极距三极剖面法。矿井电剖面法主要应用于探测煤层底板隐伏的断层破碎带、导水通道的位置。

1.6 矿井高密度电阻率法

高密度电阻率法是集电剖面和电测深于一体,采用高密度布点,进行二维地电断面测量,提供的数据量大、信息多,并且观测精度高、速度快、探测的深度也很灵活。高密度电阻率法的物理前提是地下介质间的导电性差异。

高密度电法具有以下优点:a)电阻布置一次性完成.不仅减少了因电极设置引起的故障和干扰,并且提高了效率;b能够选用多种电极排列方式进行测量,可以获得丰富的有关地电断面的信息;c)野外数据采集实现了自动化和半自动化,提高了数据采集速度,避免了手工误操作。

2 矿井地震法

2.1 地震槽波法

地震槽波法是利用槽波的反射或透射规律,探测层等到构造,了解煤层厚度变化的矿井物探方法。它是煤矿特有的,在煤层内进行地震探测的一种勘探方法,槽波勘探利用在煤层中产生、通脱煤层传播,又在该煤层中接受的槽波,可以进行槽波投射和反射测量。常用井下施工方法有透射法和反射法。地震槽波法主要应用于探测工作面内断层、陷落柱、冲刷带、小褶曲等特征变化,评价煤厚变化、瓦斯富集等。该技术的缺点是必须在合适的地质条件下才能产生槽波,仪器相对较笨重。

地震槽波法适用的范围如下:a)煤层厚度要大于0.5m;b)夹矸的厚度小于煤厚的30%,不影响槽波的传播;c)断层大小及产状要求;反射法断距要大于煤厚的20%,煤层面和断层面之间的夹角要少于30°;透视法:断距要小于煤厚,走向长度要在透视区内;探查距离:反射法:煤厚的100倍;透视法:煤厚的1000倍。

2.2 三维地震勘探

三维地震勘探技术是从二维地震勘探逐步发展起来的,是地球物理勘探中最重要的方法。先了解二维地震勘探的基本原理:在地面上布置一条条的测线,沿各条测线进行地震勘探施工,采集地下地层反射回地面的地震波信息,然后经过电子计算机处理得出一张张地震剖面图。经过地质解释的地震剖面图就像从地面向下切了一刀,在二维空间上显示地下的地质构造情况。同时几十条相交的二维测线共同使用,即可编制出地下某地质时期沉积前地表的起伏情况。三维地震勘探的理论与工作流程和二维地震勘探大体相似。

2.3 瑞利波勘探

瑞利波勘探是一种新的浅层地震勘探手段,是基于不同震波频率的瑞利波沿深度方向衰减的差异,通过测量不同频率成分(反映不同深度)瑞利波的传播速度,可探测不同深度岩、煤层界面、断层、陷落柱、岩浆岩侵入体、岩溶、老窑采空区等地质异常体。探测构造位置误差小于5%。

2.4 声波勘探

声波勘探原理是在地表以人工方法激发地震波,在向地下传播时,遇有介质性不同的岩层分界面,地震波将发生反射与折射,在地表或井中检波器接收这种地震波。收到的地震波信号与震源特性、检波点的位置、地震波经过的地下岩层的性质和结构有关。通过对地震波记录进行处理和解释,可以推断地下岩层的性质和形态。

3 结束语

目前,矿井物探方法较多,各种方法都取得了一定的成果,有的方法已推广应用,但许多方法都不够完善,有待进一步研究提高。矿井物探技术未来的发展取决于引入新理论、新方法和广泛应用高新技术。总之,所有地质探测问题都需要地质、物探、水文、钻探等方法配合应用,综合解释,才能更加准确有效地查找出异常体,从而起到预测预报突水的作用,为矿井安全生产提供技术支撑和重要保障。

参考文献

[1]刘志新,岳建华,刘仰光.矿井物探技术在突水预测中的应用[J].工程地球物理学报,2007.

[2]马志飞,王祖平,刘鸿福.应用综合物探方法探测煤矿采空区[J].四川地质学报,2009.

[3]段建华.综合物探技术在矿井防治水中的应用[J].华北科技学院学报,2009.

第7篇

【关键词】浅层地震;折射波法;高密度电法;隧道勘察;断层;围岩类别;紫之隧道

随着社会经济的进步,国家对交通基础设施建设越来越重视,公路网络完善的须要,也促进了道路交通建设飞速发展。

隧道在道路交通建设中是必须可少的。在隧道初步设计和施工设计阶段,通常需要查明第四纪覆盖层厚度、下伏基岩面埋深及其界面的起伏形态、各岩土层的分布特征及其性质、纵波波速等地球物理参数;同时查明隐伏构造、岩溶等不良地质体的位置、规模、性质、特征,为设计提供可靠的地质依据及地球物理参数。

能解决此问题的地球物理方法较多,如地震折射波法、地震反射波法、直流电测深法、联合剖面法、高密度电法和大地电磁测深法等。但受勘探成本、工期以及隧道地形条件限制,隧道勘探中一般采用地震折射波法和高密度电法。

1 方法原理

1.1 地震折射波法

地震勘探是通过人工激发的地震波向下传播,当遇到波阻抗差异较明显的分层界面,即下层介质的波速大于上层介质且入射角大于折射临界角的时候,地震波会在层界面上产生折射,利用地震仪接收折射波,分析折射波在介质中的传播路径、传播速度,进而推测地下地质体分布情况。通过分析处理软件,提取折射波初至时间可以求得下层介质的埋藏深度和各层介质的纵波速度。数据处理方法一般有:t0差数时距曲线法(t0法)、表层剥去法和哈莱斯法。其中以t0差数时距曲线法具有简便快速、对埋深和曲率有较大的适应性等成为较为常用的折射波处理方法之一。

1.2 高密度电法

1 高密度电法的基本原理

1.1 高密度电法的工作原理

高密度电法的基本工作原理与常规电阻率法大体相同。它是以岩土体的电性差异为基础的一种电探方法,根据在施加电场作用下地中传导电流的分布规律,推断地下具有不同电阻率的地质体、构造的赋存情况。高密度电法的物理前提是地下介质间的导电性差异。通过A、B电极向地下供电流I,然后在M、N极间测量电位差ΔV,从而可求得该点(M、N之间)的视电阻率值ρs=KΔV/I。根据实测的视电阻率剖面,进行计算、分析、反演,便可获得地下地层中的电阻率分布情况,从而可以划分地层,推断地质构造产状等。

2 应用实例

3 结论

高密度电法虽能够直观地反映地下电性异常体的形态,可以定性的确定低阻带、断层的位置,但所得到的电阻率等值线图反映的是岩土体的界面形态,对界面深度的解释仅属于定性结论,在地形特别负责的地区,不能准确地确定埋深;而地震折射波法能够较为准确地确定基岩上覆盖层(或低速层)厚度与纵波速度,能够勘察地下构造情况。

综合两种地球物理方法由于从不同的物性差异上给出同一地质本质的不同现象,有效的查明覆盖层厚度、断层及破碎带的分布,取长补短,使解释的可靠性得到大大的提高,综合弥补一种方法解释的缺陷,提高解释的精度。因此这两种方法是有效的。

物探工作本身具有多解性,只有掌握了更加多的边界条件,才能得出更客观的推断结论,建议结合探槽、钻孔等工程地质勘察方法综合分析验证,提高物探解释的精度和可靠性。

参考文献:

[1] 地震折射波法和高密度电法在隧道勘察中的应用,曾国等,物探与化探,2009.10,33-5;