时间:2023-11-12 15:14:53
序论:在您撰写电磁辐射对环境的影响时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1.变电站的电磁污染
现代电力网的电磁效应主要通过电场、磁场和电晕三种形式发生的。
1.1电场特性
载流输电线在周围空间产生电场,有如下特性:①场强度与输电线相对于大地的电压成正比;②场中的导电物体(建筑物、树林等)会使电场严重畸变,从而产生一定的屏蔽;③三相交流输电排列方式不同,电场强度不同(导线水平排列,场强影响范围最大;正三角排列次之;倒三角排列时最小)。提高输电线架设高度、可减少地面强度。
1.2磁场特性
磁场强度的大小与电流大小有关,与电压无关;50 Hz 或 60 Hz 的磁场能很容易穿透大多数物体(建筑物或人),且不受这些物体的干扰。从理论上讲,由于三相变流输电线中各相电流的有效值相等,相位互差 120°,所以在距输电线较远外产生的磁场相互抵消,近似为零。一般重点研究电场。
1.3电晕特性
当导线表面的电场强度超过空气击穿强度时,就产生电晕放电。这时,导线表面的电场强度一般达到 30kV/cm 以上,只有高压输电线路导线表面才有如此巨大的电场强度,因此,电晕放电多发生在高压输电线路上。电晕放电首先受线路自身状况的影响,例如,电压越高,电晕放电就越强;导线直径越大,电晕放电就越弱;导线表面光洁度越高,放电也就越弱。其次,电晕放电还与环境因素有关,空气污染越严重,电晕放电就越强;相对空气湿度越大,风速越大,电晕放电就越强。在降雨、降雪时,电晕放电加剧。在环境空气质量较差的天气条件恶劣时,电晕放电总是比较强烈。
2.变电站电磁辐射对环境影响的研究
2.1测量方式
监测标准按《辐射环境保护管理导则电磁辐射监测仪器和方法》(H3lT 10.2-1996)执行。在送变电设施正常工作时间内进行测量,每测点连续测5 次,每次测量时间大于 15s,读取稳定状态的最大值。若指针摆动较大,适当延长测量时间。
2.2测量布点
站内布点在主控室操作人员的工作位置,测量部位距地面 1.5m。站外布点在围墙四周 0、10m、20m、30m、40m、50m。测量每个距地面 1.5m 处测点电场强度的垂直分量和磁场强度的垂直分量和水平分量。对评价范围内的环境电磁辐射水平进行定量分析评价,以及电磁辐射防护措施进行论证。对变电站及线路周围的居民区、学校、机关、重要建筑物等环境敏感点,以及变电站内的工作人员进行调查。本次研究监测了深圳南京某 500kV 变电站。
2.3检测结果分析
通过对南京某500kV 变电站环境电磁辐射测量,根据测试结果可以看出,所有测点的磁场强度均能满足标准要求。
2.4变电站电磁辐射影响评价
测量结果反映了被测变电站及线路的电磁辐射现状,包括工程电磁辐射的影响,也包括其他辐射及自然本地的影响。南京某 500kV 变电站,该变电站周围的地形相对较为平坦,排除输电线下方的测量值,墙外10m处测得得最大电场强度为3.91kV/m。50m 范围内均小于 4kV/m,磁场强度最大值为 0.0013mT;电磁场随距离呈下降趋势。变电站的电场强度基本随距离的增加而下降,磁场强度的环境影响甚微。
3.变电站电磁辐射的防护措施
当今,电力网电压等级不断提高,电磁污染潜在危害亦越来越受到重视。高压和超高压电力网的电磁污染防护措施主要有:
3.1对人体影响的减缓措施
为避免电磁辐射对人体的影响,应从输变设计和劳动保护两方面采取措施。例如,提高导线对地的高度,双回路导线逆相布置,高低压导线分层架设等措施,会获得降低地面强度的效果。在运行中对工作人员采取局部屏蔽与限制工作时间等防护措施,以减少电磁辐射对人体的影响。
3.2对通信线路干扰的消除措施
对通信线路的影响有静电感应和电磁应两方面。输电线路正常运行时,在邻近的与其平行的通讯线路产生感应电荷。感应电荷与输电电压成正比,还与通讯线路与输电线路的距离及相互位置有关。同样,输电线路的交变磁场也会在邻近的平行通讯线路上产生互感电压,其大小与电流强度和邻近的平行通信线路的长度成正比。计算与实测表明,在正常情况下距输电线 50m以内,电场影响较大,是干扰正常通讯的主要因素,而磁场影响很小。当间距增大,电场影响显著下降,到 100m 之外时,磁场影响是主要因素。而电场影响可忽略不计。当通讯线上的感应电压超过弱电设备绝缘的击穿电压时,就可能损害设备和人身安全。
3.3对无线电与电视的干扰
输电线对无线电与电视的干扰主要是指电晕放电引起的干扰。一般在大于 200m 处,干扰电场可以忽略不计。无线电杂音的强度受天气影响较大,一般只在恶劣的天气条件下电网才会对距它很近且信号很弱的无线电与电视产生干扰。为了避免架空电力线对通信线的干扰,设计时应从导线选择和连接等方面考虑,无论是单导线还是分裂导线,均应使导线半径或等值半径等于或大于引起电晕的半径。
4.结论
从变电站周围的电磁场强度的分布来看,变电站所处地形大多为坡地。地处城区的变电站周围人口密集,高大建筑物参差不齐,地面场强分布不均匀,但从规律上看,场强随远离变电站的距离增加呈下降趋势。在线监测说明超高压变电站设施在正常运行时,周围无进出线区域的电磁辐射小于环保评价标准,不会对操作人员和公众的健康造成危害。在有线路进出较多的区域,其下方受高压输电线的影响,电场强度有超标现象,但超标点周围无人员居住。
【参考文献】
[1]郭伟强.当前电力规划工作的思考[J].农村电气化,2001,(1):ll-12.
【关键词】高压送变电;电磁辐射;环境影响
【中图分类号】X591
【文献标识码】A
【文章编号】1672-5158(2012)10-0334-01
国家经济在不断发展,人们的生活质量也在不断提高,人们对居住环境的要求也在不断的提高。但是越来越多的高压变电站造成的电磁辐射也在无形之中影响着人们的生活环境。电磁辐射在达到一定的限度之后就会对人体造成不同程度的危害,所以我们要采取一定的措施来减少电磁辐射对环境的影响,提高人们居住环境的质量。
1、电磁辐射及污染
电场和磁场在交互变化的时候产生的电磁波向空中发射的现象就是电磁辐射,电磁辐射是由空间共同移动的电能量和磁能量组成的,这些能量由电荷移动产生。电磁辐射是一种看不见摸不着的特殊物质。高压送变电工程的过程中交变电流就是由磁场和电场交互变化产生的,所以就会产生电磁辐射。电磁辐射污染和电磁辐射是不一样的,因为,任何带电的物体都可以产生电磁辐射,但只有电磁辐射超过国家规定的标准时,才会对人体构成危害,也只有超过国家规定标准的电磁辐射才叫做电磁辐射污染。没有超过国家规定标准的部分是可以转化成能力起到积极的作用的,就如同噪声的原理一样。图1是我国工业卫生组织对环境电磁场的限值。
2、电磁辐射的危害
电磁辐射是一种复合的电磁波,人的身体中含有一系列对环境的电磁波非常敏感的生物电活动,所以当人生存的环境中存在大量的电磁辐射时,对人体的危害是比较大的。人体中所含的电磁场比较微弱,还都是稳定的,如果受到外界电磁场的干扰,人体固有的微弱的电磁场将会被破坏,血液、淋巴液和细胞原生质都会发生相应的改变,同时也会影响人体的遗传效应、神经系统、感觉系统、免疫系统和内分泌系统。不过只有大剂量的电磁辐射才会构成这样严重的结果。我们生存的地球本身就是一个磁场,太阳光是电磁波的频段,还有其他星球和雷电也会产生电磁波,但是这些都是自然环境产生的,我们人类就是从自然环境中进化过了的,所以对人体不会有任何危害。但是高压线和变电站等利用电磁能工作的设施会向环境中发射电磁辐射,会使环境问题越来越严重,不过国家环境保护局的有关专家也提出,电磁辐射不是在任何时间,任何地方都会发生的,它也是可以进行屏蔽的。所以总的来说电磁辐射也没有想象中的那么严重,他只有在超过一定数值的情况才会对人体产生不良反应,也跟个人的抵抗能力和跟电磁辐射接触的时间的长短有关系。电磁波看不见,摸不着,也无处不在,它在给我们的生活带来很多便利的同时,也带给我们一定的损害,所以我们还应该采取相应合理的预防措施,在不给人们造成恐慌的前提下预防电磁辐射给我们的生活带来影响,既可以有利的保护人民及生活环境的健康,也不会阻碍国家经济产业的发展。
3、高压送变电电磁辐射对环境影响的预防措施
高压送变电工程的设计、建设都有一个规范的计划,尤其是在设计阶段,高压送变电线路对交通,居民区,建筑物等都有一个充分的安全防护距离,以减少高压送变电设备电磁辐射对环境的影响。
(1)建立一个高压输变电线路保护区,严禁在高压输变电设施的防护区内搭建居民住宅。
(2)严格按照标准对高压输电线路的路线保护区进行规划,选用适当的塔型、塔高,以免降低线路,增大走廊下得电磁场强度。如果高压输电走廊的外侧有居民区,应在居民区的周围多种植高大的乔木,以此来减少工频电磁辐射。
(3)在城市人口比较密集的地区建设高压输变电工程时,要考虑到电磁辐射的影响,高压变电所尽量采用封闭式的结构,110KV以上的输电线路在进出变电站时尽量采用地下电缆进出。
(4)设计高压输电线路时,尽量使用转角塔线路绕过房屋,或者避免跨越高层的建筑物,对于已经跨越建筑物以及居民区的高压架空输电线路,在重建的时候一定要严格控制好新建筑物的高度,给建筑物和高压输变电线路之间预留一定的防护距离,以保证居民的安全。通常情况下,高压输电线路和被保护的目标之间的垂直高度应该在7米以上;如果是私人住宅,制定相应的政策,防止居民为了眼前的个人利益不断增加房屋的高度,而影响了其他居民的生命安全,对城市的长期发展也不利。
【关键词】高压输电线;电磁辐射;环境
随着经济的高速发展,工业化进程的加快,高压输电线路就不可避免地闯过人口密集区。高压输电线路电磁污染问题已经引起了人们的密切关注,它严重地威胁着经济的可持续发展、和谐社会的创建、人类生存健康。文章主要阐述了高压输电线路电磁辐射对环境的影响,并且针对存在的问题提出了防治措施。
1.高压输电线路电磁辐射对环境造成的影响
1.1高压输电线路对周边无线电装置所产生的影响
高压输电线路所通过的区域在一定的程度上都会受到电磁的污染。正在运行的高压输电线路会产生电磁脉冲,会向空间辐射高频电磁波。高频电磁波沿着高压输电线路进行传播,这样就造成高压输电线路两侧的无线电设备在工作时接收信号的波形相位和波形峰值都会受到影响,从而造成信噪比达不到无线电接收设备正常工作的要求。高压输电线路造成的干扰主要有火花放电、电晕放电等引起。火花放电主要会对电视频段的接收产生影响。电晕放电主要会对电视机、收音机等家用电器造成一定的影响,但是干扰不会对人身造成伤害。
1.2高压输电线路电磁辐射对周边人和动物造成一定影响
高压输电线路电磁辐射对人体造成的影响主要有非热效应、热效应、累计效应等。在自然状态下都存在着微弱的电磁场对人体的器官及组织产生作用,但是这种状态是稳定的、有序的,一旦外界电磁场作用于人体,这种稳定、有序的状态被打破,人体就会受到损伤,这就属于非热效应;在电磁的作用下人体内的水分子就会相互摩擦,引起体内水温上升,影响到体内各器官的工作,这也就是热效应。人体受到两种效应作用后,如果人体损伤没有恢复再次受到外界电磁辐射,损伤就会累积,长期就会造成永久性病态,甚至危及生命,这就是累积效应。
高压输电线路电磁辐射对动物也会产生影响。电磁辐射对大鼠的学习记忆、生殖系统、血液系统、心脏等方面产生一定的影响。科学家经过试验发现,高压输电线路电磁辐射会对大鼠心房肌细胞造成一定的影响,还会引起血红蛋白分子结构发生一定的改变,对、肾、肺的组织结构造成不利影响。高压输电线路电磁辐射对人体造成的影响:(1)电磁辐射引起女性月经失调,分泌紊乱,男性下降。(2)电磁辐射会造成造血功能下降,导致肝病,视力下降,影响骨髓、大脑组织发育,严重者还会引起视网膜脱落。(3)电磁辐射会造成畸胎、不育、流产等病变的诱发因素。(4)电磁辐射对人体的免疫系统、神经系统、生殖系统会造成直接伤害。(5)电磁辐射是癌突变、糖尿病、心血管疾病的主要诱因。
1.3高压输电线路电磁辐射对通讯线路(包括光缆、直埋电缆、架空线)的影响
高压输电线路对通讯线路的影响主要表现在对架空铁线的静电干扰、对直埋式电缆、光缆、架空线的电磁辐射影响。如果通信线路上感应电压形成短路电流,会对设备和人员的安全造成严重威胁,其造成的危害大小主要与作用时间和电流强度有关,如果作用时间较长,人体所能接受的电流强度就很小。一般情况下,只要平行接近段不是很长,是不会有什么危险的,但是在遭到雷击、输电线路短路时,输电电流或者输电电压就很有可能瞬间升高很多倍,对一些电器设备以及人员造成严重危险。
1.4高压输电线路电晕可听噪声
一般情况下,高压输电线路噪声产生原因主要是:(1)接触不良或连接松动产生的间隙火花放电。(2)在金属表面或导线表面处空气中的电晕放电。电晕放电是线路的固有特性,是不可消除的,当运行电压在100kV以上时,电晕放电占有重要地位。
2.高压输电线路电磁辐射可采取的防治对策
2.1高压输电线路的选线和设计单位要有强烈的环保意识
对于高压线路走廊资源紧缺地区,应当研究采取少拆房、少砍树的设计方案,尽量采取紧凑的塔型布置;要采取保护植被措施,尽量避免基面开挖,避免水土流失;在高压输电线路的下方的金属物体必须接地良好;高压输电线的两侧250m的范围内尽量避免建造房屋,避免人身健康造成影响;对高压输电线路进行设计时,导线距地面必须符合要求,另外,高压输电线与已建成房屋垂直距离不得小于5m;如果无线电设备在高压输电线路附近应当设立安全防护距离;当输电电压超过220kV时,需要设置防护走廊,走廊下不能有障碍物,走廊宽度在45m左右;当高压输电线路经过广播收音台或者电视差转台时,必须选择从信号不重要的一侧经过。从社会效益和环境保护方面考虑,为了加强环境保护而增加的线路工程投资,是科学合理的。
2.2针对高压输电线路电磁辐射对人体造成的危害应采取的措施
为了使高压输电线路电磁辐射对人体的影响降到最小,可以从劳动保护和输电设计两个方面采取措施。例如高低压导线分层架设、双回路导线逆向布置、导线对地高度提升等措施,会取得地面强度降低的效果。在高压输电线路运行中,对工作人员可以采取限制工作时间与局部屏蔽等防护措施,从而达到减少高压输电线路对人体伤害的目的。
2.3针对高压输电线路电磁辐射对通讯线路的干扰应采取的措施
高压输电线路对通讯线路的影响主要是电磁感应和静电感应两个方面。高压输电线路在正常运行时会对与它平行的邻近通讯线路产生感应电荷。感应电荷与输电线路、通讯线路以及相互位置有一定的关系,还与输电电压成正比。通讯线路与邻近的平行高压输电线路的交变磁场产生互感电压,其大小与通讯线路长度和电流强度成正比。
通过实验发现,一般情况下在距高压输电线路50m以内的范围受到电场的干扰是最大的,成为了干扰正常通讯的重要因素之一,但是磁场影响是比较小的。当与高压输电线路距离较远时,电场的影响明显下降,当距离达到100m以外时,磁场对正常通讯的影响成为主要因素,而电场对正常通讯造成的影响是极小的可以忽略不计。为了避免通讯受到影响可以采取如下措施:(1)装设中和变压器、屏蔽线、放电管。(2)对高压输电线进行科学合理的换位。(3)将受到影响的输电线、信号线、通讯线改为电缆。
3.结语
高压输电线路在运行的过程中会影响到通信线路的正常工作以及无线电的正常工作,还会对周边的居民造成一定的影响。高压架空输电线的可听噪声、无线电干扰、磁场、工频电场对周边设施以及人身安全和健康会造成一定危害,但是只要认真做好防护措施,就可以降低或避免其危害。目前高压输电线路所造成的电磁污染还没有明确的定论,但是人们还是对高压输电线路的电磁辐射的危害心存恐慌。因此,电气工程设计人员要认真研究防治措施,避免公众对高压输电线路电磁辐射的投诉,为以后工作的顺利开展创造条件。 [科]
【参考文献】
[1]张雅卿.高压输电线路电磁辐射污染的评价及建议[J].科技资讯,2011(19).
关键词:电力机车;电磁辐射;电磁环境;抗干扰
中图分类号:U26 文献标识码:A
一、电力机车电磁辐射的形成
轨道机车要急速行驶,应当装设功能强大的动力系统。当下,一般K字头火车的动力系统的功率普遍为2W到3MW之间。根据国务院制定的中长期铁路规划,我国将开行时速达300公里以上的高速列车。行驶速度如此大的列车,需要的动力系统系统功率将达到10MW左右。就目前技术条件,为如此高功率的列车提供动力,一般均采用电动力系统。所以,在我国高速列车均采取电力机车。电力机车从供电网中获取能量,电力机车本身不装设功率产生设备,也不携带其他一次能源,其能量来源均由电力网提供。电能是有发电厂产生,利用升压变电站升压传输到降压变电站,再引入到铁道专用变电站。从铁道专用变电站的出线端引出配线网络到铁道接触网上端,利用回流连接线与受电弓、车轮及铁轨,形成了电流流通路径,此时电力机车通电。具体可参见图1。
在传统的电力机车的动力供配电系统中,曾有多种不同的供配电形式出现,主流的有供电方式有单相工频交流方式、单相低频交流方式、直流方式等。经过多年铁路的工作者的实践,最终确定电力机车的供配电的系统采用单相工频交流方式。通过交流为电力机车的行驶提供动力有相比其他方式具有很多的优势。但工频交流电必然对外发射工频电磁波,同时由于与铁道附近的电磁环境相互影响,还必然发射高频谐波辐射。这些电磁辐射对于周边的电气设备、通信设施必然会产生一定的影响。
二、电力机车形成电磁辐射的原因
电力机车行驶时形成的电磁辐射主要原因是受电弓与导线的联系问题。受电弓与导线之间本来就存在着接触电阻的问题。行驶中的电机机车受电弓和电网络更加不可能严密的接触。这个接触面的等效电路模型,不能够单纯的是一个电阻模型,而是一个由电阻、电容和电感共同构成的模型。同时,由于电力机车在行驶时,受电弓与导线之间的接触面的紧密程度在不断地变化,它们之间的等效电路模型参数亦在不断变化。这致使流过机车的电流产生高频谐波分流,对外发射高频电磁谐波。电力机车电磁辐射,大概有一下几种形式。
(1)电力机车在启动和进站时,时速相维持在低位,行驶相对稳定。此时受电弓在供电网导线下方平滑移动,衔接相对严密,基本未有形成显然的缝隙,电磁辐射较弱。这时候机车通过电流波形产生畸变原因在于,导线和受电弓的表平面由于存在着损耗,相互的表面都不够平滑。这种畸变电流在机车重载运行时,变现的愈加明显。畸变电流对外依然要发射高频电磁波,产生电磁辐射。相对而言,此类电磁电磁辐射的能量层级比较弱,同时随着频率的增大,幅值衰减得也比较厉害。
(2)电力机车在驶离车站开始高速运行时,因为导线表层存在许多的硬点,机车机车在经过这些硬点时,将完全与导线脱离。此时,供电网对机车的供能,将有电弧的参与。电弧的流经路径和电流大小难以控制,时刻变化。电弧电流包含大量的的高次谐波分量,并且能量层级很高,对外将发生较为强烈的电磁辐射。
除此之外、电力机车装设的其他设备,比如整流设备、变压器等等都会形成一定的电磁辐射。整流设备是由非线性的电力电子器件构成,其工作形式是在电力电子器件不停在截止区和饱和区转换,从而达到交直流转换盒变频的目的。在此过程中,必将产生高频电磁辐射。变压器采用了很多铁磁材料构成,由于其铁磁材料工作超过其线性区,使得不同相位的电流非等比例变化,从而造成高频电磁谐波。此类电磁辐射,能量层级相对于受电弓与导线之间产生的电磁辐射而言较小,同时还受到机车的屏蔽,对周围环境影响比较弱。
总之,电力机车电磁辐射产生原因主要是由于列车行驶时其受电弓与接触网的衔接情况不断变化,导致其等效电气参数不断变化,从而产生了不平衡电流,形成了对外发射和严接接触网传导的电磁辐射。电力机车电磁辐射的形成及传导情况如图2所示。
三、电力机车电磁辐射对周边环境的影响及对策
电力机车在运行时,将产生一定的电磁辐射。而铁道沿路有可能布置着各种电气电信设备,例如超短波通信台、广播电视台、雷达信号台等等设施。电磁辐射不可避免会对此类设备构成干扰。为此,相关部委对不同的电气设备制定了不同的国家标准,对电力机车及其相应的铁道沿线的各类电气设备的间隔距离做了详细的规定,以避免互相干扰
铁道建设是一个长期过程,部分由于历史原因,严格按照国标建设有一定的困难。这需要充分比较平衡国防、人文、自然之间的相互影响。从铁道自身建设的角度来说,要减少电力机车在急速行驶的过程中形成的电磁辐射,则应道使得铁道路径尽量平直,采用高质量的受电弓,协调弓网的联络,从而达到降低受电弓的瞬间的离线率。而从受干扰方的角度说,应当增加设备的可靠性,提高仪器的有效辐射率,纠正信号采样功率因素,对部分采样设备进行改造。
以下就电力机车轨道附近容易受到干扰的设施及其抗干扰措施作概括描述:
1民航航站楼
民航航站楼里面的导航装置,是机场和航班进行通信的设施,向航班传递角度、航线和其他信息,以确保航班的平安运行。
电力机车在行驶过程中形成的电磁辐射,将干扰到航站楼读取航班的信息,并在传输的数据的过程中造成信息的丢失,威胁航班的正常运行。
目前针对航站楼的电磁辐射主要可以采取以下措施
(1)增加电力机车的轨道与民航航站楼的相对距离,使得电力机车的产生的电磁辐射对航站楼的影响,降低到可接受水平。同时,依据先行建设单位优先的原则进行协调。
(2)由于接组网的电力分相属于强辐射源,在航站楼附近,尽量不设置分相设备
(3)提高航站楼传输型号的能级强度,加强其抗干扰能力,增强其信噪比,以确保航班的安全稳定运行。
2信号雷达台
信号雷达台是国防对空作战的情报收集的基本单元,是对空防控的信息中枢。电力机车行驶过程期间附带形成的电磁干扰,容易使得雷达输出画面出现雪花,干扰情报人员对情报的准确判断。对电力机车的电磁干扰问题,一般采取以下对策
(1)对等级较低、符合迁移标准的雷达台,可对其实施迁移。
(2)对于核心中枢的重要雷达台,可以与高铁方面进行协商,从产生电磁辐射源头降低干扰信号的强度。
(3)对雷达台进行技术改造,提高屏蔽电气辐射的技术条件,加强雷达的抗干扰能力。
3短波侧向站
短波侧向站一种运用信息传输与处理技术,采样与收集短波信号,通过对信号的系统分析判断信号的来源。电力机车行驶过程中形成的电磁辐射,本身就是一种无线干扰信号,尤其是其中的高频辐射,会直接被侧向站所采集,干扰测向的判断。目前可以主要采取的对策如下:
(1)对于影响严重,干扰厉害的测向站,先考虑对测向站的信号采集系统进行迁移,但应当尽可能不对测向站整体进行迁移。从国防角度出发,信号测向是个系统工程,不应当进行远迁。
(2)电力机车的轨道应当尽可能平直,降低电磁辐射的产生。
(3)提侧向站高滤波、隔离及定位的能力,改进测向站的可靠性。
4收信站
收信站尤其是超短波授信站,负责国防、安全、海事等关键部门的信息传递任务。电力机车在行驶过程中将形成电磁辐射,高频辐射将与短波信号进行叠加,使得信号丢失信息。对收信站可以采用以下措施:
(1)改造轨道建设,从源头减少形成电磁辐射的因素
(2)提高收信站采集信号的能力、改变收信站分析信号的方法
(3)对收信站在一定地域内进行迁移
5广播电视中继站
广播电视中继站,是接收广播电视信号,并通过相应的方法对信号的幅频和相频特性进行调整,增大信号的能将,并将广播电死信号发送到地方发射台,以供用户接收。电力机车产生的电磁辐射会叠加到广播信号中,使得用户的电视画面出现雪花,广播声音出现杂音。严重影响收听收视效果。对电力机车的电磁干扰,可采取以下措施。
(1)提高滤波措施,滤除相应干扰
(2)增强信号信号传输的特征点,使得后继信号站能够更加容易得从噪声信号中提取有用信号。
(3)另行选址建设新的广播电视中继站
电力机车在行驶过程中,将不可避免的产生电磁辐射。减少电磁辐射的干扰,最直接的措施是采用屏蔽的措施。最佳的屏蔽方式是在让电力机车在完全封闭的、有铁磁材料构成的隧道中运行。这方法成不过高,不易施行。但在对电气环境要求较高的路段,进行半封闭的屏蔽建设,也能起到很好的屏蔽效果,同时还可以抑制噪音。此外、提高受电弓的质量、增加铁道输电功率的稳定性,都可以减少电力机车的电磁辐射。
(本文系重庆水利电力职业技术学院院级科研项目(K201212)“电力机车电磁辐射对周边环境影响的研究”的研究成果)
参考文献:
[1]GB/T 15708-1995 交流电气化铁道电力机车运行产生的无线电辐射干扰的测量方法 [S].
[2]刘俊刚.电力机车对外电磁辐射测试标准与方法的研究[J]. 铁道技术监督,2005(5).1—4.
[3]刘干禄.轻轨机车运行中产生的电磁辐射的测试方法探讨与研究[J]. 中国无线电,2005(5).52—54.
[4]孙宇新. 电磁辐射对环境的污染及防护措施[J].工业安全与环保,2001(1).1—4.
关键词:110kV输变电;电场;磁场;强度;无线电干扰
中图分类号:X59 文献标识码:A
近年来,工业发展和社会用电的需求大大增加,为适应地区经济发展的需要,电网建设急速发展。越来越多的电力工程深入到城市、乡村,更接近人们的日常生活。但输变电、变电所等电力工程在给当今社会带来现代文明的同时,也伴随着产生一种特殊的、看不见的污染-电磁辐射污染。由于这种电力工程环境问题所引发的纠纷与争议也日益增多,一定程度上影响了社会主义和谐社会建设。为此,本文结合110kV输变电工程,分析了电磁辐射对环境的影响程度,对搞好输变电工程的环境保护工作至关重要。
1 输变电工程环境污染主要因素
1.1 工频电场和工频磁场
电磁辐射(Electromagnetic Radiation)是带净电荷的粒子被加速时,所发出的辐射,又称为电磁波。随时间作工频周期变化的电能量产生了工频电场(power frequency electric field),随时间作工频周期变化的磁能量产生了工频磁场(power frequency magnetic field)。电磁辐射对人体的危害,主要表现为热效应和非热效应两大方面。
1.2 无线电干扰
输电线路导线表面发生电晕及其他放电,电晕及其他放电的同时产生的效应之一就是无线电干扰(简称RI,Radio Interference缩写),无线电干扰的实质,就是在电晕和放电的过程中,出现一些有害的电磁波,且频带相当宽,从频率上说,从低频50Hz到高频上千兆赫兹的范围。这些频率会干扰周围无线电通信设施的正常运行。
2 监测方案
2.1 方案原则
依据相关国家标准和电力标准对变电站和输电线路的工频电磁场、无线电干扰场强以及噪声进行监测,根据现场考察和工程实际情况,以确定监测点位和选取敏感目标。
2.2 监测设备
本次监测采用设备见表1。
3 110kV输变电工程电磁辐射对环境的影响分析
本次所有监测时的天气均为天气晴朗,温度(8~19)℃,湿度52%~73%,天气状况符合DL/T988-2005《高压交流架空送电线路、变电站工频电场和磁场测量方法 》“工频电场和磁场监测时的环境湿度应在80%以下”。对某110kV输变电工程的工频电磁场、无线电干扰场强和噪声进行了实地监测,监测数据如下。
3.1 变电站周围
表2监测数据显示,变电站四周距地面1.5m处工频电场强度和磁场强度均低于HJ/T24-1998中工频电场4kV/m、工频磁场强度0.1mT的推荐限值。0.5MHz频率无线电干扰场强低于GB15707-1995中的限值46dB(μV/m)。
图1监测数据显示,由于受围墙阻隔工频电场强度在0m处低于距围墙外5m处,变电站墙外工频电磁场随距离增大呈衰减趋势。
3.2 输电线路
输电线路断面选择在地势较平坦,远离建筑物和树木,没有其他电力线和通讯、广播线的地方。监测点位起始于在档距中央附近,远离线路交叉及转角。
图2监测数据显示,工频电场强度从距中相导线10m处开始衰减,工频磁场强度从中相导线0m处开始衰减,数值随监测点位距中相导线距离增加而衰减。
表3监测数据显示,距中相导线20m处频率为0.50MHz无线电干扰场强数值低于GB15707-1995中的限值46dB(μV/m),频率为(0.15~30)MHz无线电干扰场强数值差异较大。
3.3 敏感目标
通过现场勘测和评估需求,对变电站或输电线路距离较近、人口密集的居民区医院学校等、群众反映意见比较大、高架线路稠密区和跨越区进行布点。综合考虑变电站(线路)工程与环境敏感目标的距离和敏感目标的结构特征,选取有代表性的敏感目标进行监测。同一地点,当敏感目标结构基本相同时,可先监测距离变电站(线路)工程最近的敏感目标,如果不超标,其他敏感目标可不进行监测。
监测数据显示,变电站西侧35m村庄的工频电磁场强度远远低于国家限值,无线电干扰场强处于许可范围内;输电线路的3处敏感目标各项数据均达标,由于村庄距线路较近,工频电磁场强度较其他敏感目标大,应当注意做好防护工作。
4 对建设好110kV输变电工程的一些思考
目前,建设单位的环境保护意识逐步增强,能够认真执行包括环境影响评价、竣工环保验收等在内的环保制度,积极主动办理各项环保手续。然而在输变电环保验收中也有诸多问题,主要体现在周边群众与输变电工程的矛盾。现场监测往往需要向周边群众反复的解释,主要集中在以下几个方面。
4.1 无线电干扰限值
GB15707-1995《高压交流架空送电线路无线电干扰限值》明确规定了距导线投影20m处0.5MHz无线电干扰限值(80%的时间、具有80%置信度),(0.15~30)MHz频率中除0.5MHz外其它频率可按照相应公式予以修正。随着通讯工业的迅速发展,无线电各频段被逐步占用,致使无线电环境趋于复杂。在实际测量中出现某些频率超限值的情况,而这不仅仅是输变电工程的影响所致,这类情况就难以辨别。
4.2 “坏天气”环境影响
按照GB15707-1995中的“好天气”要求,现场监测避开了阴雨大雾冰雪等“坏天气”,然而“坏天气”中空气湿度增大会使电晕噪声和静电感应得到增强,这些影响比“好天气”更大,因此建议增加“坏天气”的监测。
4.3 房屋拆迁和占用土地纠纷
新建变电站站址和输电线路塔基占用新征土地,赔偿费用由建设单位与当地村委会协商后交付,群众无参与权无知情权于是会产生猜疑。群众猜疑产生抵触心理,一定程度上影响建设单位的施工。赔偿费用协商应该公开公正透明,杜绝此类弊端,此类纠纷以乡村居多。
4.4 公众参与问题和输变电对环境影响的无知
在监测中,群众最关心的是变电站和输电线路产生的工频电磁场对人的影响。群众匮乏电磁辐射方面知识,久而久之对输变电工程产生了恐惧心理。建议建设单位在施工之前对周边群众做好宣传,可以出告示、专人现场答疑和出具相关国家标准等各种方式;环保验收之后,建设单位可出示现场监测数据;协助周边群众正确认识输变电工程消除恐惧心理。
结语
综上所述,输变电工程的电磁辐射会对环境造成不利影响是个不争的事实。但根据上述分析,只要在输变电工程设计时,履行环境保护手续,保护好敏感目标,电磁辐射对环境是安全的。另一方面,国家应该制定并出台电磁辐射方面的有关法规,界定电磁辐射影响的范围和具体标准要求,加大宣传、普及电磁辐射及防护知识,引导公众对电磁辐射的影响的正确了解,加强自身的保护意识,对减少电磁辐射对环境的影响显然有着重要的意义。
参考文献
【关键词】电磁辐射 移动通信 基站 安全距离
1 引言
近几年来,某些区域移动网络信号差成为用户投诉的焦点,可一旦运营商去这些区域增设移动通信基站,却又遭到用户集体反对。投诉多和建站难成为困扰电信运营商的两难问题,电信运营商的通信保障能力正因基站建设难而下降。以上海移动为例,10年来手机用户增长了10倍,话务量猛增了300%,但是移动基站数在内环线范围只增加了10%左右。从2008年1月到2009年5月底,上海移动一共有177座基站因各种原因被迫关闭。造成这个两难问题的原因之一是公众对基站电磁辐射的恐惧。
随着3G网络的建设,更多的移动通信基站将架设在人口密集的城市上空。为了科学认识移动基站的电磁辐射,消除公众对基站的不安,有必要对基站电磁辐射及其对环境的影响进行研究和分析。
2 移动通信基站的电磁辐射
电磁辐射,是指能量以电磁波的形式在空间传播的现象。基站电磁辐射一般是指室外部分的电磁辐射,室外部分主要由馈线(传输线)和天线组成。基站运行时,其发射天线将馈线中的高频电磁能转化成为自由空间的电磁波,电磁波承载着能量向周围空间传播,形成电磁辐射。
图1是移动通信基站天线辐射电磁波的基本原理图,导线载有交变电流时,就可以形成电磁波的辐射,辐射能力与导线形状和长短有关。如果两导线的距离很近,那么导线所产生的感应电动势几乎可以抵消,因而辐射很微弱;将两导线逐渐张开,导线所产生的感应电动势叠加,辐射随之逐渐增强,直至两导线电流方向一致时达到最强。当导线的长度远小于波长时,导线的电流很小,辐射很微弱;当导线的长度等于1/4波长时,辐射最强,称为半波对称振子。实际的天线是由振子叠放而成的。
移动通信基站天线按照方向性可以分为全向天线和定向天线。方向性反映天线向一定方向辐射或接收电磁波的能力,天线方向性的获得,是通过天线内部加反射板或振子叠放而实现的。基站天线方向性的选择可以满足不同区域的电磁辐射的需要,例如乡村大区制的站型选用全向天线,而城区小区制的站型选用定向天线。
作为移动通信系统的重要组成部分,基站天线在提高移动通信网络覆盖范围和网络营运指标中起着重要作用,同时带来的问题是公众对基站电磁辐射的不安与恐惧。
3电磁辐射与健康及电磁辐射标准
电磁辐射是能量流,虽然看不见、听不到、闻不着,但是电磁辐射可能引起装置、设备、系统性能降低,还可能对有生命或无生命的物质产生损害,这就是电磁辐射污染。
当人体暴露在电磁波环境中,不同波段的电磁波会对人体产生不同的生物效应,可能会导致细胞损伤、变异或死亡。此外,人体的器官和组织存在微弱的电磁场,它们是稳定而有序的,如果受到外界电磁波的干扰就会遭到破坏,人体正常循环机能随之遭到一定程度的损伤,长期接受电磁辐射会造成人体免疫力下降、新陈代谢紊乱、记忆力减退、提前衰老、心率失常、视力下降、听力下降、血压异常、皮肤产生斑痘等[1],公众由此产生对电磁辐射的恐惧。
第5届电磁辐射与健康国际研讨会(2009,杭州)的会议报告指出,低强度电磁波的生物学效应及其作用机制至今还是一个困扰学术界的充满争议的问题,各国电磁辐射的卫生学标准还存在着甚至上百倍的差异。对照一些组织和国家的公众照射限值[2,3],发现我国的标准更严格、更安全可靠。例如,在900MHz移动通信频段,中国环保局制定的公众照射限值(功率密度)是40μw/cm2,而欧洲电子技术标准委员会制定的公众照射限值是450μw/cm2。国内目前使用的相关标准主要有:《电磁辐射防护规定》(GB8702-88)、《环境电磁波卫生标准》(GB9175-88)和《辐射环境保护管理导则-电磁辐射监测仪器和方法》(H J/T10.2-1996)。
4 移动通信基站电磁辐射对环境的影响因素
移动通信基站电磁辐射对环境的影响因素很复杂,包括天线性能、高度、距离、角度、环境背景、基站形状、话务状况等等。
为了分析移动通信基站对居民生活环境产生的电磁辐射污染状况,胡冀等通过比较测量,得出的结论是[4]:电磁暴露小区的电磁辐射强度明显高于对照小区,但平均值都在GB9175-88的一级安全范围内(10μw/cm2);安装铝合金防盗网具有良好的电磁场屏蔽作用;同时建有两个通信基站的小区,两者所产生的电磁辐射在某一区域范围可产生电磁场叠加现象,使辐射强度增加;个别与基站天线距离较近(小于20m)、窗户与基站天线处于同一水平位置和与基站天线主瓣方向一致的居室内,电磁辐射功率密度远远超出一级安全范围,可达到20.44μw/cm2,但也在GB9175-88的二级中间区容许范围内(40μw/cm2)。
此外研究还发现,天线主瓣方向区域电磁辐射不一定较高,副瓣方向区域电磁辐射也不一定较低。这其实并没有与理论相违背,因为环境地形、地貌、建筑物钢筋水泥结构、空中架设的电线等等,都将对电磁波产生反射、绕射、折射、散射和吸收,从而使得电磁辐射强度的分布复杂化。
通过物理学的观点分析,基站发射电磁波的功率密度随距离的增大而减小,而事实并非如此,在近距离范围(30m内),由于上述环境地形等因素的影响,电磁波的功率密度随距离的变化规律很复杂,往往在某处达到最高值。以某移动基站为例[5],在不同时间对距离与功率密度的关系进行测量分析,关系曲线如图2所示。对特定基站而言,在某一固定距离处,功率密度还与时间有关,也即与话务量有关,如图3所示,凌晨话务量低,功率密度也低,功率密度整体上随话务量的增加而增加。
5 移动通信基站安全距离的理论计算方法[6~8]
由于移动通信基站发射电磁波的功率密度分布不仅与基站性能指标有关,还与周边环境、话务量因素等有关,因此,移动通信基站安全距离的计算一直是个复杂的问题。下面根据国家环保局的H J/T10.2-1996中关于微波远场轴向功率密度计算公式进行理论分析,这个计算公式的表达式为:
(1)
式中,Pd(μw/cm2)为离基站天线水平距离为d处的电磁波功率密度,d(m)为离基站天线的水平距离,P(w)为机顶发射功率,G(倍数)为天线最大辐射方向的增益。
下面分析计算方法。图4所示的一种基站天馈线系统,基站设备上每一块载频插板连接一根载频输出线,每根载频输出线含有两个频点,每个频点有其固有的发射功率。载频输出馈线在需要耦合器时存在,耦合器的作用是将多个频点的电磁波信号合到一根天线馈线上发送,具有一定的功率损耗。天线馈线一般比较长,也有一定的功率损耗,还需考虑避雷针和馈线接头等带来的损耗。天线向空间发射电磁波,天线的增益越大,发射电磁波的功率越强。
如前所述,每根载频输出线含有两个频点,A点处的信号功率为每个频点固有功率的2倍,两根载频馈线的信号耦合到B点,耦合后的功率大小需考虑耦合器的损耗,两个耦合器输出的总信号经过天线馈线后将再次损耗。也即,载频输出信号在C点的总功率应考虑到耦合器与天线馈线的两次损耗,式(1)中机顶发射功率P应为损耗后的功率。
根据H J/T10.2-1996中电磁辐射环境影响评价方法与标准,对单个项目的影响必须限制在《电磁辐射防护规定》(GB8702-88)公众照射导出限值的若干分之一。在评价时,对于由国家环境保护局负责审批的大型项目可取GB8702-88中功率密度限值的1/2;其他项目则取功率密度限制值的1/5作为评价标准,即移动通讯基站的功率密度限值应是8μw/cm2,即式(1)中Pd=8μw/cm2,这样就可根据式(1)计算基站最大辐射方向上的安全距离了。
应该指出,假如偏离最大辐射方向,天线增益将急剧下降,保护距离随之急剧减小。假如有建筑物阻隔,电磁波穿过一般砖墙要衰减6dB左右(为原来功率的1/4),而穿过带钢筋的墙要衰减20dB(为原来功率的1/100);城市市区建筑物密集,安全距离应比理论计算值小很多。此外,由于基站设备容量足够,加上GSM系统有功率控制和非连续发射功能,天线全方位全功率发射电磁波的可能性几乎是没有的,也即实际的天线辐射功率要小很多,实际的安全距离远小于理论计算值,公众不必对基站产生恐惧。
6 结束语
一方面,政府、企业和公众应该对电磁辐射产生的环境影响引起足够的重视;另一方面,媒体应该积极做好宣传教育工作,消除公众对电磁辐射的恐惧心理,使公众合理科学地面对移动通信基站的电磁辐射;此外,专业技术人员应加快新技术研发,设计出更高标准的天线发射系统,最大限度降低电磁辐射污染。
为了消除公众的不安,创建和谐城市生活环境,上海的做法值得借鉴,改“事后配套”为“事前介入”,基站选址遵循“政府大楼、企事业单位办公大楼、公建配套设施、住宅建筑”的先后顺序,将移动通信基站建设纳入城市基础设施建设和住宅建设的总体规划中。
参考文献
[1]吴石增. 电磁波的生物效应与人体健康[J]. 中南民族大学学报(自然科学版). 2010,29(1): 57-61.
[2]季成富. 移动通信基站环境保护问题探讨[J]. 城市管理与科技,2005,7(2): 59-61.
[3[马文华. 电磁辐射标准跟踪研究[J]. 电信工程技术与标准化,2007(1): 30-31.
[4]胡冀,鲁怡杨,张华成,等. 移动通信基站周围居民生活环境微波辐射水平的影响[J]. 卫生研究,2009,38(6): 712-716.
[5]赵志勇,陈英民,张静. 移动通信基站近距离区域电磁辐射分布特征研究[J]. 中国辐射卫生,2010,19(1): 21-23.
[6]金亮. 移动通讯基站的电磁辐射环境影响[J]. 科技资讯,
2007(22): 141.
[7]卢满常. 基站电磁辐射限值的确定[J]. 内蒙古科技与经济,2010(2): 101-102.
[8]张挺,李祈,马云杰,等. 移动通信基站电磁辐射环境监测与评价[J]. 实用预防医学,2009,16(1): 144-145.
【作者简介】
【关键词】移动基站环境安全电磁辐射模型软件仿真
一、引言
随着通信需求量的增加,为保证整个网络的信号覆盖和通信质量,兴建了大量的基站,这同时增加了环境中电磁辐射水平,引起了社会对电磁辐射对公众健康的影响的广泛关注。因此,探究基站电磁辐射对环境及公众健康的影响意义重大。对于处于不同的地形地貌、环境、地区等的不同类型的基站天线,电磁辐射也各不相同,实地测量费时费力,需要对于具体移动通信基站天线辐射的电磁场值的大小和分布情况,才能研究电磁污染程度,从而确定通信基站选址是否合适。本文从理论数值计算方面分析和研究,模拟基站天线电磁辐射过程。实用软件进行仿真,节省更多的人力,物力,财力。更高效,合理,全面的建立基站。此模型的建立与推广应用对通信基站的辐射环境管理,设计建设,环境影响预测和评估具有重要指导意义,对诚城市可持续发展,城市电磁辐射环境规划和保护具有现实意义和深刻影响。
二、国家颁布的技术标准
国家环境保护局、卫生部颁发了《公众照射导出限值》(GB8702-88)与《环境电磁波容许辐射强度分级标准》(GB9175-88)两个主要技术标准,并颁布了《电磁辐射防护规定》、《环境电磁波卫生标准》两项技术标准。1997年3月,又国家环境保护18号令及《电磁辐射环境保护管理办法》等。
中华人民共和国国家标准“电磁辐射防护规定”(GB8702-88)规定:在一天24小时内,电磁辐射场量在任意连续6 min内的平均值应满足(30~3000MHz):
职业照射≤2W/m2=200滋w/cm2
公众照射≤0.4W/m2=40滋w/cm2
三、模型建立
3.1电磁辐射模型一:理论预测模型
自由空间是指一种理想、均匀的、各项同性的介质空间,当电磁波在该介质中传播时,不发生反射、折射、散射和吸收现象,只存在电磁波能量扩散而引起的传播损耗。
电磁波在自由空间中的传播损耗公式为:
Ls=32.45+20lgr(Km)+20lgf(MHz)
式中:Ls―――电磁波在自由空间的损耗;r―――天线轴向与被测点的直线距离;f―――电磁波的频率;
测试点实际接收的电磁波接受功率为:
从表四的预测结果中看出,当远场轴向距离为14.63m时,符合国家一级标准,功率密度已下降到0.08W/m2以下。
两个模型得到的安全距离大致吻合,也就是说,当场点距离大于14.63m以后,都符合国家一级标准,移动基站的电磁辐射不会对环境造成危害。
四、软件仿真
在实际操作中,模型的计算比较繁琐,而将理论模型导入软件,制出专门分析移动基站电磁辐射的软件,便于我们对移动基站的选址、估算。
我们利用VC++中MFC应用程序框架制作软件进行仿真,将上述两个模型导入软件中,系统自动计算,只有当两个模型的求解值都满足国家一级标准时才输出可以建立基站。
在图3中输入相应参数。
参考文献
[1]黄云飞,黄美美. 900MHz移动通信系统基站电磁辐射对环境的影响,2010
[2]马海卫,庞新新,刘振.移动通信基站电磁辐射特点及水平[会议论文],2004
[3],徐辉.认识移动通信基站电磁辐射特点,保护环境,实现移动通信的可持续发展[会议论文],2003
[4]王亚民,张永富,张金明.移动通信基站电磁辐射环境监测布点的讨论[期刊论文],2002
[5]张海鸥.移动通信基站的电磁辐射仿真模拟及应用[学位论文],2010