时间:2023-11-12 15:14:52
序论:在您撰写半导体制备技术时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
现在最高效的热电材料一般由铋、碲、硒等相对来说比较少见的无机半导体组成,这些元素昂贵、易碎,而且有些还有毒。有机半导体不仅便宜、储量丰富而且轻便、坚固,但一直以来,这类热电材料在热-电转化过程中的表现差强人意。无机半导体热电材料的热电转化效率几乎是有机半导体热电材料的4倍。
科学家们一般用“性能指数”这一值来反映材料的热电转化效率。目前,在室温下,最高效的无机热电材料的“性能指数”接近1;而有机半导体热电材料的“性能指数”仅为0.25。
现在,科学家们将最好的有机半导体热电材料聚3,4-亚乙二氧基噻吩-聚苯乙烯磺酸(PEDOT:PSS)的“性能指数”提高了70%,达到0.42,为目前最好的无机半导体热电材料的一半。
PEDOT:PSS由PEDOT和PSS两种物质构成,PEDOT是EDOT(3,4-亚乙二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐。PEDOT:PSS以前被用作有机发光二极管(OLED)、有机太阳能电池等设备的透明电极;也被用来做胶片等材料的防静电剂。
科学家们一般采用掺杂这一过程来增加材料的导电能力,当朝某种材料添加搀杂剂时,掺杂剂就给主材料提供了电载体,每个添加进去的电载体都能增强原材料的导电能力。然而,当在PEDOT中掺杂PSS时,实际上只有很少量的PSS同PEDOT结合,其余的PSS分子并没有离子化,化学活性也不强。研究人员发现,这些过量的PSS分子会显著抑制PEDOT:PSS的导电能力和热电性能。
该研究的领导者、密歇根大学机械工程、电子工程和计算机副教授凯文·派普表示:“不活跃的PSS分子会进一步将PEDOT分子推开,使电子更难在PEDOT分子之间跳跃。离子化的PSS分子会提高PEDOT:PSS的导电性,而没有离子化的PSS分子则会降低其导电性。”
1、半导体制冷技术
1.1、工作原理
半导体制冷器件的工作原理是基于珀耳帖原理,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且珀耳帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度成正比,且与两种导体的性质及热端的温度有关。
1.2、半导体制冷技术的优缺点
半导体制冷器的尺寸小,可以制成体积不到1cm3小的制冷器;重量轻,微型制冷器往往能够小到只有几克或几十克。无机械传动部分,工作中无噪音,无液、气工作介质,因而不污染环境,制冷参数不受空间方向以及重力影响,在大的机械过载条件下,均能够正常地工作。而且作用速度快,使用寿命长,且易于控制。
半导体制冷片正常工作时,冷端制冷的同时需要在热端进行有效的散热,需要散去的热量包含珀耳帖效应释放的热量和制冷片本身的焦耳热。这个热量远比冷端的吸热量大。所以导致半导体制冷片的效率较低。而且,对半导体制冷片热端的散热一般要采用主动散热。
因此,半导体制冷技术较适合应用于封闭的小型空间的冷却。
2、方案确立
冷却装置必须可以安装在自动化设备屏柜内部。因此,设计、组装出来的整个装置尺寸应合适,如果太小,则冷却效果不明显;太大,则无法安装在屏柜内部。经过在网上查阅有关半导体制冷技术的相关资料后,制定了设计、组装方案:将多片半导体制冷片拼在一起,使其制冷面积增大,同时散热端使用尺寸较大的散热器和散热风扇,以确保其散热性能良好。冷却端使用比散热端尺寸小点的散热器和风扇,使其能保持适合温度,避免出现温度过低或者冷却效率低。
3、现场安装试验
根据日常变电站自动化设备的运维经验,及多个变电站进行现场勘查,发现自动化设备屏柜内的热量主要集中在柜内顶部,而柜内底部的温度基本与室内温度相当。甚至在某些变电站,由于屏柜底部的电缆沟空间较大且密封严实,能起到很好的保温效果,使得在屏柜内底部测得的温度比变电站二次设备间的温度要更低。
针对现场勘查所得的情况,采用1个直流电源模块同时带2台半导体冷却装置的运行方式,将冷却装置安装在交换机柜内顶部,将电源模块放置在屏柜底部。使用适当数量和长度的角钢在柜内顶部搭建一个支架,将冷却装置固定在支架上。利用冷、热空气相互对流的原理,使冷却端产生的冷空气往柜内底部流动,热空气向上升并通过顶部散热孔排出屏柜,从而使屏柜内温度整体下降,达到为柜内自动化设备降温的目的。
4、运行情况分析
为了尽可能的获得自动化设备屏柜内部的各个部位的温、湿度,分别在屏柜内的上部、中部和下部分别放置了温、湿度计。另外在屏柜外也放了一个,以获取屏柜外部的环境温度。并在冷却装置安装完成后未投入运行前,先进性了温度抄录。
由于一天当中的各个时段温度不同,会影响屏柜外部的环境温度,进而影响到屏柜的内部温度,尤其屏柜内上部的温度。因此,在记录温度时尽可能的选择在每一天的同个时段进行,以尽可能的减少外部温度变化带来的影响。
通过图1可看出,在冷却装置投入使用后,屏柜内中、上部的温度有一个明显的下降趋势,尤其是顶部的温度,前后温差高达15X2。冷却效果较为明显。而底部温度仍与冷却装置运行前情况基本相同,与屏柜外部环境温度大致相持。
证明冷却装置运行所取得的效果与项目预期效果相同。
5、结语
通过本次对半导体制冷技术在变电站自动化设备的应用研究,发现其可解决用于变电站自动化设备屏柜内部的设备因运行温度过高导致的死机、故障、甚至整个装置失效等重大、紧急缺陷。严重影响电网安全和供电可靠性。
另外,二次O备的长时间高温环境运行也容易导致其生命周期降低,增加相应的运维成本。该半导体冷却装置主要有以下3个优点:
(1)安装方便,可灵活运用;
关键词:半导体;光刻;图形;薄膜;沉积
DOI:10.16640/ki.37-1222/t.2016.11.038
0 引言
人来研究半导体器件已经超过135年[1]。尤其是进近几十年来,半导体技术迅猛发展,各种半导体产品如雨后春笋般地出现,如柔性显示器、可穿戴电子设置、LED、太阳能电池、3D晶体管、VR技术以及存储器等领域蓬勃发展。本文针对半导制造技术的演变和主要内容的研究进行梳理简介和统计分析,了解半导体制造技术的专业技术知识,掌握该领域技术演进路线,同时提升对技术的理解和把握能力。
1 半导体技术
半导体制造技术是半导体产业发展的基础,制造技术水平的高低直接影响半导体产品的性能及其发展。光刻,刻蚀,沉积,扩散,离子注入,热处理和热氧化等都是常用的半导体制造技术[2]。而光刻技术和薄膜制备技术是半导体制造技术中最常用的工艺,下面主要对以上两种技术进行简介和分析。
2 光刻技术
主流的半导体制造过程中,光刻是最复杂、昂贵和关键的制造工艺。大概占成本的1/3以上。主要分为光学光刻和非光学光刻两大类。据目前所知,广义上的光刻(通过某种特定方式实现图案化的转移)最早出现在1796年,AloysSenefelder发现石头通过化学处理后可以将图像转移到纸上。1961年,光刻技术已经被用于在硅片上制造晶体管,当时的精度是5微米。现在,X射线光刻、电子束光刻等已经开始被用于的半导体制造技术,最小精度可以达到10微米。
光学投影式光刻是半导体制造中最常用的光刻技术,主要包括涂胶/前烘、曝光、显影、后烘等。非光学光刻技术主要包括极深紫外光刻(EUV)、电子束光刻(E-beam Lithography)、X射线光刻(X-ray lithography)。判断光刻的主要性能标准有分辨率(即可以曝光出来的最小特征尺寸)、对准(套刻精度的度量)、产量。
随着半导体行业的发展,器件的小型化(特征尺寸减小)和集成电路的密集度提高,传统的光学光刻制造技术开始步入发展瓶颈状态,其面临的关键技术问题在于如何提高分辨率。
虽然,改进传统光学光刻制造技术的方法多种,但传统的光学投影式技术已经处于发展缓慢的阶段。与传统的投影式光刻技术发展缓慢相比,下一代光刻技术比如EUV、E-beam、X-ray、纳米压印等的发展很快。各大光刻厂商纷纷致力于研制下一代光刻技术,如三星的极紫外光刻、尼康的浸润式光刻等。目前先进的光刻技术主要集中在国外,国内的下一代光刻技术和光刻设备发展相对较为滞后。
3 薄膜制备技术
半导体制造工艺中,在硅片上制作的器件结构层绝大多数都是采用薄膜沉积的方法完成。薄膜的一般定义为在衬底上生长的薄固体物质,其一维尺寸(厚度)远小于另外二维的尺寸。常用的薄膜包括: SiO2, Si3N4, poli-Si, Metal等。常用的薄膜沉积方法分为化学气相沉积(Chemical Vapor Deposition)和物理气相沉积(Physical Vapor Deposition)两种。化学气相沉积利用化学反应生成所需的薄膜材料,常用于各种介质材料和半导体材料的沉积,如SiO2, poly-Si, Si3N4等[3]。物理气相沉积利用物理机制制备所需的薄膜材料,常用于金属薄膜的制备,如Al, Cu, W, Ti等。沉积薄膜的主要分为三个阶段:晶核形成―聚集成束―形成连续膜。为了满足半导体工艺和器件要求,通常情况下关注薄膜的一下几个特性:(1)台阶覆盖能力;(2)低的膜应力;(3)高的深宽比间隙填充能力;(4)大面积薄膜厚度均匀性;(5)大面积薄膜介电\电学\折射率特性;(6)高纯度和高密度;(7)与衬底或下层膜有好的粘附能力。台阶覆盖能力以及高的深宽比间隙填充能力,是薄膜制备技术的关键技术问题。我们都希望薄膜在不平整衬底表面的厚度具有一致性。厚度不一致容易导致膜应力、电短路等问题。而高的深宽比间隙填充能力则有利于半导体器件的进一步微型化及其性能的提高。同时,低的膜应力对所沉积的薄膜而言也是非常重要的。
4 结语
虽然,与不断更新换代的半导产品相比,半导体制造技术发展较为缓慢,大部分制造技术发展已经趋于成熟。但是,随着不断发展的半导体行业,必然会对半导体制造技术的提出更高的要求,以满足半导体产品的快速发展。因此,掌握和了解半导体制造技术的相关专利知识有利于推进该领域的发展。
参考文献:
[1] Most of the classic device papers are collected in S.M Sze,Ed.,Semiconductor Devices:Pioneering Papers,World Sci. , Singapore,1991.
关键词 半导体制造工艺 课程探索
中图分类号:G642 文献标识码:A 文章编号:1002-7661(2015)17-0001-02
《半导体制造工艺基础》以施敏所著教程为例,该课程在对基本原理介绍的基础上注重对工艺过程、工艺参数的描述以及工艺参数测量方法的介绍,并在半导体制造的几大工艺技术章节中加入了工艺模拟的内容,弥补了实践课程由于昂贵的设备及过高的实践费用而无法进行实践教学的缺憾。故熟练掌握《半导体制造工艺基础》将有助于我们加深对半导体制备的了解,为我们学习微电子专业打下坚实的基础。但目前《半导体制造工艺基础》在教学过程中还面临很多问题。在此背景下,我们将对《半导体制造工艺基础》课程进行教学探索。
一、教学内容的设置
《半导体制造工艺基础》的第一章简要回顾了半导体器件和关键技术的发展历史,并介绍了基本的制造步骤。第二章涉及晶体生长技术。后面几章是按照集成电路典型制造工艺流程来安排的。第三章介绍硅的氧化技术。第四章和第五章分别讨论了光刻和刻蚀技术。第六章和第七章介绍半导体掺杂的主要技术;扩散法和离子注入法。第八章涉及一些相对独立的工艺步骤,包括各种薄层淀积的方法。《半导体制造工艺基础》最后三章集中讨论制版和综合。第九章通过介绍晶体工艺技术、集成器件和微机电系统加工等工艺流程,将各个独立的工艺步骤有机地整合在一起。第十章介绍集成电路制造流程中高层次的一些关键问题,包括电学测试、封装、工艺控制和成品率。第十一章探讨了半导体工业所面临的挑战,并展望了其未来的发展前景
二、教学中存在的问题
在教学过程中,从教学工作量来看,发现《半导体制造工艺基础》教学内容过多,根据学校安排的学时很难上完。从教学方法来看,传统的口述以及PPT展示教学方法很难达到预期的教学效果,原因在于这门课程实践性很强。书中的图片特别是工艺过程及工艺效果只是简单的图片展示。从教学深度来看,传统教学方法只是演示,学生对工艺的参数没有概念,故对书本上的内容理解的深度很是欠缺。
三、教学方法的改革
为了提高教学效果,故必须对传统的教学方法进行改革。将工艺仿真软件TSUPREM 4 进行同步仿真与书本相结合将是一个好的教学方法。工艺仿真不但能让学生更轻松的理解工艺内容,还能让学生体会到工艺参数的重要性。下面将结合书本对这种方法进行讲解。《半导体制造工艺基础》第一章介绍半导体工艺技术基本步骤,属于概论,为了节约课时对其内容有所了解即可。第2章介绍晶体生长从熔融硅中生长的区熔(float-zone)法单晶生长工艺,为了节约课时对其内容进行简单介绍即可。第3章介绍硅的氧化包括热氧化过程,由于氧化工艺是半导体工艺的重点内容,应详细阐述,并且教会学生应用工艺仿真软件TSUPREM 4 进行同步仿真,观察每一步氧化带来的硅片上结构的变化,对氧化的效果有直观的了解。第4章介绍光刻技术,采用工艺仿真软件TSUPREM 4 对硅片进行光刻,观察硅片上光刻图形的变化。第5章介绍了刻蚀包括湿法化学刻蚀和干法刻蚀,刻蚀技术是工艺的重要内容,要求学生采用工艺仿真软件TSUPREM 4 对刻蚀进行仿真,比较两种刻蚀方法的效果,并观察每步刻蚀带来的结构变化。第6章介绍了扩散包括非本征扩散,横向扩散。同样采用工艺仿真软件TSUPREM 4对扩散过程进行仿真验证,观察可扩散的温度,时间,离子的浓度等参数对扩散结构的影响,为重点教学内容。第7章介绍了离子注入。离子注入是半导体工艺的核心部分,也是常见的工艺步奏,通过采用工艺仿真软件TSUPREM 4离子注入进行模拟仿真,观察离子注入的浓度,能量,退火时间以及退火温度等参数对离子分布的影响,加深对工艺参数的理解。另外第8章介绍薄膜淀积。第9章介绍MOS工艺。第10章介绍集成电路制造,测试,封装等工艺技术。最后这三部分由于涉及到很多具体的器件和电路,内容较多故可以一个典型例子为例进行讲解,同样采用工艺仿真软件TSUPREM 4进行工艺仿真,学生能熟练掌握工艺仿真软件后面的内容可以自己进行仿真验证。
四、结束语
《半导体制造工艺基础》是一门实践性很强的课程,采用工艺仿真软件TSUPREM 4来模拟工艺过程将有助于加强学生对工艺的了解。让学生深入浅出的理解半导体制造流程还需从教学方法上进行进一步改革。c
参考文献:
[1]施敏.半导体制造工艺基础[M].合肥:安徽大学出版社,2007.
[2]刘秀琼,余学功.半导体制造技术课程教学改革实践[J].中国科教创新导刊,2014,(02).
【关键词】电子化工材料 半导体材料 晶体生长技术
半导体材料的发展,是在器件需要的基础上进行的,但从另一个角度来看,随着半导体新材料的出现,也推动了半导体新器件的发展。近几年,电子器件发展的多朝向体积小、频率高、功率大、速度快等几个方面[1]。除了这些之外,还要求新材料能够耐辐射、耐高温。想要满足这些条件,就要对材料的物理性能加大要求,同时,也与材料的制备,也就是晶体生长技术有关。因此,在半导体材料的发展过程中,不仅要发展拥有特殊优越性能的品种,还要对晶体发展的新技术进行研究开发。
1 半导体电子器件需要的材料1.1 固体组件所需材料
目前,半导体电子所需要的材料依然是以锗、硅为主要的材料,但是所用材料的制备方法却不一样,有的器件需要使用拉制的材料,还有的器件需要外延的材料,采用外延硅单晶薄膜制造的固体组件,有对制造微电路有着十分重要的作用。
1.2 快速器件所需材料
利用硅外延单晶薄膜或者外延锗的同质结,可以制造快速开关管。外延薄膜单晶少数载流子只能存活几个微秒[2],在制造快速开关管的时候,采用外延单晶薄膜来制造,就可以解决基区薄的问题。
1.3 超高频和大功率晶体管的材料
超高频晶体管对材料的载流子有一定的要求,材料载流子的迁移率要大,在当前看来,锗就是一种不错的材料,砷化镓也是一种较好的材料,不过要先将晶体管的设计以及制造工艺进行改变。大功率的晶体管就对材料的禁带宽度有了一定的要求,硅的禁带宽度就要大于锗的禁带宽度,碳化硅、磷化镓、砷化镓等材料,也都具有一定的发展前途。如果想要制造超高频的大功率晶体管,就会对材料的禁带宽度以及载流子迁移率都有一定的要求。但是,目前所常用的化合物半导体以及元素半导体,都不能完全满足要求,只有固溶体有一定的希望。例如,砷化镓-磷化镓固溶体中,磷化镓的含量为5%,最高可以抵抗500℃以上的高温,禁带宽度为1.7eV,当载流子的浓度到达大约1017/cm3的时候,载流子的迁移率可以达到5000cm3/ v.s[3],能够满足超高频大功率晶体的需要。
1.4 耐热的半导体材料
目前比较常见的材料主要有:氧化物、Ⅱ-Ⅵ族化合物、碳化硅和磷化镓等。但是只有碳化硅的整流器、碳化硅的二极管以及磷化镓的二极管能够真正做出器件。因为材料本身的治疗就比较差,所以做出的器件性能也不尽人意。所以,需要对耐高温半导体材料的应用进行更进一步的研究,满足器件的要求。
1.5 耐辐射的半导体材料
在原子能方面以及星际航行方面所使用的半导体电子器件,要有很强的耐辐照性。想要使半导体电子器件具有耐辐照的性能,就要求半导体所用的材料是耐辐照的。近几年来,有许多国家都对半导体材料与辐照之间的关系进行了研究,研究的材料通常都是硅和锗,但是硅和锗的耐辐射性能并不理想。据研究表明,碳化硅具有较好的耐辐照性,不过材料的掺杂元素不同,晶体生长的方式也就不一样,耐辐照的性能也就不尽相同[4],这个问题还需要进一步研究。
2 晶体生长技术
2.1 外延单晶薄膜生长的技术
近年来,固体组件发展非常迅速,材料外延的杂质控制是非常严格的,由于器件制造用光刻技术之后,对外延片的平整度要求也较高,在技术上还存在着许多不足。除了硅和锗的外延之外,单晶薄膜也逐渐开展起来。使用外延单晶制造的激光器,可以在室内的温度下相干,这对军用激光器的制造有着重要的意义。
2.2 片状晶体的制备
在1964年的国际半导体会议中,展出了锗的薄片单晶,这个单晶长为2米,宽为8至9毫米,厚为0.3至0.5毫米,每一米长内厚度的波动在100微米以内,单晶的表面非常光滑并且平整,位错的密度为零[5]。如果在制造晶体管的时候,使用这种单晶薄片,就可以免去切割、抛光等步骤,不仅能够减少材料的浪费,还可以提升晶体表面的完整程度,从而提高晶体管的性能,增加单晶的利用率。对费用的控制有重要的意义。
3 半导体材料的展望
3.1 元素半导体
到目前为止,硅、锗单晶制备都得到了很大程度的发展,晶体的均匀性和完整性也都达到了比较高的水平,在今后的发展过程中,要注意以下几点:①对晶体生长条件的控制要更加严格;②注重晶体生长的新形式;③对掺杂元素的种类进行扩展。晶体非常重要的一方面就是其完整性,晶体的完整性对器件有着较大的影响,切割、研磨等步骤会破坏晶体的完整度,经过腐蚀之后,平整度也会受到影响。片状单晶的完整度和平整度都要优于晶体,能够避免晶体的缺陷。使用片状单晶制造扩散器件,不仅能够改善器件的电学性能,还可以降低器件表面的漏电率,所以,要对片状单晶制备的研究进行加强。
3.2 化合物半导体
化合物半导体主要有砷化镓单晶和碳化硅单晶。通过几年的研究发展,砷化镓单晶在各个方面都得到了显著的提高,但是仍然与硅、锗有很大的差距,因此,在今后要将砷化镓质量的提升作为研究中重要的一点,主要的工作内容有:①改进单晶制备的技术,提高单晶的完整度和均匀度;②提高砷化镓的纯度;③提高晶体制备容器的纯度;④通过多种渠道对晶体生长和引入的缺陷进行研究;⑤分析杂质在砷化镓中的行为,对高阻砷化镓的来源进行研究[6]。对碳化硅单晶的研制则主要是在完整性、均匀性以及纯度等三个方面进行。
4 结论
半导体器件的性能直接受半导体材料的质量的影响,半导体材料也对半导体的研究工作有着重要的意义。想要提高半导体材料的质量,就要将工作的质量提高,提高超微量分析的水平,有利于元素纯度的提高,得到超纯的元素。要提高单晶制备所使用容器的纯度。还要对材料的性能以及制备方法加大研究,促进新材料的发展。半导体材料的发展也与材料的制备,也就是晶体生长技术有关。因此,在半导体材料的发展过程中,不仅要发展拥有特殊优越性能的品种,也要对晶体发展的新技术进行研究开发。
参考文献
[1] 李忠杰.中国化工新材料产业存在的问题分析与对策[J].中国新技术新产品. 2011(02):15-16
[2] 张方,赵立群.“石油和化学工业‘十二五’规划思路报告会”特别报导(三) 我国化工新材料发展形势分析[J].化学工业.2011(07):55-57
[3] 原磊,罗仲伟.中国化工新材料产业发展现状与对策[J].中国经贸导刊.2010(03):32-33
[4] 孙倩.面向“十二五”专家谈新材料产业未来发展方向――第三届国际化工新材料(成都)峰会引业内热议[J].新材料产业.2010(06):19-20
关键词:自动化测试仪表 可靠性 人机对话
中图分类号:TP21 文献标识码:A 文章编号:1672-3791(2013)01(c)-0000-01
科学技术的飞速发展促使社会意识形态发生转变,使得人们对生活的追求更加富有人文主义特色,社会各领域对环境的要求更加严格,对产品的现代化程度要求更高,其中节能减排战略促使新型能源产业风靡全球,带动了全球半导体技术的进一步发展,比如太阳能行业逐渐成为新时期的朝阳产业,该行业中对仪器仪表提出了新的要求。作为现代化仪器仪表的制造商,间接地为现代化科技的发展创造了基础科研平台,通过提供先进的仪表,可以提高用户的生产效率,提升产品质量,监控排放,为低碳经济做出更大的贡献。
1 半导体行业对自动化仪器仪表需求分析
1.1 自动化仪器仪表现状
全球科技创新的日新月异带动了我国制造业的飞速发展,进入新世纪以来,我国半导体行业对自动化仪表的需求明显加强,无论从技术特点还是市场数量上都呈现递增趋势,从技术含量上分析,我国科研、量产中所使用的自动化仪表已经处于世界领先水平。
上世纪初,国内仪器仪表稳步发展,主要源于工业半导体行业的需求增加,从技术层面上拉动了整个行业技术水平的提升,尤其在新产品开发上取得了显著成效,比如说拥有自主知识产权的电磁流量计、智能化电动机执行系统等。
1.2 半导体行业对自动化仪器仪表的需求分析
目前,我国半导体行业使用较多的仪器仪表主要是小型检测单元,比如在集成电路、液晶显示、半导体薄膜、太阳能电池制备等领域的使用较为频繁。自动化仪器仪表的使用往往依赖于半导体设备的发展程度,现阶段该行业中使用较多的是各种薄膜沉积系统、成分检测系统等,涵盖面较广的是PECVD(plasma enhanced chemical vapor deposition)、HWCVD(Hot wire chemical vapor deposition)、MOCVD(metal organic chemical vapor deposition)系统以及相关检测设备等。半导体设备中对压力计、传感器、流量计、温度计等元器件的使用较多,尤其在半导体行业制备薄膜材料的工艺中对以上元器件的要求相对较高。
(1)压力表
由于半导体技术具有相对较高的精密性,在半导体薄膜的制备工艺中,要求对工艺参数精确控制,反应腔室内部工艺气体的压力大小,成为该行业工艺技术中的核心参数。对工艺气体压力的检测通常采用压力计以及相关的各种真空检测设备。半导体设备的正常运行必须以厂务设施作为保证,包括水、电、气等条件,其中“水”主要用于设备冷却或者恒温加热,因此需要采用压力表对水压、CDA(condensed air)等进行严格控制方可保证工艺正常运行。
(2)流量计
流量计一般应用在化学沉积系统中,对气体流量起到监测、控制作用。对于半导体工艺来说,产品制备工艺参数是决定器件性能的关键因素,其中化学气相沉积系统中反应气体的流量对最终产品质量起到直接的决定性作用,对气体流量的控制不仅要体现动态时效性,更重要的是要在量的控制上具备较高的精确度,目前国内制备MFC的技术已相对成熟,为我国半导体行业的发展奠定了基础。
(3)传感器
传感器在现代工业时代的使用极为广泛,半导体设备中对传感器的使用大多体现在设备机械传动部分。在半导体产品制造中,要实现设备的流水线运行,离不开高可靠型的传感器元件,通过传感器协调不同工序、设备不同部位的联动,进而保证整个工艺的流水线运行。
(4)温度计
随着科学技术的发展和现代工业技术的进步,测温技术也不断地改进和提高,其中金属温度计是利用两种不同金属在温度改变时膨胀程度不同的原理工作的,在半导体紧密制造中通常用来检测液体、气体的温度,测试温度偏中低水平,适合工艺流程中在线、动态、实时监测。
半导体工艺中对金属温度及的使用大多是用来检测特殊反应气体的温度,由于普通加热器很难通过热电偶检测衬底温度,通常在反应腔室特殊部门安装金属温度计监测生长基元的温度,从测量精度和实际可操作性上提高了半导体工艺的可行性。
2 自动化仪器仪表在半导体行业的发展趋势
自动化测试仪表技术未来发展趋势主要体现在高智能化、高可靠性、高精密度、优良的响应性能等方面,半导体行业仪器仪表技术主要针对具体应用特性而体现出以下几个发展方向:
2.1 人机对话智能化发展
人机对话技术是自动化仪器仪表发展的核心方向,也是未来信息化社会的主流技术,半导体行业对仪器仪表的使用目的是为了便于更好的控制工艺流程,提高对设备的可控性,如果自动化测试仪表具有强大的人机对话特性,能够快速、准确的体现设备运行状态,在半导体制造工业中无疑起到了举足轻重的作用。自动化仪表的人机对话性能是通过设备控制端和仪器之间的对话界面实现,通过人类可以识别的界面端口,读取仪表对设备状态的检测数据,从而对工艺过程起到指导作用。
2.2 集成技术的标准化发展
自动化仪表的应用直接依赖于其能否与其他设备形成对话流畅的有机整体,随着人类科学技术的不断进步,半导体行业对自动化仪表的使用需求逐渐增多,不同设备具有不同的逻辑控制系统,如何将自动化测试仪表的接口、通信、软件控制单元和半导体设备逻辑控制语言相融合成为该行业技术发展的瓶颈,如果实现测试仪表在不同半导体设备上的集成标准化,将大幅度提升自动化测试技术的进步。
2.3 可靠性技术的提高
自动化仪表在工业生产中起到“中枢神经”的作用,对其可靠性不容忽视,尤其对于大型复杂的工业系统中,自动化仪器的可靠性关系到整个企业、乃至行业的发展命脉。对于半导体企业检测与过程控制仪表,大部分安装在工艺管道、工序过渡段,甚至多数环境存在有毒、易燃、易爆等特种气体,这些特殊环境对自动化仪表的维护增加了很多困难。因此,在使用特种气体的半导体行业中对自动化检测仪表的可靠性具有较高的要求,尽可能降低其维修频率,为工业安全生产提供必要保证。
3 结语
当今世界已经进入信息时代,自动化技术成为推动科学技术和国民经济高速发展的关键因素,其中自动化测试仪表作为科研、工业化生产的基础硬件设施而不断发展成熟,在半导体行业中的应用逐渐广泛深入。随着行业科研水平的提高,对自动化仪器仪表有了更好的要求,可靠性、集成技术、智能对话特性成为自动化测试技术发展的首要任务,对自动化测试技术以及测试仪表的使用起到举足轻重的作用。
参考文献
关键词:半导体有机半导体电学性能
一、从有机半导体到无机半导体的探索
1.1有机半导体的概念及其研究历程
什么叫有机半导体呢?众所周知,半导体材料是导电能力介于导体和绝缘体之间的一类材料,这类材料具有独特的功能特性。以硅、锗、砷化嫁、氮化嫁等为代表的半导体材料已经广泛应用于电子元件、高密度信息存储、光电器件等领域。随着人们对物质世界认识的逐步深入,一批具有半导体特性的有机功能材料被开发出来了,并且正尝试应用于传统半导体材料的领域。
在1574年,人们就开始了半导体器件的研究。然而,一直到1947年朗讯(Lueent)科技公司所属贝尔实验室的一个研究小组发明了双极晶体管后,半导体器件物理的研究才有了根本性的突破,从此拉开了人类社会步入电子时代的序幕。在发明晶体管之后,随着硅平面工艺的进步和集成电路的发明,从小规模、中规模集成电路到大规模、超大规模集成电路不断发展,出现了今天这样的以微电子技术为基础的电子信息技术与产业,所以晶体管及其相关的半导体器件成了当今全球市场份额最大的电子工业基础。,半导体在当今社会拥着卓越的地位,而无机半导体又是是半导体家族的重中之重。
1.2有机半导体同无机半导体的区别及其优点
与无机半导体相比,有点半导体具有一定的自身独特性,表现在:
(l)、有机半导体的成膜技术更多、更新,如真空蒸镀,溶液甩膜,Langmtrir一Blodgett(LB)技术,分子自组装技术,从而使制作工艺简单、多样、成本低。利用有机薄膜大规模制备技术,可以制备大面积的器件。
(2)、器件的尺寸能做得更小(分子尺度),集成度更高。分子尺度的减小和集成度的提高意味着操作功率的减小以及运算速度的提高。
(3)、以有机聚合物制成的场效应器件,其电性能可通过对有机分子结构进行适当的修饰(在分子链上接上或截去适当的原子和基团)而得到满意的结果。同时,通过化学或电化学掺杂,有机聚合物的电导率能够在绝缘体(电阻率一10一Qcm)到良导体这样一个很宽的范围内变动。因此,通过掺杂或修饰技术,可以获得理想的导电聚合物。
(4)、有机物易于获得,有机场效应器件的制作工艺也更为简单,它并不要求严格地控制气氛条件和苛刻的纯度要求,因而能有效地降低器件的成本。
(5)、全部由有机材料制备的所谓“全有机”的场效应器件呈现出非常好的柔韧性,而且质量轻。
(6)通过对有机分子结构进行适当的修饰,可以得到不同性能的材料,因此通过对有机半导体材料进行改性就能够使器件的电学性能达到理想的结果。
1.3有机半导体材料分类
有机半导体层是有机半导体器件中最重要的功能层,对于器件的性能起主导作用。所以,有机半导体器件对所用有机半导体材料有两点要求:
(l)、高迁移率;(2)、低本征电导率。
高的迁移率是为了保证器件的开关速度,低的本征电导率是为了尽可能地降低器件的漏电流,从而提高器件的开关比。用作有机半导体器件的有机半导体材料按不同的化学和物理性质主要分为三类:一是高分子聚合物,如烷基取代的聚噬吩;二是低聚物,如咪嗯齐聚物和噬吩齐聚物;三是有机小分子化合物,如并苯类,C6。,金属酞著化合物,蔡,花,电荷转移盐等。
二、制作有机半导体器件的常用技术
有机半导体性能的好坏多数决定于半导体制作过程因此实验制备技术就显得尤为重要。下面将对一些人们常用器件制备的实验技术做简要的介绍:
(1)、真空技术。它是目前制备有机半导体器件最普遍采用的方法之一,主要包括真空镀膜、溅射和有机分子束外延生长(OMBE)技术。
(2)、溶液处理成膜技术。它被认为是制备有机半导体器件最有发展潜力的技术,适用于可溶性的有机半导体材料。常用的溶液处理成膜技术主要包括电化学沉积技术、甩膜技术、铸膜技术、预聚物转化技术、分子自组装技术、印刷技术等。
三、有机半导体器件的场效应现象
为了便于说明有机半导体器件的场效应现象,本文结合有机极性材料制作有机半导体器件对薄膜态有机场效应进行分析。试验中,将有机极性材料经过真空热蒸镀提纯之后溶在DMF溶液中,浓度是20Omg/ml,使用超声波清洗机促进它们充分并且均匀的溶解,经过真空系统中沉积黄金薄膜作为器件的源极和漏极。在类似条件下,在玻璃衬底上制作了极性材料的薄膜形态晶粒,研究发现:
在有机极性材料形态,有块状、树枝状和针状。不同的薄膜态形态,在不同栅极电压VG的作用下有不同的Ids(流过器件的源极和漏极的电流)一Vds(加在器件的源极和漏极之间的电压)曲线。
1、块状形貌结构的薄膜态有机器件的Ids-Vds(性能曲线,变化范围是从-150V到15OV、栅极电压的变化范围是从-200V到200V。当栅极电压Vg以100V的间隔从-200V变化到200V时,Ids随着Vds的增加而增加,此时没有场效应现象。
2、针状形貌结构的薄膜态有机器件的Ids-Vds性能曲线,当Vds从-75V增加到75V,栅极电压VG的变化范围是一200V~20OV,递增幅度是5OV。此时器件具有三种性能规律:(1)在固定的栅极电压Vg下,当从Vds-75V增加到75V时,电流Ids也随之增加;(2)在固定的外加电压Vds下,当栅极电压Vg从-2O0V增加到2OOV时,电流Ids也随之增加;(3)如果没有对器件施加Vds电压,只要栅极电压Vds存在,就会产生Ids电流,产生电池效应。
通过上述的解说我们对有机半导体器件的电学性能已有一定的了解了。下面我们即将通过试验来揭开其神秘的面纱。
四、有机半导体的光电性能探讨——以纳米ZnO线(棒)的光电性能研究为例
近年来,纳米硅的研究引起了社会的广泛的关注,本文中我们将采用场发射系统,测试利用水热法制备的硅基阵列化氧化锌纳米丝的场发射性能。图11是直径为30和100nm两个氧化锌阵列的场发射性能图,其中图11a和b分别是上述两个样品的I_V图和F_N图。从图11a中可以看出氧化锌纳米丝的直径对场发射性能有很大的影响,直径为30nm的氧化锌阵列的开启场强为2V/μm门槛场强为5V/μm;而直径为100nm的氧化锌阵列的开启场强为3V/μm,门槛场强大于7V/μm。并且从图11b中可以知道,ln(J/E2)和1/E的关系近似成线性关系,可知阴极的电子发射与F_N模型吻合很好,表明其发射为场发射,其性能比文献报道的用热蒸发制备的阵列化氧化锌的场发射性能要好[25]。这主要是由于氧化锌的二次生长,导致所得氧化锌阵列由上下两层组成,具有较高的密度以及较小的直径,在电场的作用下,更多的电子更容易从尖端的氧化锌纳米丝发射,从而降低了它们的开启场强和门槛场强。
我们测试了硅基阵列化纳米ZnO的光致荧光谱,如图12所示。从图中可知,600~700℃和300~400℃下热蒸发合成的阵列化ZnO纳米丝的峰位分别在393nm(虚线)及396nm(实线)。PL谱上强烈的紫外光的峰证明:合成的ZnO纳米丝有较好的结晶性能和较少的氧空位缺陷。由于在高温区合成的纳米丝有较细的尖端,故有少量蓝移。
通过上述针对纳米ZnO线(棒)的试验,我们能对硅基一维纳米的电学性能进行了初步的探讨。相信这些工作将为今后的硅基一维纳米材料在光电方面的应用提供一个良好的基础。
参考文献
[1]DuanXF,HuangY,CuiY,etal.Indiumphos-phidenanowiresasbuildingblocksfornanoscaleelectronicandoptoelectronicdevices.Nature,2001.
[2]WangJF,GudiksenMS,DuanXF,etal.HighlypolarizedphotoluminescenceandphotodetectionfromsingleIndiumPhosphideNanowires.Science,2001.