欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

网络安全与人工智能范文

时间:2023-11-24 11:13:18

序论:在您撰写网络安全与人工智能时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

网络安全与人工智能

第1篇

阿尔法狗接连打败李世石、柯洁,无人驾驶汽车从科幻慢慢变为现实,人工智能正在全世界如火如荼地“跑马圈地”。我们正在被一个前所未有的以智能技术为核心驱动力的新型社会裹挟着前行。随着智能时代的来临,每个企业和个人都在经受着前所未有的挑战,但挑战与机遇并存,我们要积极探索,紧跟前沿,才能在这波智能化浪潮中不致被淘汰。本书通过丰富鲜活的企业案例,帮助我们梳理分析人工智能及其相关的机器学习、超级计算、云端服务、网络安全等前沿领域的发展现状及方向,总结这些企业在智能时代下的应对之策及成功经验,为之后企业的发展转型等提供了很好的参考借鉴。

作者简介

余来文,江西财经大学应用经济学博士后、博士生导师、创业导师、野文投资董事长、文字传媒董事长,《商业智慧评论》和《创业管理评论》出品人,并任江西财经大学、江西师范大学、江西理工大学、香港公开大学、澳门城市大学、亚洲城市大学等外聘MBA课程教授或创业导师。曾在海王集团、远望谷股份、飞尚集团等公司工作,历任副总经理、总经理等职务,为大洁王集团、南华西集团、铜川矿务局、陕西煤业集团等公司提供管理咨询。先后在《管理科学》《北大商业评论》《销售与管理》《中国经营报》《CHINA DAILY》以及人大报刊复印资料转载等杂志报纸200余篇。出版《智能革命:人工智能、万物互联与数据应用》《分享经济:网红、社群与共享》《共享经济:下一个风口》《互联网:商业模式颠覆与重塑》《商业模式创新》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式:互联网思维的颠覆与重塑》等30多本图书。林晓伟,江西财经大学管理学博士,现为闽南师范大学商学院副教授,福建省“新世纪”人才。先后在《系统管理学报》《经济管理》《国际贸易》《当代财经》《中国社会科学报》《中央财经大学学报》《现代管理科学》等国内核心刊物20余篇,出版专著1部,参与编写《智能时代:人工智能、超级计算与网络安全》《电子商务:分享、跨界与电商的融合》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式运营与管理》《物流学》《财务管理》和《会计学》等图书。主持福建省级课题4项,先后参与国家自然科学基金项目等省部级以上课题9项,参与诏安县农业和扶贫“十三五”规划编制工作。主要研究方向为物流与供应链管理、产业互联网、企业商业模式。

1 第1章 智能时代

2 开章案例

6 1.1开启智能时代

7 1.1.1 Mr Smart——我的智能生活

13 1.1.2智能时代之认知颠覆

18 1.1.3人工智能——工作“终结者”

19 1.1.4新产业的催生——“智”家帮的兴起

25 1.2迎接崭新的智能社会

25 1.2.1“数字化”——智能社会的“快引擎”

26 1.2.2“信息化”——智能社会的“大动脉”

27 1.2.3“网络化”——智能社会的“高速路”

28 1.2.4“集成化”——智能社会的“点金石”

29 1.2.5“公共化”——智能社会的“新时代”

32 1.3智能生态——智能时代的终极奥义

32 1.3.1传统工业逻辑的颠覆式创新

36 1.3.2人人创造,智能时代新分子

37 1.3.3用户“双力”:参与力创造力

38 1.3.4“智”之大器之智能整合

39 1.3.5未来人工智能生态圈

42 1.4智能时代的内核

42 1.4.1人工智能之先发“智”人

45 1.4.2超级计算之千手“算”音

46 1.4.3云端服务之无上“云”法

47 1.4.4网络安全之“安全”卫士

51 章末案例

56 第2章 人工智能

57 开章案例

62 2.1人工智能:让机器更聪明

62 2.1.1人机大战:阿尔法狗与柯洁

64 2.1.2人工智能与智能机器人

67 2.1.3机械思维向左,智能思维向右

68 2.1.4人机融合:超人类智能时代

72 2.2人工智能新认知

75 2.2.1解密人工智能

76 2.2.2重要的是数据,而非程序

77 2.2.3淘汰的不仅是工作,更是技能

80 2.2.4超人工智能时代

82 2.3大数据与人工智能

82 2.3.1数据驱动智能革命

85 2.3.2数据挖掘:从大数据中找规律

86 2.3.3大数据的本质:数据化

89 2.3.4大数据——人工智能的永恒动力

90 2.4人机融合:连接未来

93 2.4.1人工智能之“星际迷航”

95 2.4.2机器学习与人工神经网络

96 2.4.3超越未来:人工智能之深度学习

101 2.4.4 人工智能之前世今生

102 2.4.5 人机融合:未来ING

104 章末案例

109 第3章 超级计算

110 开章案例

114 3.1大话超级计算机

114 3.1.1 超级计算知多少

115 3.1.2 从数据到超级计算的飞跃

117 3.1.3 大千世界,“数”在掌握

119 3.1.4 数据流——“超算流体”

122 3.2时代新宠——超级计算机

123 3.2.1 超级计算,未来国之重器

124 3.2.2 超算之不得不懂

126 3.2.3 大国超算之超常发展

132 3.3超级管理

132 3.3.1 数据收集——“超管”之“核基础”

132 3.3.2 数据存储——“超管”之“核聚变”

133 3.3.3 数据处理——“超管”之“核爆炸”

136 3.3.4 超级计算安全

137 3.4表演时间:超算之应用舞台

137 3.4.1 互联网应用:“互联”的二次方

140 3.4.2 电子政务应用:政务“超算”跨时代

141 3.4.3 精准医疗应用:超算医疗,快,准,狠

145 3.4.4 智能交通应用:数据出行,悠哉,享哉

146 3.4.5 金融投资应用:“超算”致富经

149 3.4.6 新零售应用:“超”未来,“算”零售

153 章末案例

159 第4章 云端服务

160 开章案例

164 4.1云服务——“云”上境界

164 4.1.1 走进“云”化时代

168 4.1.2 享受云生活

172 4.1.3 幕后英雄——云计算推动“团队”

173 4.2直击云计算

174 4.2.1 云计算为何物

178 4.2.2 云计算从哪里来

179 4.2.3 虚拟化,一切皆有可能

181 4.2.4 云计算未来规模

183 4.3双重界:云计算与虚拟网络

183 4.3.1 云计算与虚拟网络关系

184 4.3.2 云服务之“虚化”技术

189 4.3.3 虚拟服务器——“虚化”技术承载终端

193 4.3.4 多云大融通——云存储设备

195 4.3.5 有备无患——云资源备份

198 4.4“三云”家族:公有云私有云混合云

199 4.4.1 公有云——“云”家必争之地

201 4.4.2 私有云——私享“云端”之上

203 4.4.3 混合云:公私合并——“云端”最强音

207 4.5云应用——“云端”的机智强大

207 4.5.1 云应用:极致“云”风暴

210 4.5.2 云应用、云服务与云计算

211 4.5.3 AI云运用=“云端”最强音

212 章末案例

218 第5章 网络安全

219 开章案例

223 5.1直击网络安全

223 5.1.1 计算机安全——21世纪的重点“安全区”

224 5.1.2 网络安全:居安思危,严阵以待

227 5.1.3 安全攻击之“四面”埋伏

228 5.2不得不知的网络安全

229 5.2.1 网络安全之认知“大充电”

232 5.2.2 网络安全风险之危机四伏

236 5.2.3 网络安全的“威胁危邪”

241 5.2.4 安全管理“六板斧”

242 5.3网络“歪脑筋”:犯罪与黑客

243 5.3.1 网络犯罪——犯罪“新境界”

246 5.3.2 黑客攻击:高智商罪犯的攻击

247 5.3.3 黑客攻击“六”手段:智、快、狠

250 5.4无处不在的安全管家——网络安全管理

250 5.4.1 网络安全“密匙”:加密安全

254 5.4.2 保密系统:守口如瓶,从一而终

256 5.4.3 智能防火墙——安全防护之智能乾坤

260 5.4.4 网络安全未来式:量子通信

264 章末案例

270 参考文献

第2篇

在为人们提供便捷服务的同时,互联网应用也存在很多安全问题及威胁,如计算机病毒、变异木马等,利用大规模互联网集成在一起产生的漏洞攻击网络,导致数据泄露或被篡改,甚至使整个网络系统无法正常运行。随着网络接入用户的增多,互联网接入的软硬件资源也更多,因此对网络安全处理速度就会有更高的要求,以便能够提高木马或病毒处理速度,降低网络病毒的感染范围,积极的响应应用软件,具有重要的作用和意义。

2网络安全防御技术应用发展现状

目前,人们已经进入到了“互联网+”时代,面临的安全威胁也更多,比如木马病毒、DDOS攻击和数据盗窃等。互联网受到的攻击也会给人们带来严重的损失,比如勒索病毒攻击了许多的大型跨国公司、证券银行等,到这这些政企单位的办公电脑全都发生了蓝屏现象,用户无法进入到操作系统进行文件处理,勒索病毒要求这些单位支付一定额度的赎金才可以正常使用系统,导致许多公司损失了很多的资金。分布式服务器攻击(DDOS)也非常严重,模拟大量的用户并发访问网络服务器,导致正常用户无法登陆服务器。因此,为了提高信息安全,人们提出了防火墙、杀毒软件或访问控制列表等安全防御技术

2.1防火墙

防火墙是一种比较先进的网络安全防御软件,这种软件可以设计很多先进的规则,这些规则不属于互联网的传输层或网络层,可以运行于互联网TCP/IP传输协议栈,使用循环枚举的基本原则,逐个检查每一个通过网络的数据包,如果发现某个数据包的包头IP地址和目的地IP地址及包内容等存在威胁,就可以及时的将其清除,不允许通过网络。

2.2杀毒软件

杀毒软件是一种非常先进的程序代码,其可以查杀网络中存在的安全威胁,利用病毒库中一些收录的病毒或木马特征,判断互联网中是否存在这些类似的病毒或木马。杀毒软件采用了很多技术,如主动防御、启发技术、特征码技术、脱壳技术、行为分析等,这些都可以实时的监控访问互联网的运行状态,确保网络正常使用。目前,许多大中型企业都开发了杀毒软件,比如360安全卫士、江民杀毒、腾讯卫士、卡巴斯基等,取得了显著的应用成效。

3基于人工智能的网络安全防御系统设计

3.1系统功能分析

基于人工智能的网络安全防御系统利用机器学习或模式识别技术,从互联网中采集流量数据,将这些数据发送给人工智能模型进行分析,发现网络中是否存在网络病毒。具体的网络安全防御系统的功能包括以下几个方面:

3.1.1自动感知功能

自动感知是人工还能应用的一个重要亮点,这也是网络安全系统最为关键的功能,自动感知可以主动的分析互联网中是否存在安全隐患,比如病毒、木马等数据片段,利用这些片段特征实现网络病毒的判断。

3.1.2智能响应功能

人工智能在网络安全系统中可以实现智能响应,如果一旦发现某一个病毒或木马侵入网络,此时就需要按照实际影响范围进行智能度量,影响范围大、造成的损失较多就可以启用全面杀毒;影响范围小、造成的损失较少就可以启动局部杀毒,这样既可以清除网络中的病毒或木马,还可以降低网络的负载,实现按需杀毒服务。

3.2人工智能应用设计

人工智能在网络安全防御中的应用流程如下所述:目前互联网接入的设备非常多,来源于网络的数据攻击也非常多,比如DDOS攻击、网站篡改、设备漏洞等,因此可以利用人工智能技术,从根本上发现、分析、挖掘异常流量中的问题,基于人工智能的网络安全系统具有一个显著的特征,这个特征就是利用先进的机器学习技术构建一个主动化防御模型,这个模型可以清楚网络中的木马或病毒,能够有效的避免互联网受到攻击,也可以将这些病毒或木马牵引到一些备用服务器,在备用服务器上进行识别、追踪,判断网络病毒的来源,从而可以彻底根除后患。人工智能在网络安全防御中引入很多先进的杀毒技术,比如自我保护技术、实时监控技术,基于卷积神经网络、机器学习、自动审计等,可以自动化快速识别网络中的病毒及其变异模式,将其从互联网中清除,同时还可以自我升级服务。

4结束语

目前,互联网承载的应用软件非常多,运行积累了海量的数据资源,因此安全防御系统可以引入数据挖掘构建智能分析系统,可以利用人工智能等方法分析网络中是否存在一些病毒特征,即使这些病毒特征发生了变异,人工智能处理方法也可以利用先进的机器学习技术发现这些病毒的踪迹,从而可以更加准确的判断病毒或木马,及时的启动智能响应模块,将这些病毒或木马清除。人工智能在查杀的时候还可以按需提供服务,不需要时刻占据所有的负载,提高了网络利用率。

参考文献

[1]于成丽,安青邦,周丽丽.人工智能在网络安全领域的应用和发展新趋势[J].保密科学技术,2017(11):10-14.

[2]王海涛.基于大数据和人工智能技术的信息安全态势感知系统研究[J].网络安全技术与应用,2018(03):114-115.

第3篇

摘要

人工智能时代,网络空间安全威胁全面泛化,如何利用人工智能思想和技术应对各类安全威胁,是国内外产业界共同努力的方向。本报告从风险演进和技术逻辑的角度,将网络空间安全分为网络系统安全、网络内容安全和物理网络系统安全三大领域;在此基础上,本报告借鉴 Gartner 公司的 ASA 自适应安全架构模型,从预测、防御、检测、响应四个维度,提出人工智能技术在网络空间安全领域的具体应用模式。与此同时,本报告结合国内外企业最佳实践,详细阐释人工智能赋能网络空间安全(AI+安全)的最新进展。最后,本报告提出,人工智能安全将成为人工智能产业发展最大蓝海,人工智能的本体安全决定安全应用的发展进程,「人工+「智能将长期主导安全实践,人工智能技术路线丰富将改善安全困境,网络空间安全将驱动人工智能国际合作。

目 录

第一章 人工智能技术的发展沿革

(一) 人工智能技术的关键阶段

(二) 人工智能技术的驱动因素

(三) 人工智能技术的典型代表

(四) 人工智能技术的广泛应用

第二章 网络空间安全的内涵与态势

(一) 网络空间安全的内涵

(二) 人工智能时代网络空间安全发展态势

1、网络空间安全威胁趋向智能2、网络空间安全边界开放扩张3、网络空间安全人力面临不足4、网络空间安全防御趋向主动

第三章 人工智能在网络空间安全领域的应用模式

(一) AI+安全的应用优势

(二) AI+安全的产业格局

(三) AI+安全的实现模式

1、人工智能应用于网络系统安全2、人工智能应用于网络内容安全3、人工智能应用于物理网络系统安全

第四章 人工智能在网络空间安全领域的应用案例

网络系统安全篇

(一)病毒及恶意代码检测与防御

(二)网络入侵检测与防御

第三章 人工智能在网络空间安全领域的应用模式

人工智能技术日趋成熟,人工智能在网络空间安全领域的应用(简称 AI+安全)不仅能够全面提高网络空间各类威胁的响应和应对速度,而且能够全面提高风险防范的预见性和准确性。因此,人工智能技术已经被全面应用于网络空间安全领域,在应对智能时代人类各类安全难题中发挥着巨大潜力。

(一)AI+安全的应用优势

人们应对和解决安全威胁,从感知和意识到不安全的状态开始,通过经验知识加以分析,针对威胁形态做出决策,选择最优的行动脱离不安全状态。类人的人工智能,正是令机器学会从认识物理世界到自主决策的过程,其内在逻辑是通过数据输入理解世界,或通过传感器感知环境,然后运用模式识别实现数据的分类、聚类、回归等分析,并据此做出最优的决策推荐。

当人工智能运用到安全领域,机器自动化和机器学习技术能有效且高效地帮助人类预测、感知和识别安全风险,快速检测定位危险来源,分析安全问题产生的原因和危害方式,综合智慧大脑的知识库判断并选择最优策略,采取缓解措施或抵抗威胁,甚至提供进一步缓解和修复的建议。这个过程不仅将人们从繁重、耗时、复杂的任务中解放出来,且面对不断变化的风险环境、异常的攻击威胁形态比人更快、更准确,综合分析的灵活性和效率也更高。

因此,人工智能的「思考和行动逻辑与安全防护的逻辑从本质上是自洽的,网络空间安全天然是人工智能技术大显身手的领域。

(1)基于大数据分析的高效威胁识别:大数据为机器学习和深度学习算法提供源源动能,使人工智能保持良好的自我学习能力,升级的安全分析引擎,具有动态适应各种不确定环境的能力,有助于更好地针对大量模糊、非线性、异构数据做出因地制宜的聚合、分类、序列化等分析处理,甚至实现了对行为及动因的分析,大幅提升检测、识别已知和未知网络空间安全威胁的效率,升级精准度和自动化程度。

(2)基于深度学习的精准关联分析:人工智能的深度学习算法在发掘海量数据中的复杂关联方面表现突出,擅长综合定量分析相关安全性,有助于全面感知内外部安全威胁。人工智能技术对各种网络安全要素和百千级维度的安全风险数据进行归并融合、关联分析,再经过深度学习的综合理解、评估后对安全威胁的发展趋势做出预测,还能够自主设立安全基线达到精细度量网络安全性的效果,从而构建立体、动态、精准和自适应的网络安全威胁态势感知体系。

(3)基于自主优化的快速应急响应:人工智能展现出强大的学习、思考和进化能力,能够从容应对未知、变化、激增的攻击行为,并结合当前威胁情报和现有安全策略形成适应性极高的安全智慧,主动快速选择调整安全防护策略,并付诸实施,最终帮助构建全面感知、适应协同、智能防护、优化演进的主动安全防御体系。

(4)基于进化赋能的良善广域治理:随着网络空间内涵外延的不断扩展,人类面临的安全威胁无论从数量、来源、形态、程度和修复性上都在超出原本行之有效的分工和应对能力,有可能处于失控边缘,人工智能对人的最高智慧的极限探索,也将拓展网络治理的理念和方式,实现安全治理的突破性创新。人工智能不仅能解决当下的安全难题,而通过在安全场景的深化应用和检验,发现人工智能的缺陷和不足,为下一阶段的人工智能发展和应用奠定基础,指明方向,推动人工智能技术的持续变革及其更广域的赋能。

(二)AI+安全的产业格局

人工智能以其独特的优势正在各类安全场景中形成多种多样的解决方案。从可观察的市场指标来看,近几年来人工智能安全市场迅速成长, 公司在 2018 年的研究表明,在网络安全中人工智能应用场景增多,同时地域覆盖范围扩大,将进一步扩大技术在安全领域的应用,因此人工智能技术在安全市场内将快速发展,预计到 2024 年,可用在安全中的人工智能技术市场规模将超过 350 亿美元,在 2017-2024 年之间年复合增长率(CAGR)可达 31%。

MarketsandMarkets 公司在 2018 年 1 月的《安全市场中人工智能》报告则认为,2016 年 AI 安全市场规模就已达 29.9 亿美元、2017 年更是达到 39.2 亿美元,预测在 2025 年将达到 348.1 亿美元,年复合增长率为 31.38%。而爱尔兰的 Research and Markets 公司在 2018 年 4 月份了专门的市场研究报告,认为到 2023 年人工智能在安全领域应用的市场规模将达 182 亿美元,年复合增长率为 34.5%。由于机器学习对付网络犯罪较为有效,因此机器学习作为单一技术将占领最大的一块市场,到 2023 年其市场规模预计可达 60 亿美元。

除了传统安全公司致力于人工智能安全,大型互联网企业也在积极开展人工智能安全实践,如 Google、Facebook、Amazon、腾讯、阿里巴巴等均在围绕自身业务积极布局人工智能安全应用。

(三)AI+安全的实现模式

人工智能是以计算机科学为基础的综合交叉学科,涉及技术领域众多、应用范畴广泛,其知识、技术体系实际与整个科学体系的演化和发展密切相关。因此,如何根据各类场景安全需求的变化,进行 AI 技术的系统化配置尤为关键。

本报告采用 Gartner 公司 2014 年提出的自适应安全架构(ASA,Adaptive SecurityArchitecture)来分析安全场景中人工智能技术的应用需求,此架构重在持续监控和行为分析,统合安全中预测、防御、检测、响应四层面,直观的采用四象限图来进行安全建模。其中「预测指检测安全威胁行动的能力;「防御表示现有预防攻击的产品和流程;「检测用以发现、监测、确认及遏制攻击行为的手段;「响应用来描述调查、修复问题的能力。

本报告将 AI+安全的实现模式按照阶段进行分类和总结,识别各领域的外在和潜在的安全需求,采用 ASA 分析应用场景的安全需求及技术要求,结合算法和模型的多维度分析, 寻找 AI+安全实现模式与适应条件,揭示技术如何响应和满足安全需求,促进业务系统实现持续的自我进化、自我调整,最终动态适应网络空间不断变化的各类安全威胁。

1、人工智能应用于网络系统安全

人工智能技术较早应用于网络系统安全领域,从机器学习、专家系统以及过程自动化等到如今的深度学习,越来越多的人工智能技术被证实能有效增强网络系统安全防御:

机器学习 (ML, Machine Learning):在安全中使用机器学习技术可增强系统的预测能力,动态防御攻击,提升安全事件响应能力。专家系统(ES, Expert System):可用于安全事件发生时为人提供决策辅助或部分自主决策。过程自动化 (AT, Automation ):在安全领域中应用较为普遍,代替或协助人类进行检测或修复,尤其是安全事件的审计、取证,有不可替代的作用。深度学习(DL, Deep Learning):在安全领域中应用非常广泛,如探测与防御、威胁情报感知,结合其他技术的发展取得极高的成就。

如图 3 所示,通过分析人工智能技术应用于网络系统安全,在四个层面均可有效提升安全效能:

预测:基于无监督学习、可持续训练的机器学习技术,可以提前研判网络威胁,用专家系统、机器学习和过程自动化技术来进行风险评估并建立安全基线,可以让系统固若金汤。

防御:发现系统潜在风险或漏洞后,可采用过程自动化技术进行加固。安全事件发生时,机器学习还能通过模拟来诱导攻击者,保护更有价值的数字资产,避免系统遭受攻击。

检测:组合机器学习、专家系统等工具连续监控流量,可以识别攻击模式,实现实时、无人参与的网络分析,洞察系统的安全态势,动态灵活调整系统安全策略,让系统适应不断变化的安全环境。

响应:系统可及时将威胁分析和分类,实现自动或有人介入响应,为后续恢复正常并审计事件提供帮助和指引。

因此人工智能技术应用于网络系统安全,正在改变当前安全态势,可让系统弹性应对日益细化的网络攻击。在安全领域使用人工智能技术也会带来一些新问题,不仅有人工智能技术用于网络攻击等伴生问题,还有如隐私保护等道德伦理问题,因此还需要多种措施保证其合理应用。总而言之,利用机器的智慧和力量来支持和保障网络系统安全行之有效。

2、人工智能应用于网络内容安全

人工智能技术可被应用于网络内容安全领域,参与网络文本内容检测与分类、视频和图片内容识别、语音内容检测等事务,切实高效地协助人类进行内容分类和管理。面对包括视频、图片、文字等实时海量的信息内容,人工方式开展网络内容治理已经捉襟见肘,人工智能技术在网络内容治理层面已然不可替代。

在网络内容安全领域所应用的人工智能技术如下:

自然语言处理(NLP, Natural Language Processing):可用于理解文字、语音等人类创造的内容,在内容安全领域不可或缺。图像处理(IP, Image Processing):对图像进行分析,进行内容的识别和分类,在内容安全中常用于不良信息处理。视频分析技术 (VA, Video Analysis):对目标行为的视频进行分析,识别出视频中活动的目标及相应的内涵,用于不良信息识别。

如图 4 所示,通过分析人工智能技术应用于网络内容安全,在四个层面均可有效提升安全效能:

预防阶段:内容安全最重要的是合规性,由于各领域的监管法律/政策的侧重点不同而有所区别且动态变化。在预防阶段,可使用深度学习和自然语言处理进行相关法律法规条文的理解和解读,并设定内容安全基线,再由深度学习工具进行场景预测和风险评估,并及时将结果向网络内容管理人员报告。

防御阶段:应用深度学习等工具可完善系统,防范潜在安全事件的发生。

检测阶段:自然语言、图像、视频分析等智能工具能快速识别内容,动态比对安全基线,及时将分析结果交付给人类伙伴进行后续处置,除此之外,基于内容分析的情感人工智能也已逐步应用于舆情预警,取得不俗成果。

响应阶段:在后续调查或留存审计资料阶段,过程自动化同样不可或缺。

3、人工智能应用于物理网络系统安全

随着物联网、工业互联网、5G 等技术的成熟,网络空间发生深刻变化,人、物、物理空间通过各类系统实现无缝连接,由于涉及的领域众多同时接入的设备数量巨大,传感器网络所产生的数据可能是高频低密度数据,人工已经难以应对,采用人工智能势在必行。但由于应用场景极为复杂多样,可供应用的人工智能技术将更加广泛,并会驱动人工智能技术自身新发展。

情绪识别(ER, Emotion Recognition):不仅可用图像处理或音频数据获得人类的情绪状态,还可以通过文本分析、心率、脑电波等方式感知人类的情绪状态,在物理网络中将应用较为普遍,通过识别人类的情绪状态从而可与周边环境的互动更为安全。AI 建模(DT, Digital Twin/AI Modeling):通过软件来沟通物理系统与数字世界。生物特征识别 (BO, Biometrics):可通过获取和分析人体的生理和行为特征来实现人类唯一身份的智能和自动鉴别,包括人脸识别、虹膜识别、指纹识别、掌纹识别等技术。虚拟 (VA, Virtual Agents):这类具有人类行为和思考特征的智能程序,协助人类识别安全风险因素,让人类在物理网络世界中更安全。

第4篇

1人工智能技术的优势分析

1.1具有比较强的学习推理能力

网络环境的治理必须要依靠先进的网络技术,这就需要人工智能技术充分发挥其自身的作用.传统意义上,我们会认为网络安全的保障工作主要是实现预防和控制之间的相互协调,并不会对相关措施的学习和推理能力进行关注,这虽然能解决基本的安全防御问题,但是并不能从根本上对网络安全提供保障.基于传统防治方式的局限性,这就会导致网络信息处理存在较大的不确定性.但是,在应用人工智能技术后,完全可以解决这种弊端,真正意义上实现了网络防御与理论知识的有机结合,使网络防御手段具备了基本的学习和推理能力.同时,我国互联网网民的数量呈现出比较快的增长速度,这也会产生大量的处理数据,增加了网络安全防御的难度系数.人工智能技术在发挥其学习推理能力后,就能够提高信息数据的处理效率,对维护我国的网络环境安全具有重要作用.

1.2强大的模糊信息处理能力

众所周知,人工智能技术在网络安全的防御过程中扮演着重要的角色,这也就决定了人工智能技术的重要价值.人工智能技术应用后,可以充分发挥其自身所具备的模糊信息处理能力,提高传统网络安全防御中我们所面临的处理不确定性和不可知的问题处理能力.我们的网络运营环境基本都是处于比较开放的环境中,所以会使多种数据信息的传播速率不断加快,再加上互联网的沟通和互联功能,这就会使得很多信息无法确定,网络安全的管理工作显得格外重要,在进行对信息分析处理的工作中,运用人工智能技术将会事半功倍,结合不准确以及不确定信息来控制管理网络资源,其信息处理能力颇为出色.

1.3网络防御协助能力比较强

在上文中已经提到,目前所面临的网络环境是呈现复杂状态的,这就是说,我们的网络安全防御的保障工作也是复杂的,是一项系统化的工程.我国的网络环境规模也逐渐的扩大,并且其内在的结构也是更加趋向于复杂,这无形中就给我们的网络安全防御工作提出了更高的要求.为了有效的避免其存在的误区,必须要加强各方面措施的协调、协同、协作,充分实现各个防御环节的共同优势.我认为,人工智能技术应用于网路安全防御中时,需要划分为三个不同的层次,这也就需要我们实现分层次的管理.一般来讲,就是上层管理者对中层管理者实行轮询监督,中层管理者对下层管理者实行轮询监督,从而构建起一个完整的工作体系,这也就能够提升网络安全防御的质量.

1.4计算的成本比较低

传统的网络安全保障体系会在计算过程中耗费大量数据资源,保障的效率也就比较低,这会使整体的网络安全防御成本比较高,不利于相关部门经济效益和社会效益的实现.人工智能技术在网络安全防御中应用后,就有效的规避了传统防御方式的成本高问题,这是因为人工智能技术能够利用大量的先进算法,实现精准的数据开发,对相关的数据进行计算,因此在很大程度上提高了各种资源的利用效率,实现了网络数据的优化配置,这种从成本计算方面有效的降低了软硬件系统的开发成本,为人工智能技术的深度推广奠定了坚实的基础.

2我国的网络安全防御现状分析

我国已经进入互联网信息时代,这主要是得益于互联网技术的迅速发展,同时,人工智能技术也得到了长足的发展,为计算机网络信息资源的共享和配置提供了条件.在这形势大好的基础下,网络信息安全出现了负面状况,严重制约着安全、稳定的网络环境的构建.根据相关部门的统计数据,网络安全问题对世界经济产生了比较严重的负面影响,它会带来严重的经济损失,数额高达七十五亿美元.并且网络安全问题一直都是我们的难点,无法从根本上对其进行治理.并且网络安全问题的发生概率也是比较大的,平均每二十秒就会产生一件网络安全事件,这些事件或大或小,无不对社会稳定产生负面效应.我国接入互联网的时间并不是很长,但是发展的速度确实比较快速的.尤其是在近几年,我国已经步入了互联网高速发展的阶段,互联网已经融入到各行各业,形成了“互联网+”的发展业态,这也就为人工智能技术的发展提供了条件.网络安全问题主要是人为因素所产生的,主要表现在数据信息的泄露,严重破坏了网络环境安全的稳定性和保密性.用户信息在受到非法入侵后,其所有的信息都会被外界所监听,并且其信息资源不能正常的进行访问,多会被非法拒绝或者是访问延迟.基于此,我们完全可以对我国的网络安全现状有一个具体的了解,那么,人工智能技术引入就是大势所趋,也是未来的一个发展方向,我们需要利用人工智能技术将互联网打造成一个完整且安全的网络体系.人工智能在网络安全领域的应用,可以显著的提升规则化安全工作的效率,弥补专业人员人手的不足,未来不管是执行层面还是战略层面,人工智能的应用会更加广泛,网络安全的防御也更加智能.

3人工智能技术在网络安全防御中的具体表现

3.1智能防火墙在安全防御中的应用

我们经常会在电脑系统中看到防火墙的相关设置,这就是人工智能技术在网络安全防御中的初步应用.防火墙技术是一种隔离控制技术,我们可以在一定基础上对其进行预定义安全策略对内外网通信强制访问控制.防火墙技术是一种比较复杂的技术,其自身包含着诸多的子技术,比如包过滤技术和状态监测技术等.包过滤技术主要是在网络层中对数据包进行选择的一种技术,我们可以根据系统的个性化需求对数据包的地址就行分析,最终实现外来信息的检查,防止负面状况的发生.同时,状态监测技术则是基于连接状态下的一种监测机制,它主要是将所有的数据包当做整体数据流,在此基础上,形成一种全新的连接状态,有力的保障了网络环境的安全.最后,相比于传统的防御方法,防火墙技术具有着高度的灵活性和安全性,对网络安全防御具有着重要的作用.

3.2垃圾邮件自动检测技术在安全防御中的应用

得益于互联网信息技术,我们对邮箱的使用频率不断的增加.在实际的工作过程中,我们经常会收到不同类型的垃圾邮件,这对我们的正常生活和工作造成了不必要的损害.邮件已经成为了我们的信息传递的重要沟通桥梁,也是比较正式的沟通方式.但是,在邮件的制作和发送过程中,邮件中存在的漏洞,很可能会被不法分子利用,然后传递不正当的信息,不仅可能会给我们造成经济损失,还肯定给我们造成困扰.人工智能技术应用于网络安全防御中,垃圾邮件自动检测技术就能够发挥其自身的优势,采用智能化的反垃圾邮件系统,有效的避免垃圾邮件进去邮箱的内部系统,能够起到全时段检测的作用.这主要是利用垃圾启发式扫描引擎,对相关的邮件信息进行分析和统计评分,智能化的对垃圾邮件进行拦截或者是删除,这就会很大程度上避免了人为的操作,减少了我们的工作量,这也为网络信息安全提供了保障.

3.3人工神经网络技术在安全防御中的应用

网络安全防御过程中,通过人工神经网络技术就能够对网络安全产生积极的作用,并且能够为网络安全提供比较重要的保障.人工神经网络技术具有多方面的积极意义,它的分辨能力是非常强大的,并且其自身会带有噪音和畸变入侵的分辨模式,能够完全适应网络环境的个性化防御功能.人工神经网络技术是在生物神经网络的基础上发展起来的,这就证明其具有重要的灵活度和创造价值,会具有一定程度的学习能力,并且还会具备强大的数据计算能力,还有对数据信息的储存和共享能力,以上的种种优势都展现出人工神经网络技术的水平.它完全可以在自身基础上建立起完整的时间序列预测模型,对计算机病毒进行有效的识别,使我们能够得到精确的防御结果,为当前我国的网络信息安全防御做出了重要贡献.

结语

综上所述,人工智能技术在网络信息安全防御的过程中具有显著的作用,它能够有效的规避传统防御方式的弊端,为新形势下网络信息安全保障工作做出了重要贡献.总之,人工智能技术在网络安全中的应用是全方位的,是一项系统工程,我们也需要运用综合的方法,比如明确智能防火墙技术、人工神经网络技术、垃圾邮件自动检测技术等在网络安全防御中的应用,为我国的网络安全环境提供基本的理论支撑.

参考文献:

〔1〕李泽宇.人工智能技术在网络安全防御中的应用探析[J].信息通信,2018(1):196-197.

〔2〕吴京京.人工智能技术在网络安全防御中的应用探析[J].计算机与网络,2017,43(14):60-61.

第5篇

目前的计算机网络系统具有一些明显的特点,包括动态性、高速性、瞬变性等。由于网络系统的这些特点,对网络管理技术提出了更高的要求。要保障网络系统安全高效的运行,必须提高网络管理技术,包括管理方法和手段。人工智能技术是提高网络管理技术的重要工具,具有一定的优势,主要表现在以下几方面。

1.1具有处理模糊信息能力和协作能力

人工智能技术具有处理未知问题的能力。人工智能技术一般采用模糊逻辑的推理方式,不用非常准确的描述数据模型。网络中存在大量不确定也不可知的模糊信息,处理这些信息比较困难。在计算机网络管理中应用人工智能技术,可以提高处理信息的能力。人工智能技术具有协作能力。计算机网络无论是在结构上,还是在规模上,都在不断扩大,这就增加了网路管理的难度,不能采用一刀切的简单管理模式,而应该采用分级式管理模式,一级一级的对网络进行监测,为此需要上级与下级进行良好的协作。而人工智能技术具有一种协作分布思维,可以大幅度提高网络管理的协作能力。

1.2具备学习能力和处理非线性能力

人工智能技术具有很强的学习能力。网络中的信息是海量的,很多信息和概念都是低层次的、简单的,但这些信息的背后可能蕴含着非常有价值的信息。要挖掘高层次的、有价值的信息,需要对低层次信息进行学习、解释和推理,从而获得高层次的信息。而人工智能技术在解释、推理信息方面可以发挥重要作用。人工智能具有处理非线性能力。人工智能技术主要作用是让机器模仿人的智能,人在解决非线性问题方面具有很强的能力,人工智能在这方面的能力自然也不弱。

1.3计算成本低

人工智能在进行计算的时候,对资源的消耗比较小。人工智能运算时主要采用控制算法,这种算法的运算速度非常快,而且运算效率非常高,利用最优解可以一次性完成计算任务,因此可以节省很多计算资源。使用这种方法可以保证网络技术的高速性。

2计算机网络技术目前存在的问题

计算机网络技术已经在社会各个领域得到广泛的应用,随着经济社会的发展,这些年来网络安全事件层出不穷。网络信息安全日益成为关注的焦点问题,用户对网络控制和网络监视的要求越来越强烈,而人工智能技术可以有效解决这一问题。由于网络上的信息数据具有不连续、不规则的特点,加上计算机对这些信息数据只能进行逻辑分析和处理,不能判断其真实性,使得网络监视和网络控制的功能有限,因为信息的及时获得和信息准确度,对于网络监视和网络控制是非常重要的。为了从网上海量的信息数据中快速准确地筛选出真实有用的信息,从而加强网络控制和网络监视,保障网络信息安全,就要实现计算机网络技术的智能化,以此加强网络安全管理。当今社会中,许多人利用互联网的虚拟环境进行违法犯罪。灵敏快速的观察能力和反应能力,对有效遏制这些违法犯罪行为具有重要意义。把人工智能技术和网络管理有效结合,可以提高网络管理水平,形成智能化的管理体系,从而使信息数据实现自动化收集,网络故障实现及时诊断,网络控制和网络监视得到有效发挥,用户的网络信息安全得到切实的保障。

3计算机网络技术对人工智能技术的应用分析

在现阶段,众多学者已经达成了共识,计算机网络技术与人工智能技术之间实现了交互发展,它们相互依赖,相互促进。人工智能技术促进了计算机网络技术的发展,在计算机网络技术领域的应用非常广泛。下面从几个具体方面探讨计算机网络技术对人工智能的应用。

3.1计算机网络安全管理

人工智能在计算机网络安全管理中发挥了重要作用,主要表现在以下几个方面。3.1.1智能防火墙技术智能防火墙是网络安全管理的利器。该技术在识别和处理数据时采用智能化的技术,发现有害信息并进行提前拦截,限制其访问,像墙一样把其堵在外面。大量的实践证明,智能防火墙可以有效遏制病毒的入侵和传播。3.1.2入侵检测技术入侵检测是网络安全管理的核心环节,也是防火墙技术的关键部分。该技术利用各种手段方式,对数据进行收集、筛选、处理,自动生成安全报告提供给用户,使用户可以在第一时间掌握网络状态。专家系统、智能控制等都是重要的人工智能侦测技术。3.1.3反垃圾邮件技术现实生活中,用户会收到各种垃圾邮件,带来信息安全问题。智能反垃圾邮件技术可以自动对垃圾邮件进行扫描,并对其进行监测,发现危险邮件会提醒用户及时清理。这种垃圾防御技术可以有效维护邮件系统的安全。

3.2计算机网络综合管理和系统评价

人工智能除了在计算机网络安全管理方面得到充分的应用,也广泛应用于计算机网络综合管理和系统评价。计算机网络具有动态性、瞬变性的特点,这给网络综合管理增加了阻力。而利用人工智能技术就可以实现对网络的综合管理,比如问题解决技术、专家知识库等。在人工智能理论的指导下,产生一些专家级决策和支持方法,这对信息系统管理很有帮助。人工智能可以积累丰富的专家知识和经验,形成系统资源编入计算机程序,方便以后对系统进行综合评价。

4结语

第6篇

关键词:人工智能;计算机网络技术;应用探究

关于人工智能技术,通过各领域的发展与应用逐步进入人们的视线,当下人工智能已经在市场上得到充分应用,该技术带给人类社会生活以一个全新的生活体验,教会人们如何正确利用计算机网络技术处理生活中的一些事情。人工智能技术以人性化、智能化为出发点,利用计算机网络技术的智能化运算,可以帮助人们完成一些程序较为繁琐、多重复性的计算工作。例如财务会计领域中的财务数据计算工作,利用人工智能技术可以高效、准确地计算出财务数据,在很大程度上帮助财务人员减轻工作负担。生活中的人工智能系统同样给着人类社会全新的体验。于此同时,人工智能在我国工业领域、计算机网络技术领域中都已经得到了广泛的应用,并已经受到了来自社会上多个领域的好评。人工智能一直以来都在计算机网络技术领域有着颇深的造诣,它在计算机网络技术中的具体应用一直以来都受到了来自各界的关注。

1人工智能的概念

人工智能这个词汇在当今时代背景下已经成为了一个常见词汇,该技术的出现给人类社会带来的作用是显然可见的。那么什么是人工智能呢?人工智能(ArtificialIntelligence),英文缩写为AI,是集研究开发模拟人类行为以及思考能力的一种科学技术,该技术主要以研究人类具体行为为依据,对计算机进行编程,利用计算机网络技术来实现模仿人的行为、人的思维、人的语言交流能力、人的思考问题的能力等等。新时代背景下,以计算机网络技术为基础实现的人工智能在拥有人类智慧的同时还将具备计算机网络的强大计算能力和执行能力,与人类不同的是,人工智能在使用过程中并不会出现对饮食和睡眠的需求,强大的计算机执行程序使得他们可以长时间按照计算机指令去执行重复的工作。自人工智能诞生以来,伴随着计算机网络技术的不断成熟,人工智能理念与技术都在不断进步,人工智能所应用到的领域也在不断扩大。但需要意识到的是在研究人工智能的过程中,必须始终坚着最初的发展理念,坚持以造福人类社会为研究目的,明确人工智并不是人的智能,而是利用高新技术创造出可以像人类一样思考的智能。就目前的发展而言,人工智能在自我思考这一模块还缺乏一定的理论性与创造性。相信不久之后人工智能技术将会发展的更加成熟,给人类社会的发展带来更多的便利。

2人工智能在计算机网络技术中应用的可行性分析

人工智能之所以能够被应用到计算机网络技术领域中,其根本原因在于人工智能具有高度的可行性。它自身具有的独特特点,使得其可以在运行过程中弥补计算机网络技术中存在的一些不足和缓解计算机网络技术存在的局限性问题。首先,人工智能能够从真正意义上实现对计算机网络中的一些不确定信息的高效处理,该处理模式更加符合实际情境中的根本需求,使得应用结果较为理想。一旦计算机网络系统因为一些原因系统资源发生变化时,单一依靠计算机网络技术很难找到有效的信息,进而获取到准确的信息数据。但是依靠人工智能就可以解决计算机网络技术中存在的缺陷,当系统资源发生变化时,利用人工智能可以在短时间内完成对系统资源的掌握和跟踪任务,进而获取到相关的系统数据信息,根据查询到的信息的详细程度,复原发生变化的系统资源,给客户提供更具有时效性和真实性的信息化数据。人工智能具备的另一特性是协作能力,这一能力的开发使得人工智能在信息整合处理环节将一些工作中相对其他信息较为有效的信息筛选出来,进而实现信息共享,完成信息传输工作,这将会在很大程度上提高日常工作效率。给以人类社会以更好的服务体验,这种高效的协作能力正是当今时代背景所需要的。人工智能主要以模仿人的思维能力和行为能力为创作源头,在制作过程中我们对人工智能的要求往往是非常高的,这种情况之下使得当今时代背景之下的人工智能已经具备了特别强大的学习能力与运算能力,这使得人工智能在计算机网络技术中可以得到更好的应用,在计算机网络技术中引入人工智能,可以在很大程度上提高计算机网络程序的推算能力,加强计算机网络技术中信息处理的效率。人工智能具备了强大的处理问题的能力,这一能力的出现将会给计算机网络技术的发展带来很大的促进作用。在日常网络运营过程中,要想构建一个安全的用网环境,就必须做好系统的安全防护工作。人工智能可以在实现提高网络管理工作高效性的同时,还能够有效地检测好各个网络环节中的资源应用的安全性,做好系统安全管理工作,使得计算机网络在保证安全环境的同时提高网络管理工作的工作质量,这对计算机技术有着很高的要求标准。

3人工智能在计算机网络技术中的具体应用

3.1人工智能在计算机网络安全方面的应用

3.1.1在智能防火墙中的应用目前,人工智能在计算机网络安全方面得到了很好的应用,同传统的计算机网络安全防火墙相比利用人工智能所形成的智能防火墙在网络安全维护工作方面上能够更好地发挥其智能防护作用。智能防火墙也具备着更高的安检效率。利用人工智能,我们可以在智能计算机防火墙的设置中增设智能识别技术,这一技术可以更高效率地识别出系统内部的一些数据,进而做好网络安全防护作用,防止病毒的传播。

3.1.2入侵检测的应用作用计算机网络所处的环境是一个复杂性偏高的环境,入侵检测往往是计算机网络安全防护工作的重要组成部分。之所以要提出入侵检测这一安全防护环节,其目的是为了检测一些进入网络系统的信息是否安全,营造一个安全的网络运行环境。人工智能能够强化计算机网络系统的入侵检测技术,在检测入侵的过程中,能够自动对系统内部的进行进行筛选、检测,并及时形成分析完善的入侵检测报告。

3.2人工智能在计算机网络系统管理及评价中的应用

3.2.1人工智能问题求解技术人工智能问题求解技术的出现可以更好地帮助计算机网络做好系统管理和评价工作,从根本上改变传统计算机网络技术中存在的一些不足,进而提高网络资源的管理效率,增强网络资源的利用率。在这一环节,智能求解技术可以帮助计算机网络技术实现自动搜索、分析、求解操作,提高计算机网络的搜索效率与搜索信息的准确度。能够从多种同类信息中筛选出更加精确的信息,进而辅助用户选择出最优解。

3.2.2专家知识库技术专家知识库技术的出现主要是利用现代化人工智能与互联网技术,将传统的计算机网络系统管理和评价经验进行数据更新化处理,并重新进行网络编码、建立全新的数据库,为了使得数据库中的知识库能够更加专业化,需要同一些经验成熟的专业进行协商,进而获取到他们的支持,一同完成健全的计算机网络系统管理及评价工作的构建工作。

第7篇

人工智能即机器智能,即对人的意识、行为、思维信息过程等进行模拟,使及其具有人工智能功能,进而代替人完成危险性、复杂性或机械性突出的任务,提升工作的效率和质量,将人工智能应用于计算机网络技术中与人工智能自身的优势具有密切的关系。

1 人工智能应用于计算机网络技术中的可行性分析

首先,人工智能对不确定信息的处理效果较理想,可对系统资源呈现的局部或全局实时、变化状态进行掌握和跟踪,在对获取信息进行处理的基础上可以实现实时向用户提供有效的信息功能;其次,人工智能的协作能力较突出,在对有效资源整合基础上实现资源的合理共享和传输,将其应用于网络管理中,可有效的提升其工作的效率和效益;再次,人工智能凭借其学习能力和推理能力的优越性,有利于网络智能化护理中信息处理效率和质量的提升。另外,人工智能在记忆能力方面的优势,有利于信息库的建立,在推动网络管理水平提升方面作用突出;除此之外,人工智能在处理非线性问题、计算资源消耗等方面也具有优越性,所以将人工智能应用于计算机网络技术中具有可行性。

2 人工智能在计算机网络技术中的应用

2.1 人工智能在计算机网络安全管理技术中的应用分析

现阶段计算机网络安全管理技术主要表现在防火墙、入侵检测和反垃圾邮件系统三方面,所以在实践中尝试将人工智能应用于以上方面,智能防火墙主要应用智能化识别技术,利用统计、概率等计算方法将存在文献的信息数据识别并处理,使计算机网络管理技术原本的大量计算被舍去,网络安全管理的效率也大幅提升,不仅将有害信息及时的拦截和限制,而且安检效率也明显增加,使普通防火墙拒绝服务攻击的缺陷得到弥补,有效的遏制了高级入侵和病毒传播。而智能型反垃圾邮件系统其以威胁计算机网络安全的垃圾邮件作为防御的主要对象,其虽然具有开启式扫描和分类提供、危险预警等功能,但其保护的范围具有局限性。入侵检测是网络计算机安全管理的核心,对其应用人工智能具有显著的效果,通常情况下入侵检测需要通过数据采集、数据减少、行为分类、报告反映四个阶段完成,现阶段应用于入侵检测的人工智能主要包括以下几种:

2.1.1 规则产生式专家系统

此种人工智能现阶段在入侵检测方面应用最为广泛,其建立在专家经验性知识构建的数据库和推理机制的基础上,主要原理是计算机网络安全管理人员事先将已知的入侵特征编码成固定的规则,并将大量的规则构建成数据库,在安全管理的过程中专家系统可自动将审计记录和规则作为入侵检测的判断依据,实现入侵的及时发现,并判断入侵的种类和危害等,可见此项人工智能对提升入侵检测的效率和准确性具有积极的作用,但其建立在已知经验的基础上,检测的范围存在的一定的局限性。

2.1.2 人工神经网络

此项人工智能建立在人脑学习机能模拟的基础上,所以在容错性、学习能力等方面具有优越性,此项人工智能可以对存在畸变或噪声的输入模式有效的识别,在并行方式的推动下其入侵检测的效率较理想,所以在计算机网络安全管理技术中的应用相对较广泛。

2.1.3 数据挖掘技术

此技术的应用原理是通过审计程序对网络连接和主机会话的特征进行准确、全面的提取和描述,然后利用此项人工智能对准确捕捉入侵模式的规则或计算机网络正常活动轮廓规则等进行学习和记忆,进而在计算机网络中出现异常检测的情况下,进行有害入侵的准确识别,可见此项人工智能技术充分发挥了自身的记忆功能和学习功能,在提升入侵检测的针对性方面具有较好的效果。

2.1.4 人工免疫技术

人工免疫技术建立在人体免疫系统的基础上,其主要包括基因库、否定选择和克隆选择三种机制,其可以有效的弥补传统入侵检测在杀毒能力和未知病毒识别等方面的缺陷。例如,在基因库中可以实现基因片段重组、突变,使入侵检测系统对各类未知病毒也可以及时有效的识别,但现阶段基因库的有效建立仍存在现实困难;在否定选择的过程中,先在系统中随机产生一定的字符串,其次在否定选择算法的作用下将与自我匹配的字符串删除,如果其否定选择的正确则被视为合格的监测器,进而逐步完成检测入侵等,此项技术在计算机网络安全管理中的应用仍需要进一步的完善,但应用价值巨大。

2.1.5 自治AGENT技术

此项技术是人工智能向面向对象技术方面发展的成果,其通常被作为底层数据收集和分析的结构,在基于自治Agent的入侵检测系统框架中每台被监控的主机都可以视为IDS系统,此技术在学习能力、适应能力、自主能力、灵活性和兼容性等方面均较突出,所以此项技术不仅可以有效的检测入侵,而且可以对入侵的影响范围有效的控制,在应用的过程中对环境的依赖性较低,可推广应用。

2.1.6 数据融合技术

此项技术建立在人类不断对自身信息处理能力进行模仿的基础上,其原理是在数据组合的基础上获取更多的信息,实现资源协同,将其应用于计算机网络安全管理技术中,可以使过个传感器共同或联合发挥作用,使整个传感器系统的能行得到提升,进而将个体传感器入侵检测的范围局限性削弱,使入侵检测的全面性更加有保证,此项技术如果与其他人工智能结合应用,检测的效果会更加理想。

可见,人工智能在计算机网络安全管理技术中的应用,对提升计算机网络安全监测、防御能力具有积极的作用,使计算机网络传统安全管理技术不能识别未知风险、风险识别不全面、杀毒能力较弱等问题得到有效的解决,而且计算机网络安全管理的效率和准确性也更加有保证。

2.2 人工智能在计算机网络系统管理和评价技术中的应用分析

由于计算机网络自身具有动态性和瞬变性等特点,所以计算机网络系统管理的难度较大,将人工智能应用于计算机网络系统管理和评价方面对提升其管理的有效性、全面性和评价的客观性等具有积极的作用,现阶段应用于此方面的人工智能主要包括以下方面:

2.2.1 人工智能问题求解技术

此项技术是在给定条件下,可解决某类问题并在有限步骤内可以完成的算法,主要包括以状态图为基础的搜索技术、以谓词逻辑为基础的推理技术和以结构化知识表示为基础的求解技术,搜索技术主要针对状态空间、问题空间、博弈搜索进行,通常情况下相同的问题具有多个搜索技术,所以要提升搜索的效率需要对最优的搜索技术进行判断。其评价标准通常包括搜索空间和最优解两方面,为获取最优搜索,需要利用公式f*(n)=g*(n)+h*(n)进行评估,其中g*(n)代表从网络S节点到n节点的最短路径;h*(n)代表从网络n节点到g节点的最短路径。可见将人工智能问题求解技术应用于计算机网络系统管理和评价中,相比传统的计算方法可以缩减网络资源的浪费,提升网络资源的管理效率和质量,应积极推广应用。

2.2.2 专家知识库技术

专家知识库是专家系统的重要构成,其对专家系统的应用效果产生直接的影响,现阶段专家知识库主要包括基础原理理论和直接或间接获取经验积累的专门知识,通过将已知的计算机网络管理与评价经验进行编码、建库,使计算机网络管理决策获取专家经验支持,使相似或同种管理、评价问题等可以得到较好的完成,此项技术现阶段在计算机网络管理与评价方面得到较广泛的应用。

3 人工智能在计算机网络技术中的应用案例分析

3.1 人工智能在计算机网络安全管理技术中的应用案例分析

某档案馆为保证应用的计算机网络系统不会对存储的档案信息安全构成威胁,积极的将人工智能应用于计算机网络系统安全技术中,实践证明,通过应用智能防火墙和智能入侵检测系统,该档案馆的计算机网络安全性得到明显的提升,笔者针对该档案馆在此方面对人工智能的应用展开分析。

3.1.1 智能防火墙

该档案馆长期以防火墙作为其网络安全管理的主要手段,但由于传统防火墙自身不可见加密的SSL流数据,不能对其迅速的拦截和解密,使此类对计算机网络的攻击难以通过防火墙实现防范,甚至任何应用程序在加密后均可以顺利的通过传统防火墙,使档案馆的网络安全一直受到严重的威胁,档案馆网络体系结构特点决定其对应用数据流的监控能力无法满足实际需要;而智能防火墙将统计、决策等智能算法应用于数据识别的过程中,对外来针对档案馆网络的访问进行有效的控制,使档案馆网络特征值更加明显,该档案室应用的智能防火墙将和过滤技术有机结合,不仅可以使传统防火墙在安全性方面的问题得到有效的解决,而且监控范围涵盖数据链路层至应用层全部,对TCP/IP协议层落实全面的安全控制,可见该档案馆的防火墙在应用人工智能后,客户端配置任务得到大幅度的缩减,而且数据加密、解密等均可以在防火墙拦截过程中实现,虚拟网VPN得到强有力的支持,在智能防火墙的作用下,档案馆内部信息对外完全隐藏,服务的作用更加突出,在服务与包过滤服务的功能相融合的作用下,使该档案馆计算机网络的安全性得到了明显的提升。

3.1.2 智能入侵检测系统

入侵检测技术属于积极的安全管理手段,是在危害发生前的有效预防,该档案馆在应用传统入侵检测技术时,通过对计算机内部的各类信息进行搜集,然后通过检测引擎对各类信息中是否存在入侵进行判断,进而针对检测的误用模式提出警告,控制台结合监测结果确定相应的控制措施,可见在该档案馆应用的传统入侵检测中检测的范围、有效性等均不能得到有效的保证,使档案馆的网络信息受到危害入侵的威胁。在该档案馆应用智能入侵检测系统后,其将规则产生式专家系统、基于神经网络的入侵检测、数据挖掘技术共同应用于入侵检测系统,使该档案馆的入侵检测系统不仅可以有效的检测出已知专家管理经验中涉及的威胁,并制定出有效的解决方案,而且利用人工智能在记忆、学习、适应性等方面的突出功能,使各类未知的病毒、危害等也可以得到有效的识别,而且使病毒危害的范围和程度得到有效的控制,结合该档案馆对人工智能的应用效果,类似的单位或组织也可以积极的应用,例如图书馆、会计师事务所等。

3.2 人工智能在计算机网络管理与评价技术中的应用案例分析

某图书馆在向数字化发展的过程中,计算机网络存储的信息不断增多,实施网络管理和评价的难度不断加大,为缩减图书馆计算机网络管理的任务量,提升网络管理和评价的质量,该图书馆积极应用人工智能相关技术,该图书馆应用的人工智能技术主要是专家知识库的建立和应用,其首先将国内外专家已知的图书馆管理和评价经验收集、整理、编码,建立规则库,在进行图书馆网络管理的过程中,专家知识库会通过对计算机网络的自动检索与专家知识库中的编码相匹配,为管理人员提供相对应的管理方案,并在管理人员同意的情况下完成网络管理与评价,这不仅减轻了图书馆网络管理人员的管理压力,而且在提升管理效率和质量方面也发挥着积极的作用。

4 结论

通过上述分析可以发现,现阶段人们已经认识到人工智能的优势,并在实践中有意识的将其应用于计算机网络技术中,这对优化计算机网络技术的性能具有积极的作用,所以应结合实际进一步的深化和优化,这是计算机网络技术深化发展的具体体现。

参考文献

[1]马越.探讨人工智能在计算机网络技术中的应用[J].计算机光盘软件与应用,2014,22:43-44.

[2]吴振宇.试析人工智能在计算机网络技术中的运用问题[J].网络安全技术与应用,2015,01:70+74.

[3]卢昌龙.人工智能及其在计算机网络技术中的运用[J].电子制作,2015,05:87-88.

[4]谭仕平.人工智能在计算机网络技术中的应用分析[J].硅谷,2013,18:11+4.