时间:2023-12-14 11:49:18
序论:在您撰写生物医用材料的发展时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:生物医学材料;生物相容性;应用现状;发展前景
引言
生物医学材料是一种毒副作用较小,生物相容性比较好的具有特殊性能和特殊功能的一种医用材料,它对人的生命,组织器官是无害的。它的发展是以提升人类卫生健康水品,疾病治疗,医疗保健为目的一种生物材料。生物医学材料主要以生物高分子材料,生物陶瓷材料,生物医学复合材料及生物金属材料和生物医学衍生材料为主。现如今生物医学而材料已经广泛应用于医学领域和科研领域。
一、生物医学材料的分类
1、医用高分子材料
所谓生物医学材料领域中发展最好的领域,医用高分子材料自改革开放以来就发展非常迅速,现如今医用高分子材料已经研究出了许多性能量好,应用广泛的制成品。医用高分子材料有很大的便利之处是原材料比较容易获取,加工制成品比较简单,而且研究发现人体大部分组织器官的软组织部位,比如血管,呼吸道等都是由高分子材料构成,这一特点使得医用高分子材料的应用越来越受到人们的重视。
2、生物陶瓷材料
生物陶瓷材料也可以因为其化学组成而被叫做生物无机非金属材料,它也是具有大部分生物医学材料共有的生物特性,它是一种具有很好的生物相容性,与医用高分子材料相比生物陶瓷材料化学性质极其稳定。从性能上来讲,生物陶瓷材料与生物体具有高度亲和性,毒副作用非常小,也很少与生物体产生免疫排斥反应。由于生物陶瓷材料的这些良好特性,近年来也逐渐被研究开发,现已经普遍受到关注。生物陶瓷材料可以分为惰性生物陶瓷和生物活性生物陶瓷。每类生物陶瓷材料都逐渐被广泛利用。
3、医用金属材料
生物金属材料顾名思义具有很强的机械强度,因为这种材料的组成主要是金属或者合金,它的化学组成决定了此种材料具有很好的抗疲劳特性。钛合金和钴合金就是被广泛使用在临床上为人所熟知的医用类金属材料,另外还有不锈钢。它们三者常作为植入材料,主要运用于骨和牙等硬组织的替换。比较常用在临床上的是贵重金属例如金,银和铂,当然一些常见材料比如铁、镁及铜等都有应用于临床试验上,只是这些金属的生物特性不是很好,因此尚未受到专家认可。
4、生物医学复合材料
生物医学复合材料是由两种或两种以上不同材料混合而成,比如现运用于临床的一些生物传感器就是由高分子材料结合生物高分子形成的。另外,人工骨头也可以有碳和钛复合而成。
5、生物医学衍生材料
生物医学衍生材料是将生物组织进行特殊处理形成的,虽然它已经不具有生物活性,但是由于它有着天然生物相同的构型因而在人体修复和替换的过程中成功率比较高。
二、生物医学材料的应用现状
生物医学材料作为一项发展迅速的高新技术产业,它的发展已经受到全世界的普遍关注。现如今随着分子材料和人造器官的广泛使用,生物医学材料交叉着诸多学科成为创新材料的重要组成部分。生物医学材料的运用虽然在亚洲地区发展较快,但目前还主要在经济发达国家具有竞争优势。发达国家现已逐步形成生物材料工业体系,创新材料制成产品比较多,每年的销售额也非常巨大,甚至可以达到药物市场的销售额。目前,主要的生物材料产品中具有代表性的有:人工器官、人工关节、人工股骨头都是运用生物医学材料来替代的。
三、生物医学材料的发展前景
生物医学材料作为新技术革命中高新技术产业,将成为国民经济发展的一个重要驱动力。就我国而言,人口众多、人口老龄化、交通拥挤及卫生医疗状况需要改善的国情来讲,人们在生活水平不断提高的同时对医疗保健的要求越来越高,同时对行业创新的提升具有迫切需求。生物医学材料工业体系解决了众多疾病难题,促进了医疗水平和提高了疾病治疗成功率。现如今,国家已经充分认识生物医学材料的V大发展前景,并投入大量资金用于技术研究、仿制到创新。在全区,如今生物医学材料的发展已经能够与汽车行业在经济发展中的地位相比,销售市场和销售额大幅度扩增。
四、结语
综上所述,生物医学材料具有如此强大的经济竞争实力,具有极大的发展前景。我国这场新技术革命中不仅面临国内设施条件的制约,而且被发达国家的材料工业体系所发展的巨大市场所冲击着。我国争取在新技术革命中能够占一席之地,必须加大对生物材料的研究和运用,从仿制到创新,加强知识产权的保护的同时也要积极向发达国家学习,迅速转化成产业成果,重点突破,追踪生物材料的前沿,形成竞争优势。在国家的重点关注和支持的情况下,生物医学材料这种高新技术产业即将在中国迅猛发展。
[参考文献]
[1]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社,2001.95~98.
[2]冯凌云,陈晓明.生物陶瓷材料的生物学性能评价[J].武汉工业大学学报,1998,(18).
一、生物医用高分子材料的特点
生物医用高分子材料是一种聚合物材料,主要用于制造人体内脏、体外器官、药物剂型及医疗器械。按照来源的不同,生物医用高分子材料可以分为天然生物高分子材料和合成生物高分子材料2种。前者是自然界形成的高分子材料,如纤维素、甲壳素、透明质酸、胶原蛋白、明胶及海藻酸钠等;后者主要通过化学合成的方法加以制备,常见的有合聚氨酯、硅橡胶、聚酯纤维、聚乙烯基吡咯烷酮、聚醚醚酮、聚甲基丙烯酸甲酯、聚乙烯醇、聚乳酸、聚乙烯等。按照材料的性质,生物医用高分子材料可以分为非降解材料和降解材料。前者主要包括聚乙烯、聚丙烯等聚烯烃,芳香聚酯、聚硅氧烷等;后者包括聚乙烯亚胺—聚氨基酸共聚物、聚乙烯亚胺—聚乙二醇—聚(β-胺酯)共聚物、聚乙烯亚胺—聚碳酸酯共聚物等。
生物医用高分子材料作为植入人体内的材料,必须满足人体内复杂的环境,因此对材料的性能有着严格的要求。首先,材料不能有毒性,不能造成畸形;其次,生物相容性比较好,不能与人体产生排异反应;第三,化学稳定性强,不容易分解;第四,具备一定的物理机械性能;第五,比较容易加工;最后,性价比适宜。其中最关键的性能是生物相容性。
根据国际标准化组织(InternationalStandardsOrganization,ISO)的解释,生物相容性是指非活性材料进入后,生命体组织对其产生反应的情况。当生物材料被植入人体后,生物材料和特定的生物组织环境相互产生影响和作用,这种作用会一直持续,直到达到平衡或者植入物被去除。生物相容性包括组织相容性、细胞相容性和血液相容性。
二、生物医用高分子材料的发展历史
人类对生物医用高分子材料的应用经过了漫长的阶段。根据记载,公元前3500年,古埃及人就用棉花纤维和马鬃缝合伤口,此后到19世纪中期,人类还主要停留在使用天然高分子材料的阶段;随后到20世纪20年代,人类开始学会对天然高分子材料进行改性,使之符合生物医学的要求;再后来人类开始尝试人工合成高分子材料;20世纪60年代以来,生物医用高分子材料得到了飞速发展和广泛的普及。1949年,美国就率先发表了研究论文,在文中第1次阐述了将有机玻璃作为人的头盖骨、关节和股骨,将聚酰胺纤维作为手术缝合线的临床应用情况,对医用高分子的应用前景进行了展望。这被认为是生物医用高分子材料的开端。
在20世纪50年代,人类发现有机硅聚合物功能多样,具有良好的生物相容性(无致敏性和无刺激性),之后有机硅聚合物被大量用于器官替代和整容领域。随着科技的发展,20世纪60年代,美国杜邦公司生产出了热塑性聚氨酯,这种材料的耐屈挠疲劳性优于硅橡胶,因此在植入生物体的医用装置及人工器官中得到了广泛应用。随后人工尿道、人工食道、人工心脏瓣膜、人工心肺等器官先后问世。生物医用高分子材料也从此走上快速发展的道路。
三、生物医用高分子材料的发展现状、前景和趋势
据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。2015年1月28日,中国医药物资协会的《2014中国单体药店发展状况蓝皮书》显示,2014全年全国医疗器械销售规模约2556亿元,比2013年度的2120亿元增长了436亿元,增长率为20.06%。但是相比于医药市场总规模(预计为13326亿元)来说,医药和医疗消费比为1∶0.19还略低,因此业内普遍认为,医疗器械仍然还有较广阔的成长空间,生物医用高分子材料也将迎来良好的发展前景。
根据evaluateMedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用。
以往的医学研究对组织和器官的修复,更多是选择一种替代品,实现原有组织和器官的部分功能。随着再生医学和干细胞技术的迅速发展,利用生物技术再生和重建器官、个性化治疗和精准医学已经成为趋势。因此传统的生物医药高分子材料已经不能满足现有的需求,需要模拟生物的结构,恢复和改进生物体组织与器官的功能,最终实现器官和组织的再生,这也是生物医用高分子材料未来的发展方向。
生物医用高分子材料在医疗器械领域中得到了非常广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料3个领域。
1.人工器官
人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。目前生物医用高分子材料主要应用在第1种人工器官中。
目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的36%;伤口护理和整形外科分别为8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。
目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)注册批准,这也是我国首个3D打印人体植入物。
人工器官未来发展趋势是诱导被损坏的组织或器官再生的材料和植入器械。人工骨制备的发展趋势是将生物活性物质和基质物质组合到一起,促进生物活性物质的黏附、增殖和分化。血管生物支架的发展趋势是聚合物共混技术,如海藻酸钠/壳聚糖、胶原/壳聚糖、胶原/琼脂糖、壳聚糖/明胶、壳聚糖/聚己内酯、聚乳酸/聚乙二醇等体系。
2.医用塑料
医用塑料,主要用于输血输液用器具、注射器、心导管、中心静脉插管、腹膜透析管、膀胱造瘘管、医用粘合剂以及各种医用导管、医用膜、创伤包扎材料和各种手术、护理用品等。注塑产品是医用塑料制品当中产量最大的品种。与普通塑料相比,医用塑料要求比较高,严格限制了单体、低聚物、金属离子的残留,对于原材料的纯度要求很高,对加工设备的要求也非常严格,在加工和改性过程中避免使用有毒助剂,通常具有表面亲水、抗凝血等特殊功能。常用医用塑料包括聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、热塑性聚氨酯(TPU)、聚碳酸酯(PC)、聚酯(PET)等。
目前医用塑料市场约占全球医疗器械市场的10%,并保持着每年7%~12%的年均增长率。统计数据显示,美国每人每年在医用塑料领域消费额为300美元,而我国只有30元,由此可见医用塑料在我国的发展潜力非常大。
我国医用塑料制品产业经过多年的发展,取得了长足的进步。中国医药保健品进出口商会统计数据显示,2015年上半年,纱布、绷带、医用导管、药棉、化纤制一次性或医用无纺布物服装、注射器等一次性耗材和中低端诊断治疗器械等成为我国医疗器械的出口大户。但是也必须清醒地认识到,我国的医用塑料发展水平还比较落后。医用塑料的原料门类不全、生产质量标准不规范、新技术和新产品的创新能力薄弱,导致一些高端原料导致国内所需的高端产品原料还主要靠进口。
目前各国都认识到了医用塑料的重要价值,加大了研发力度,取得了一些进展。2015年,英国伦敦克莱蒙特诊所率先开展了塑胶晶状体移植手术,不仅可以治疗远视眼或近视眼,还可以恢复患有白内障和散光者的视力;住友德马格公司推出一种聚甲醛(POM)齿轮微注塑设备,在新型白内障手术器械中具有重要作用;美国美利肯公司开发了一项技术,可使非处方药和保健品塑料瓶的抗湿性和抗氧化性提高30%;MHT模具与热流道技术公司开发出了PET血液试管,质量不足4g,优于玻璃试管;Rollprint公司与TOPAS先进高分子材料公司合作,采用环烯烃共聚物作为聚丙烯腈树脂的替代品,以满足苛刻的医疗标准;美国化合物生产商特诺尔爱佩斯推出了一款硬质PVC,以取代透明医疗零部件中用到的PC材料,如连接器、止回阀、Y接头、套管、鲁尔接口配件、过滤器、滴注器和盖子,以及样本容器。
未来医用塑料的发展趋势是开发可耐多种消毒方式的医用塑料,改善现有医用塑料的血液相容性和组织相容性,开发新型的治疗、诊断、预防、保健用塑料制品等。
3.药用高分子材料,
药用高分子材料在现代药物制剂研发及生产中扮演了重要的角色,在改善药品质量和研发新型药物传输系统中发挥了重要作用。药用高分子材料的应用主要包括2个方面:用于药品剂型的改善以及缓释和靶向作用,此外还可以合成新的药物。
药物缓释技术是指将衣物表面包裹一层医用高分子材料,使得药物进入人体后短时间内不会被吸收,而是在流动到治疗区域后再溶解到血液中,这时药物就可以最大限度的发挥作用。药物缓释技术主要有贮库型(膜控制型)、骨架型(基质型)、新型缓控释制剂(口服渗透泵控释系统、脉冲释放型释药系统、pH敏感型定位释药系统、结肠定位给药系统等)。
贮库型制剂是指在药物外包裹一层高分子膜,分为微孔膜控释系统、致密膜控释系统、肠溶性膜控释系统等,常用的高分子材料有丙烯酸树脂、聚乙二醇、羟丙基纤维素、聚维酮、醋酸纤维素等。骨架型制剂是指向药物分散到高分子材料形成的骨架中,分为不溶性骨架缓控释系统、亲水凝胶骨架缓控释系统、溶蚀性骨架缓控释系统,常用的高分子材料有无毒聚氯乙烯、聚乙烯、聚氧硅烷、甲基纤维素、羟丙甲纤维素、海藻酸钠、甲壳素、蜂蜡、硬脂酸丁酯等。
我国的高分子基础研究处于世界一流,但是药用高分子的应用发展相对滞后,品种不够多、规格不完整、质量不稳定,导致制剂研发能力与国际产生差距。国内市场规模前10大种类分别为明胶胶囊、蔗糖、淀粉、薄膜包衣粉、1,2-丙二醇、PVP、羟丙基甲基纤维素(HPMC)、微晶纤维素、HPC、乳糖。高端药用高分子材料几乎全部依赖进口。专业药用高分子企业则存在规模小、品种少、技术水平低、研发投入少的问题。
目前,药物剂型逐步走向定时、定位、定量的精准给药系统,考虑到医用高分子材料所具备的优异性能,将会在这一发展过程中发挥关键性的作用。未来发展趋势是开发生物活性物质(疫苗、蛋白、基因等)靶向控释载体。
四、结语
虽然生物医用高分子材料的应用已经取得了一些进展,但是,随着临床应用的不断推广,也暴露出不少问题,主要表现出功能有局限、免疫性不好、有效时间不长等问题。如植入血管支架后,血管易出现再度狭窄的情况;人工关节有效期相对较短,之所以出现这些问题,主要原因是人体与生俱来的排异性。
生物医用高分子材料隶属于医疗器械产业,其发展备受政策支持。国务院于2015年5月印发的《中国制造2025》明确指出,大力发展生物医药及高性能医疗器械,重点发展全降解血管支架等高值医用耗材,以及可穿戴、远程诊疗等移动医疗产品。可以预见,在未来20~30年,生物医用高分子材料就会迎来新一轮的快速发展。
参考文献
[1]奚廷斐.生物医用材料现状和发展趋势[J].中国医疗器械信息,2006(5):1-4.
[2]张真,卢晓风.生物材料有效性和安全性评价的现状与趋势[J].生物医学工程学,2002,19(1):117-121.
[3]董亮,何星.生物医用复合材料研究现状及发展趋势[J].世界复合医学,2015(4):340-342.
[4]奚廷斐.我国生物医用材料现状和发展趋势[J].中国医疗器械信息,2013(8):1-5.
[5]中国组织工程研究与临床康复.中国生物医用材料研究领域的问题及对策[J].中国组织工程研究与临床康复,2011(34):186.
[6]胡帼颖,张志雄,温叶飞,等.组织工程技术的发展现状及趋势(三)——组织工程用生物材料的研究[J].透析与人工器官,2009(3):9-27.
[7]张镇,王本力.我国生物医用材料产业发展研究[J].新材料产业,2015(3):2-5.
[8]章俊,胡兴斌,李雄.生物医用高分子材料在医疗中的应用[J].中国医院建筑与装备,2008(1):30-35.
[9]梅建国,庄金秋,汤少伟,等.生物医用高分子材料的生物相容性及其表面改性技术[J].材料导报,2014,28(19):139-142.
[10]黄琼俭,徐益.生物医用高分子材料在药物控释系统中的应用[J].生物技术世界,2013(2):82-82.
[11]吴桐.浅谈几种生物医用高分子材料的应用[J].科技资讯,2011(29):52-52.
[12]王建营,朱治国,孙家跃,等.聚醚醚酮人造骨关节材料研究[J].化学世界,2004,45(1):53-54.
[13]高茜斐.生物塑料发展现状及前景[J].广东化工,2015,42(15):87-88.
[14]龙先鹏.浅析我国生物塑料前景[J].科技创新导报,2011(14):96-96.
[15]全球医药塑料产量及潜力巨大[J].国外塑料,2013(9):69-69.
2 生物材料的类型与应用 生物材料种类繁多,到目前为止,被详细研究过的生物材料已经超过一千种,在医学临床上广泛应用的也有几十种,涉及材料学科各个领域。依据不同的分类标准,可以分为不同的类型。
2.1 以材料的生物性能为分类标准根据材料的生物性能,生物材料可分为生物惰性材料、生物活性材料、生物降解材料和生物复合材料四类。
2.1.1 生物惰性材料 生物惰性材料是指一类在生物环境中能保持稳定,不发生或仅发生微弱化学反应的生物医学材料,主要是生物陶瓷类和医用合金类材料。由于在实际中不存在完全惰性的材料,因此生物惰性材料在机体内也只是基本上不发生化学反应,它与组织间的结合主要是组织长入其粗糙不平的表面形成一种机械嵌联,即形态结合。生物惰性材料主要包括以下几类:(1)氧化物陶瓷 主要包括氧化铝陶瓷和氧化锆陶瓷.氧化铝陶瓷中以纯刚玉及其复合材料的人工关节和人工骨为主,具体包括纯刚玉双杯式人工髋关节;纯刚玉— 金属复合型人工股骨头;纯刚玉—聚甲基丙烯酸酯—钴铬钼合金铰链式膝关节,其他人工骨、人工牙根等。(2)玻璃陶瓷 该材料主要用来制作部分人工关节。(3)Si3N4 陶瓷 该类材料主要用来制作一些作为替代用的较小的人工骨,目前还不能用作承重材料。(4)医用碳素材料 它主要被作为制作人工心脏瓣膜等人工脏器以及人工关节等方面的材料。(5)医用金属材料 该类材料是目前人体承重材料中应用最广泛的材料,在其表面涂上活性生物材料后可增加它与人体环境的相容性.同时它还能制作各类其他人体骨的替代物。
2.1.2 生物活性材料生物活性材料是一类能诱出或调节生物活性的生物医学材料。但是,也有人认为生物活性是增进细胞活性或新组织再生的性质。现在,生物活性材料的概念已建立了牢固的基础,其应用范围也大大扩充. 一些生物医用高分子材料,特别是某些天然高分子材料及合成高分子材料都被视为生物活性材料.羟基磷灰石是一种典型的生物活性材料。由于人体骨的主要无机质成分为该材料,故当材料植入体内时不仅能传导成骨,而且能与新骨形成骨键合。在肌肉、韧带或皮下种植时,能与组织密合,无炎症或刺激反应.生物活性材料主要有以下几类:
(1)羟基磷灰石,它是目前研究最多的生物活性材料之一,作为最有代表性的生物活性陶瓷—羟基磷灰石(简称HAP)材料的研究, 在近代生物医学工程学科领域一直受到人们的密切关注.羟基磷灰石 [Ca10(PO4)6(OH)2]是脊椎动物骨和齿的主要无机成分,结构也非常相近,与动物体组织的相容性好、无毒副作用、界面活性优于各类医用钛合金、硅橡胶及植骨用碳素材料。因此可广泛应用于生物硬组织的修复和替换材料,如口腔种植、牙槽脊增高、耳小骨替换、脊椎骨替换等多个方面.另外,在HA 生物陶瓷中耳通气引流管、颌面骨、鼻梁、假眼球以及填充用HA颗粒和抑制癌细胞用HA微晶粉方面也有广泛的应用.又因为该材料受到本身脆性高、抗折强度低的限制,因此在承重材料应用方面受到了限制.现在该材料已引起世界各国学者的广泛关注。目前制备多孔陶瓷和复合材料是该材料的重要发展方向,涂层材料也是重要分支之一。该类材料以医用为目的,主要包括制粉、烧结、性能实验和临床应用几部分。
(2)磷酸钙生物活性材料 这种材料主要包括磷酸钙骨水泥和磷酸钙陶瓷纤维两类.前者是一种广泛用于骨修补和固定关节的新型材料,有望部分取代传统的PMMA 有机骨水泥. 国内研究抗压强度已达60MPa 以上。后者具有一定的机械强度和生物活性,可用于无机骨水泥的补强及制备有机与无机复合型植入材料。
(3)磁性材料 生物磁性陶瓷材料主要为治疗癌症用磁性材料,它属于功能性活性生物材料的一种。把它植入肿瘤病灶内,在外部交变磁场作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。动物实验效果良好。
(4)生物玻璃 生物玻璃主要指微晶玻璃,包括生物活性微晶玻璃和可加工生物活性微晶玻璃两类。目前关于该方向的研究已成为生物材料的主要研究方向之一。
2.1.3 生物降解材料所谓可降解生物材料是指那些在被植入人体以后,能够不断的发生分解,分解产物能够被生物体所吸收或排出体外的一类材料,主要包括β-TCP 生物降解陶瓷和生物陶瓷药物载体两类,前者主要用于修复良性骨肿瘤或瘤样病变手术刮除后所致缺损,而后者主要用作微药库型载体,可根据要求制成一定形状和大小的中空结构,用于各种骨科疾病。
2.1.4 生物复合材料生物复合材料又称为生物医用复合材料,它是由两种或两种以上不同材料复合而成的生物医学材料,并且与其所有单体的性能相比,复合材料的性能都有较大程度的提高的材料。制备该类材料的目的就是进一步提高或改善某一种生物材料的性能。该类材料主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造,它除应具有预期的物理化学性质之外,还必须满足生物相容性的要求,这里不仅要求组分材料自身必须满足生物相容性要求,而且复合之后不允许出现有损材料生物学性能的性质。按基材分生物复合材料可分为高分子基、金属基和陶瓷基三类,它们既可以作为生物复合材料的基材,又可作为增强体或填料,它们之间的相互搭配或组合形成了大量性质各异的生物医学复合材料,利用生物技术,一些活体组织、细胞和诱导组织再生的生长因子被引入了生物医学材料,大大改善了其生物学性能,并可使其具有药物治疗功能,已成为生物医学材料的一个十分重要的发展方向,根据材料植入体内后引起的组织反应类型和水平,它又可分为近于生物惰性的、生物活性的、可生物降解和吸收等几种类型。人和动物中绝大多数组织均可视为复合材料,生物医学复合材料的发展为获得真正仿生的生物材料开辟了广阔的途径。
2.2 以材料的属性为分类标准
2.2.1 生物医用金属材料生物医用金属材料是用作生物医学材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料,这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,及硬组织、软组织、人工器官和外科辅助器材等各个方面,除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有不锈钢、钴基合金和钛基合金等三大类。此外,还有形状记忆合金、贵金属以及纯金属钽、铌、锆等。
2.2.2 生物医用高分子材料 医用高分子材料是生物医学材料中发展最早、应用最广泛、用量最大的材料,也是一个正在迅速发展的领域。它有天然产物和人工合成两个来源,该材料除应满足一般的物理、化学性能要求外,还必须具有足够好的生物相容性。按性质医用高分子材料可分为非降解型和可生物降解型两类。对于前者,要求其在生物环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的物理机械性能。并不要求它绝对稳定,但是要求其本身和少量的降解产物不对机体产生明显的毒副作用,同时材料不致发生灾难性破坏。该类材料主要用于人体软、硬组织修复体、人工器官、人造血管、接触镜、膜材、粘接剂和管腔制品等方面。这类材料主要包括聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等. 而可降解型高分子主要包括胶原、线性脂肪族聚酯、甲壳素、纤维素、聚氨基酸、聚乙烯醇、聚己丙酯等。它们可在生物环境作用下发生结构破坏和性能蜕变,其降解产物能通过正常的新陈代谢或被机体吸收利用或被排出体外,主要用于药物释放和送达载体及非永久性植入装置.按使用的目的或用途,医用高分子材料还可分为心血管系统、软组织及硬组 织等修复材料。用于心血管系统的医用高分子材料应当着重要求其抗凝血性好,不破坏红细胞、血小板,不改变血液中的蛋白并不干扰电解质等。
2.2.3 生物医用无机非金属材料或称为生物陶瓷。生物医用非金属材料,又称生物陶瓷。包括陶瓷、玻璃、碳素等无机非金属材料。此类材料化学性能稳定,具有良好的生物相容性。一般来说,生物陶瓷主要包括惰性生物陶瓷、活性生物陶瓷和功能活性生物陶瓷三类。其中惰性生物陶瓷和活性生物陶瓷在前面已经简要作了介绍,而功能活性生物陶瓷是近年来提出的一个新概念.随着生物陶瓷材料研究的深入和越来越多医学问题的出现,对生物陶瓷材料的要求也越来越高。原先的生物陶瓷材料无论是生物惰性的还是生物活性的,强调的是材料在生物体内的组织力学环境和生化环境的适应性,而现在组织电学适应性和能参与生物体物质、能量交换的功能已成为生物材料应具备的条件。因此,又提出了功能活性生物材料的概念。它主要包括以下两类:(1)模拟性生物陶瓷材料 该类材料是将天然有机物(如骨胶原、纤维蛋白以及骨形成因子等)和无机生物材料复合,来模拟人体硬组织成分和结构,以改善材料的力学性能和手术的可操作性,并能发挥天然有机物的促进人体硬组织生长的特性。(2)带有治疗功能的生物陶瓷复合材料 该类材料是利用骨的压电效应能刺激骨折愈合的特点,使压电陶瓷与生物活性陶瓷复合,在进行骨置换的同时,利用生物体自身运动对置换体产生的压电效应来刺激骨损伤部位的早期硬组织生长。具体来说是由于肿瘤中血管供氧不足,当局部被加热到43~45℃时,癌细胞很容易被杀死。现在最常用的是将铁氧体与生物活性陶瓷复合,填充在因骨肿瘤而产生的骨缺损部位,利用外加交变磁场,充填物因磁滞损耗而产生局部发热,杀死癌细胞,又不影响周围正常组织。现在,功能活性生物陶瓷的研究还处于探索阶段,临床应用鲜有报道,但其发展应用前景是很光明的。各种不同种类的生物陶瓷的物理、化学和生物性能差别很大,在医学领域用途也不同.尤其是功能活性陶瓷更有不可估量的发展前途.临床应用中,生物陶瓷存在的主要问题是强度和韧性较差.氧化铝、氧化锆陶瓷耐压、耐磨和化学稳定性比金属、有机材料都好,但其脆性的问题也没有得到解决。生物活性陶瓷的强度则很难满足人体承力较大部位的需要。
2.2.4 生物医用复合材料此类材料在2.1.4 中已有介绍,此处不再详述
2.2.5 生物衍生材料生物衍生材料是由经过特殊处理的天然生物组织形成的生物医用材
料,也称为生物再生材料.生物组织可取自同种或异种动物体的组织. 特殊处理包括维持组织原有构型而进行的固定、灭菌和消除抗原性的轻微处理,以及拆散原有构型、重建新的物理形态的强烈处理.由于经过处理的生物组织已失去生命力,生物衍生材料是无生命力的材料. 但是,由于生物衍生材料或是具有类似于自然组织的构型和功能,或是其组成类似于自然组织,在维持人体动态过程的修复和替换中具有重要作用.主要用于人工心瓣膜、血管修复体、皮肤掩膜、纤维蛋白制品、骨修复体、巩膜修复体、鼻种植体、血液唧筒、血浆增强剂和血液透析膜等.
3. 生物材料的性能评价 目前关于生物材料性能评价的研究主要集中在生物相容性方面.因为生物相容性是生物材料研究中始终贯穿的主题.它是指生命体组织对生物材料产生反应的一种性能,该材料既能是非活性的又能是活性的.一般是指材料与宿主之间的相容性,包括组织相容性和血液相容性.现在普遍认为,生物相容性包括两大原则,一是生物安全性原则,二是生物功能性原则.生物安全性是植入体内的生物材料要满足的首要性能,是材料与宿主之间能否结合完好的关键.关于生物材料生物学评价标准的研究始于20 世纪70 年代,目前形成了从细胞水平到整体动物的较完整的评价框架.国际标准化组织(ISO)以 10993编号了17个相关标准,同时对生物学评价方法也进行了标准化.迫于现代社会动物保护和减少动物试验的压力,国际上各国专家对体外评价方法进行了大量的研究,同时利用现代分子生物学手段来评价生物材料的安全性、使评价方法从整体动物和细胞水平深入到分子水平.主要在体外细胞毒性试验、遗传性和致癌性试验以及血液相容性评价方法等方面进行了一些研究.但具体评价方法和指标都未统一,更没有标准化.随着对生物材料生物相容性的深入研究,人们发现评价生物材料对生物功能的影响也很重要.关于这一方面的研究主要是体外法。具体来说侧重于对细胞功能的影响和分子生物学评价方面的一些研究。总之,关于生物功能性的原则是提出不久的一个新的生物材料的评价方面,它必将随着研究的不断深入而向前发展.而涉及材料的化学稳定性、疲劳性能、摩擦、磨损性能的生物材料在人体内长期埋植的稳定性是需要开展评价研究的一个重要方面。
4 生物材料的发展趋势展望 生物材料科学是20 世纪新兴学科中最耀眼的新星之一。现在,生物材料科学已成为一门与人类现代医疗保健系统密切相关的边缘学科。其重要性不仅因为它与人类自身密切相关,还因为它跨越了材料、医学、物理、生物化学和现代高科技等诸多学科领域。现在对于该材料的研究已从被动地适应生物环境发展到有目的地设计材料,以达到与生物组织的有机连接。并随着生命科学和材料科学的发展,生物材料必将走向功能性半生命方向。生物材料的临床应用已从短期的替换和填充发展成永久性牢固种植,并与其它高科技(如电子技术、信息处理技术)相结合,制备富有应用潜力的医疗器械。生物材料的研究在世界各国也日益受到重视.四年一次的世界生物材料大会代表着国际上生物材料研究的发展动态和目前的水平。分析认为,以下几个方面是生物材料今后研究发展的几个主要方向:
(1)发展具有主动诱导、激发人体组织和器官再生修复功能的,能参与人体能量和物质交换产生相互结合的功能性活性生物材料,将成为生物材料研究的主要方向之一。
(2)把生物陶瓷与高分子聚合物或生物玻璃进行二元或多元复合,来制备接近人体骨真实情况的骨修复或替代材料将成为研究的重要方向之一。
(3)制备接近天然人骨形态的、纳微米相结合的、用于承重的、多孔型生物复合材料将成为方向之一。
(4)用于延长药效时间、提高药物效率和稳定性、减少用量及对机体的毒副作用的药物传递材料将成为研究热点之一。
(5)血液相容性人工脏器材料的研究也是突破方向之一。
(6)如何能够制备出纳米尺寸的生物材料的工艺以及纳米生物材料本身将成为研究热点之一。
关键词:镁合金;生物材料;可降解
1. 镁合金生物材料的研究现状
镁及其合金可用做可降解生物材料,但是其高的腐蚀速率是一个焦点问题。H,Wang等用三种不同手段加工出来的AZ31在Hank模拟体液中浸泡1、2、5、10、15、20天,然后称重,用光学显微镜观察形貌,用TEM观察显微结构,结果表明,通过机械处理,AZ31在Hank溶液中生物降解速率明显降低。德国汉诺威尔大学F·Witte 等人对AZ31、AZ91、WE43、LAE442进行了在活猪体内植入试验,研究了不同可降解镁合金在骨环境中界面降解机制及合金降解速率,得到镁合金的降解取决于合金元素,植入的四种合金都与骨结合良好,并且得到镁离子对骨生长有诱导作用,只是合金降解过快,导致皮下产生氢气气泡;香港城市大学研究了AZ63在模拟体液中的降解情况,并研究热处理对降解情况的对比,通过比较得出,430℃在空气中保存24小时T4处理后,合金的降解速率是铸态合金的1/2[21];北京大学郑玉峰系统研究了Mg-1x(x为Zn、Mn、Al、Si、Ag、Zr、Y、ln)二元合金的组织性能、力学性能、耐腐蚀性能、细胞毒性、血液相容性,通过研究得到,添加Al,Si, Sn,Zn或Zr元素能改善合金的力学性能,添加Al, In, Mn, Zn,或 Zr元素能降低合金在模拟体液和汉克斯溶液中的腐蚀速率,Si和Y合金元素却加速了合金的腐蚀[23-24]等等。目前通过动物实验等,正在推进镁合金作为生物医用材料的应用。
2. 镁合金生物材料的发展趋势
迄今为止,被详细研究过的生物材料已有一千多种,医学临床上广泛使用的也有几十种,涉及到材料学的各个领域。目前生物医学材料研究的重点是在保证安全性的前提下寻找组织相容性更好、耐腐蚀、持久性更好的多用途生物医学材料。其发展趋势必然要求:
(1)提高生物医学材料的组织相容性,增加材料与活体组织之间相互容纳的程度,避免材料周围组织的局部反应;
(2)金属材料在生物医用材料中的应用将越来越广泛,金属生物医学材料的应用已有较长的历史,随着科学技术的发展和外科医疗水平的提高,先后开发了不锈钢、钴合金、工业纯钛及钛合金等一系列金属生物医学材料;
(3) 生物医学材料的治疗特性增强,生物医学材料的发展不仅局限于作为人体相应器官的假体和代用品,利用多种学科的交叉研制具有治疗特性的生物医学材料也是未来的重要方向;
(4) 具有多种特殊功能生物材料的研制和应用,对合金进行深加工,使其具备多种功能,满足不同情况的需求,也是未来生物医用材料的发展趋势之一。
3. 镁合金生物材料研究意义及应用展望
镁及镁合金具有比强度和比刚度较高、生物可降解吸收性等特点,作为现有金属生物植入材料的新一代替代产品表现出巨大的优势与潜力,已经引起国内外越来越多研究者的关注,但由于人体环境的复杂性,这种新材料的研究还需一个长期过程。生物医用材料的研究与开发对国民经济和社会的发展具有极其重要的意义,生物医用材料具有很高的附加值,其每公斤达1200-150000美元,而建筑材料仅为0.1-1.2美元,宇航材料也仅100-1200美元。
随着人口老龄化和各类创伤的增加,近几年来生物医用材料和制品的市场一直保持20%左右的年增长率,发展态势已可以与信息和汽车产业在世界经济中的地位相比,正在成长为本世纪世界经济的一个支柱,对国民经济的发展有着不可忽视的重要作用。例如,随着人口老龄化和中青年创伤的增加,对生物医学材料和制品的需求持续增长。在我国,人口老龄化已成为社会问题,同时中、青年创伤高速增加,生物医学材料及制品存在着巨大的潜在市场,特别是随着国民经济的发展和人民生活水平的提高,对生物医学材料和制品的需求急速增高。
因此对于我国发展医用金属材料是一个趋势。伴随着新型金属材料的研制和表面改性技术的采用,生物医用金属材料腐蚀研究又开辟了新的研究和发展空间;镁合金具有足够的强度,良好的生物相容性和体内可降解性,有望成为新型骨植入材料。但是它的力学性能不够,且耐蚀性较差;不含对人体有害元素的合金,其力学性能相对钛合金、不锈钢等医用合金强度低,不能用于承载部位;作为骨植入材料,其目的是维持骨折复位、重建后的稳定,因此从力学角度考虑要求其在骨组织完全愈合之前必须保持原有力学性能基本不变。
4. 结束语
可降解生物医用镁合金相对于传统金属医用材料来说,具有无可比拟的优越性,如作为骨内植物,可有效避免应力遮挡效应,并可避免骨折痊愈后二次手术给病人带来的痛苦和费用;作为心血管支架材料,可有效减少血管内膜增生、再狭窄、晚期血栓等问题。因此,被誉为“革命性的金属生物材料”而受到全球高度瞩目。
尽管目前已有动物体内及人体临床实验,然而绝大多数为商用镁合金,缺乏生物安全性。作为生物医用材料,在设计时必须考虑材料的生物安全性、强韧性、耐蚀性(特别是类似于均匀腐蚀降解方式)。因此,需要设计具有生物安全性、高强韧性、耐蚀性和腐蚀均匀性的新型生物医用镁合金;需要对其强韧性设计制备理论、在体内的降解代谢机制及体内降解产物的生物安全性、降解行为的可控性等方面进行系统深入的研究,进而为可降解生物医用镁合金的临床医学应用提供更加可靠的科学依据。上海交通大学轻合金精密成型国家工程研究中心团队近年来在上述领域进行了一些有益的探索,并取得了令人鼓舞的进展。相信经过科研工作者的不断努力探索,可降解生物医用镁合金一定会有光明的应用前景,成为惠及人类健康的新型金属生物材料。
参考文献
[1] 李世谱. 生物医用材料导论M.武汉理工大学出版社. 2000:20–40.
[2] R.J. Schultz, The Language of Fractures, 2nd ed. Williams and Wilkins, 1990, p. 27.
医卫用纺织品的产业发展问题一直是业内争论的焦点,医卫用纺织品发展的春天在哪里?据预计,2016年全球一次性医疗用纺织品需求量将达1980亿美元,或许这个数字可以直观表达医卫用纺织品的发展规模。
“应重点研究开发医用组织器官材料,同时发展高效医用防护产品,推广新型轻量、超薄、无刺激、可降解卫生用品。”中国产业用纺织品行业协会会长李陵申这样总结医用纺织品的发展方向。
极具发展潜力
有报道指出,由于人们生活水平的提高,以及医疗卫生服务水平的提高,医疗卫生用纺织品的市场渗透率和消费量逐步提高。随着技术进步,医疗用纺织品在技术水平、防护功能上都有了极大提高,我国企业生产的高性能、高品质的医疗用纺织品大多出口到美国、日本、欧洲、大洋洲等地。据统计,我国每年进口的医疗用纺织品达60亿美元,而进出口的价格差达3.19倍,可见该领域的发展空间巨大。
为此,中国产业用纺织品行业协会与国家有关部门建立了“医疗用纺织品联合推进机制”,旨在推进我国技术水平高、产品性能好、防护能力强的医疗用纺织品在国内的推广应用,促进我国医用纺织品行业的发展。
目前医卫用纺织品最发达的五个市场依次为美国、欧洲(以欧盟国家为主)、加拿大、日本、澳大利亚,这五大市场医用纺织品的销量约占世界医用纺织品市场总销量的90%。
我国医卫用纺织品行业的发展从2000年之后才真正进入快速增长期。据公开数据显示,2008-2012年中国医疗与卫生用纺织品年均增长16%,2012年达11.5%,同年产量达到90.6万吨。产品涉及一次性医用服装、医用敷料、卫生巾、纸尿裤等。国内产品主要集中在医用防护纺织品和保健卫生用品方面,而生物医用材料则由于技术和行业壁垒等原因,一直处于基础研究阶段。
李陵申谈到,随着新材料、新技术的不断出现,医用纺织品产业规模迅速提升。但与国外发达国家相比,医用纺织品在我国市场的认知度和消费量不高。医院更容易接受国外权威产品,从而造成国产生物医用纺织材料应用受限。
我国现有6万多家医院、11.5万家诊所、450多万张病床,为一次性医疗用纺织品提供巨大的发展空间。李陵申强调,内需是拉动一次性卫生用纺织品市场的主要动力。行业内的骨干企业具有规模、技术和市场优势,经营状况良好,部分企业有计划投资新的生产线。医用纺织品需要获得更多的关注,需要生产商和医疗部门之间合作更密切,尤其是在新产品设计和开发的初始阶段。
多重因素制约
在产业用纺织品的细分领域中,医疗卫生用纺织品一直是发展的重中之重,尤其是技术含量较高的生物医用材料。尽管发展潜力巨大,但医疗用纺织品存在着一些问题,如产品同质化、质量参差不齐、缺乏品牌战略意识;政策法规引导和保障机制缺失;标准制定滞后;资质认证空白。
据介绍,目前我国医疗卫生用纺织品主要分两个方面,一方面是技术含量较低的医疗卫生用基础材料,如手术洞单、手术服以及纸尿裤、卫生巾等产品纺织品,我国发展很快,但应用率不高,大部分都是出口;另一方面是生物医用材料,如手术缝合线、人造血管、人工透析导管、人造皮肤等,目前我国还处于基础研究阶段,产品基本靠进口。
特别值得注意的是,在医疗卫生用纺织材料领域,生物医用材料领域与发达国家比较,差距更大。发达国家已经进入应用研究阶段,我国仅处于基础研究阶段。究其原因,一是技术研究水平较弱,生物医用材料研究人才缺乏;二是体制方面的问题,一旦出现医疗事故引发医疗纠纷,企业为了解决成本问题,更倾向于进口相关产品;三是标准制度方面的因素,例如临床试验,因为审批制度的原因,国内一些生产企业宁愿先到国外进行认证,然后再销售到国内,也不愿意在国内进行认证。此外,标准体系也不健全,还有一次性手术用纺织品的环保问题等。
因此,李陵申建议国家加大两方面工作,一是加大高技术含量的生物医用纺织材料的基础研究力度,争取早日向应用研究过渡;二是加大低技术含量的医疗卫生用纺织材料的推广应用力度,提高基础医疗卫生用品的使用率。他指出,医学的不断发展促进了医疗卫生用材料的快速发展,反之,医疗卫生用纺织品尤其是生物医用材料的发展,也可促进医疗水平的有效提升,进而提高人们的生活质量,因此,对这一领域,急需加大研发的力度。
李陵申还强调,要开展国内与国际技术合作,加快我国产业用纺织品在医疗用纺织材料方面的基础研究、整理加工技术研究、整理加工的试剂材料和设备研制和创新开发力度。
新材料 新驱动
医用纺织品是用于医疗、防护、保健及卫生用途的纺织品,它是纺织学科与生物医学学科相互交叉的领域,是产业用纺织品中科技含量高、创新要求迫切的一类产品,与人们的生活密切相关。
“目前,新型医用纺织品产业正以10%以上的年增长率快速发展。天然抑菌纤维、水溶性纱布等新材料的出现,使医用纺织品的质量和功能不断提升。它们以抗水、抗血、抗酒精、抗菌、可降解等特点,正逐步替代传统医用纺织品原料。”李陵申表示。
在长春宣贯会上,与会专家反映热烈,如原来的洞单、手术服等掉毛绒,容易形成伤口感染等问题,现在用熔喷或纺粘法长丝非织造布做成的医护用品则能有效降低该污染源,从而提高了手术的成功率,大家真切感受到新型医用纺织品的好处。
在去年结束的中国国际产业用纺织品及非织造布展览会上,以壳聚糖为原料生产的天然抑菌纤维、以植物纤维素为原料生产的水溶性纱布、采用新型干法纸技术生产的各种无尘纸,以及采用各种新材料、新技术生产的口罩、防护服、手术巾、手术包、灭菌包布等创新产品吸引了众多专业观众。
一、生物医用材料产业并购潮的背景
1.市场环境背景从市场的角度看,社会对生物医用材料产业日益重视,客户群更加关注品牌、效果、质量和售后,销售模式也日趋规范化,以上因素均使得小型生产和经销企业的生存空间被压缩,行业并购加剧。政府招标采购政策调整也为我国生物医用材料产业的发展带来了机遇和挑战。随着政府的监管和招标的日趋规范化和专业化,地方保护主义面临更大的宏观政策和市场压力,质量和渠道不完善的小企业面临巨大压力,要么做强做大赢得中标机会,要么被挤出风险高、技术含量高的领域。而有原创能力的小企业,将会有更大的发展空间,也成为实力公司并购所追逐的目标。
2.企业自身意愿随着生物医用材料产业的发展,企业仅仅通过自身的内在式发展已经很难实现业绩的大幅提升,外延式并购成为了企业快速发展的有效途径。对于上市公司而言,一二级市场的估值溢价在一定程度上推动了并购。在经济转型的大背景和市场风险的共同作用下,生物医用材料等中长期向好的产业受到二级市场的追捧。上市公司较高市盈率(PricetoEarningRatio,P/E)增发获得资金,较低P/E收购能够大幅增加公司业绩。上市使得企业拥有并购所需的资金,而大量中小公司的存在给上市公司并购提供了基础条件。另外,2012-2014年是创业板解禁高峰期,部分企业并购意愿强烈。
3.典型案例从2010年开始,我国生物医用材料行业陆续发生并购案例,并购金额也屡创新高,典型并购案例见表1。在市场调节和行业政策的双重作用下,产业并购力度进一步加大,我国生物医用材料产业链不断得到完善[1-2]。
4.并购方式及动机并购是兼并和收购的统称,是以商务控制权为标的的交易,会使社会资源从经营不善、效率低下的企业向具有经营能力、效率高的企业转移,从而提高资源的配置效率。如今,并购已成为生物医用材料行业的常态。并购有多种方式。按照并购双方所处的行业关系,可分为横向并购、纵向并购和混合并购;按照并购的动因,可分为规模型并购、功能性并购、产业型并购和组合型并购;按照出资方式可以分为现金收购和股权收购;按照并购动机可分为战略并购和财务并购。通常,企业的并购是从战略并购的角度出发的,即并购双方以各自的核心竞争优势为基础,为实现企业自身发展战略目标,通过优化资源配置,产生协调效应,创造大于各自独立价值之和的新增价值,实现“1+1>2”[3]。并购的动机包括:①快速实现规模效益。成立2年的微创骨科收购苏州海欧斯,即为借助海鸥斯公司的实力及分销网络迅速打入骨科市场。②应对激烈的市场竞争。如美敦力购买先健科技部分股权,主要是看重先健科技在心血管领域材料研究与制造方面的核心竞争力,以期加速美敦力产品在中国市场的准入和提升竞争力。③获得新的分销渠道,增加市场份额。如乐普收购荷兰Comed公司,即利用其欧洲及南美地区的销售资源,快速进入国际市场;而史赛克并购创生的主要目标之一就是中国的中低端市场。④获取新产品或新技术。如上海微创并购强生Cordis药物洗脱支架相关业务中,就包括相关知识产权的无偿使用权,上海微创有望借此取得冠脉靶向洗脱支架技术的全球领先地位。⑤实施多元化战略,进军不同的产业领域。目前我国上市公司中的生物医用材料企业产品线还较为单一,因此这类公司并购扩张产品线的需求迫切,如迈瑞收购武汉德骼拜尔、凯利泰收购易生科技等。
二、并购给生物医用材料产业带来的变化
1.行业集中化传统工业经济时代,企业的并购模式倾向于对物质资本(设备设施、产品结构等)的并购,而知识经济时代,企业的并购模式倾向于对知识资本(专利技术、分销渠道、管理能力等)的并购。在发达国家中,生物医用产业中小企业主要从事新品新技术研究开发,通过向大企业转让技术或被大企业并购来获利,而产品改进、产业化和市场运营则主要由大企业进行。不同于我国生物医用企业多、小、散,发达国家相关产业已形成寡头统治的局面。近年来全球生物医用行业的并购案持续不断,仅1998-2009年期间,美国生物医用行业年均兼并收购达200起,行业集中度不断提高是生物医用材料产业发展的一个重要趋势。
2.产品多样化生物医用材料产业不同于传统行业,绝大多数单一产品销售额较小。为谋生存、求发展,生物医用材料企业通过内部发展、外延并购和不断进行产品延伸,已实现了从最初单一的产品生产到多品种经营的产品布局。例如迈瑞公司,已从最初的医疗电子生产发展成为多品种产品生产,产品覆盖了生命信息与支持、体外诊断、数字超声、医学影像、兽用产品、骨科器材等多个领域产品。
3.产业国际化近年来,发达国家医疗支出普遍面临入不敷出的局面,政府和保险公司不断缩减开支,生物医用产品价格下滑压力增大,而中国、印度等新兴市场增长强劲,成为国际大公司持续发展的增长点。跨国公司对国内医疗器械公司并购的主要目的在于:强化第二和第三市场的渗透、提高市场份额、获得低成本的研发和生产平台、减少监管障碍,直接进入国内市场。在此环境下,跨国公司从起初在华设立代表处到成立贸易公司,再发展到通过直接建立和并购等在本土构建自身生产和研发中心,近2年发生的知名国外企业并购案有史赛克收购创生,美敦力收购深圳先健、康辉控股等。与此同时,近几年也有不少国内企业海外并购的案例。2010年,纳通医疗集团收购芬兰医用可吸收材料企业Inion;2011年,乐普医疗收购销售心血管介入和外科医疗器械的荷兰Comed公司,锦江电子收购了美国生产治疗房颤高端介入耗材的Cardima公司;微创医疗2013年收购美国Wright医疗骨科业务、2014收购强生Cordis药物洗脱支架业务。国内企业海外并购的主要目的有并购高端技术以提升主营产品竞争力、引入公司未涉及的领域以延伸产品链或寻求业务转型、收购经销企业来拓展海外市场的销售渠道等,从而快速实现国际化、多元化的产业布局。
三、生物医用材料产业并购注意要点
1.整合并购将原先独立的不同企业实体结合在一起,无论并购程度如何(一方将另一方吞并;双方合并成新的实体;双方共存),这种结合都给双方带来了不可避免的变化,需要正确处置这种变化,才能达到并购的最终目的。如果把股东价值是否得到了提高作为衡量并购是否成功的主要标准的话,那么在所完成的并购业务中只有一部分达到了最基本的股东价值预期。并购的目标在于实现增值,即2个企业合并后的收益大于单独存在时的收益之和。完整的并购包括2个阶段,第一个阶段是完成并购手续,以达成交易为标志;第二个阶段是整合,以完成预期目标为标志。在全球失败的并购案例中,70%的原因是整合出了问题。并购交易的完成只是并购的第一步,并购后的整合才是真正的难点所在。所以,并购是手段,增值是目的,整合是关键。整合的难点包括业务对接、经营管理、文化差异等。应视不同情况做好整合:①对主要业务进行“1+1>2”的整合。对纵向业务整合以产业链无缝对接为目标;对横向业务整合以实现规模效益和避免内部竞争为重点。需要统一规划、研发、生产、采购、营销等各个环节,对混合业务整合以统筹兼顾为原则,对优势企业并购弱势企业的业务整合,以优势产业为主导;②对经营管理及文化进行“1+1=1”的整合,统一管理,文化融合,促进发展;③对不符合发展战略及弱势业务进行“2-1>1”的减法整合,放下包袱,轻装前进。
从古至今,金属材料一直与人类文明的发展和社会进步关系密切。继石器时代之后出现的铜器时代、铁器时代都以金属材料的应用为其时代的显著标志;现在,种类繁多的金属材料更是被广泛应用于各个领域,成为社会发展的重要物质基础。随着社会和科技水平的不断进步,人们对金属材料的使用性能也在不断提出更高要求。因此,为了开发性能更优的新型金属材料,各国科学家都在不遗余力。
在中科院金属研究所里活跃着一批痴迷新型金属材料的科研人员,杨柯就是其中之一。作为专用材料与器件研究部主任,他始终致力于提升现有金属材料的使用性能和新型结构/功能一体化金属材料的研究开发,率领团队在先进钢铁结构材料、生物医用材料及器件、储氢合金及应用等研究方面,取得了诸多研究成果。其中,由于与人类健康息息相关,生物医用材料及器件的发展近年来备受关注。
生物医用材料主要是指用于医疗上能够植入生物体或与生物组织相结合的一类功能性材料。从资料记载来看,人类在古代已经尝试使用外界材料替换或修补缺损的人体组织。公元前,人类开始利用天然材料如象牙,来修复骨组织;到了19世纪,由于金属冶炼技术的发展,人们开始尝试使用金属材料,并逐渐发展到今天的生物医用金属材料,以解救在临床上由于创伤、肿瘤、感染所造成的骨组织缺损患者以及因冠脉狭窄而引起的心血管病患者。
目前,杨柯团队已经开发出抗菌不锈钢、高氮无镍奥氏体不锈钢、生物可降解镁合金等多种类型的新型医用金属材料。这些成果在业界引起广大反响,更有专家大胆表示,新型医用金属材料的应用,将会带来一场健康革命。接下来,我们将为您介绍这些“神通广大”且与健康密切相关的新材料。
首先登场的是新型高氮无镍奥氏体不锈钢。镍是一种重要合金元素,在被广泛应用的医用奥氏体不锈钢中,添加镍元素能够使不锈钢形成稳定的奥氏体结构,并具备耐腐蚀性、可塑性、无磁性、可焊接性和韧性等性能。然而医学研究人员发现,镍及其化合物具有致敏、致癌和诱发血栓等毒副作用。鉴于含镍不锈钢等医用金属对人体健康可能构成的危害,西方国家对日用和医用金属材料中镍的含量制定了越来越高的要求,也由此引发了国际上对医用无镍不锈钢的探索热潮。
杨柯课题组从2000年开始研究医用无镍不锈钢,并率先在国内开发出一种新型高氮无镍奥氏体不锈钢。杨柯介绍说:“新型不锈钢以氮元素代替镍元素来稳定不锈钢的奥氏体结构,不仅改善了不锈钢的生物安全性和力学、耐蚀等性能,且随着钢中氮含量的提高,高氮无镍奥氏体不锈钢的血液相容性也逐渐提高。”现在,该新材料已通过中国药品生物制品检定所的细胞毒性、溶血、致敏反应、急性毒性试验、血栓试验以及遗传毒性等重要生物性能检验,综合性能达到国际先进水平,并具有我国自主知识产权。
高氮无镍不锈钢的开发过程得到了国家863项目、国家自然科学基金重点项目、中科院知识创新重要方向项目及省市基金等项目的支持。“正是由于国家大量资金的支持,才使我们能够开展大量研究和测试工作,并取得最后的成功。”杨柯说道。
杨柯表示,目前,骨内固定系统、心血管支架等高氮无镍奥氏体不锈钢医疗器械现已进入产品开发阶段,很快将会上市。随着相关基础性研究工作的不断深入,医用高氮无镍奥氏体不锈钢在材料冶炼和加工工艺方面的日渐成熟,将会推动新型医用不锈钢的临床应用及发展,并有可能逐步取代现有含镍医用不锈钢。
接着我们来说说杨柯津津乐道的抗菌不锈钢。作为人们的“亲密敌人”,细菌的威胁之处就是无处不在,无孔不入,令人防不胜防。那么,抗菌金属是否真的能抵挡细菌的强烈攻势?它是怎么抗菌的?这种新材料产品现在上市了吗?
据了解,抗菌材料一般分为三大类:天然抗菌材料、有机物抗菌材料和无机物抗菌材料。天然抗菌材料来自动植物内具有抗菌功能的部位;有机抗菌材料就是常见的杀菌剂等,易流失、分解,毒副作用大且不具备广谱抗菌性;无机抗菌材料不但具有广谱抗菌性,还耐水、耐酸碱、耐洗涤、不老化、不产生抗药性、抗菌能力持久。
目前使用的抗菌剂主要为有机和无机两种。有机抗菌剂主要以喷洒或浸泡方式使用,在医疗领域广泛应用,但在安全性、持久性、广谱抗菌性、耐热性方面存在不足,更为重要的是这类抗菌剂对人体和环境有严重损害。而沸石抗菌剂、硅胶抗菌剂等属于无机抗菌剂,主要用作添加剂制成具有抗菌作用的布料、塑料等产品,但在耐热、耐磨、抗腐蚀等方面也存在缺陷,始终无法满足日常使用需求。
杨柯团队研发的抗菌不锈钢,除具备一般不锈钢的装饰和美化作用外,既具有抗菌、杀菌的自清洁作用,又具有结构材料特有的力学性能及物理和化学性能。杨柯说:“在制造厨房机械、医疗器械、卫生间用品和进行保洁装修时,应该使用具有抗菌作用和形状各异、外形美观的金属制品,这种新诞生的不锈钢材料,无疑成了理想产品。”
杨柯告诉记者,抗菌不锈钢分为镀膜式和自身抗菌式两种,所谓镀膜式就是在不锈钢上镀一层具有杀菌性的金属材料,或其他有杀菌作用的无机材料,但易磨损、老化,抗菌性能会受到温差及外在环境的影响而降低。而自身抗菌式不锈钢则是在生产过程中,添加一些具有抗菌作用的金属元素,再通过特殊处理使其具备抗菌性。杨柯说:“我们开发的不锈钢材料自身就具有抗菌能力,它能使附着的细菌不繁殖,被杀死或将含菌数抑制在极低水准,成本低,加工方便,而且不改变普通不锈钢的强度、耐蚀和美观等特性,具有广阔的市场前景。”