时间:2023-11-10 10:14:24
序论:在您撰写生物油燃料优势和缺点时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
调查显示,每百万人口的县市每年消耗柴油为8000吨、液化气6000吨,为了缓解柴油供应紧张和环境污染等问题,2007年10月由能源部、环境总局联合下发文件,未来几年将全面禁止柴油进入厨房,目前已有部分城市实现。同时还禁止许多城市中小餐馆烧煤。国家环保政策的大力支持,燃油供应的紧张局势加上庞大的市场需求,为投资清洁燃料项目提供了一个千载难逢的商机。
生物醇油是一种无毒、无残液、无积碳,安全又经济的新型燃料。国家农业部环保能源司、国家计委交通能源司、国家经贸委资源节约综合利用司联合发文(环保管[1997]30号文)要求各地推广使用。
由西安老科协自主开发的生物醇油现已大量投放市场,建立了大型生产基地,具备批量生产能力;并在市场竞争中取得了很好的经济效益。生物醇油可替代柴油、液化气用于宾馆、酒店、大排档、学校、工厂等企事业单位的食堂,还可用于其他工业用途,如部分工业窑炉或锅炉等。
西安老科协还成功开发出生物醇油酒店大灶、中小餐厅猛火灶、家用气化灶、火锅灶等系列产品。最新开发的醇煤气化炉,可以适用于烧煤的小餐馆及广泛使用蜂窝煤的家庭,其火力强劲,节能效果显著,无需风机,使用方便,可以替代石油液化气用于千家万户。
生物醇油燃烧值与液化气相当,是石油液化气及燃料柴油的首要替代燃料,属国家鼓励发展的生物质清洁能源。成本目前仅为石油液化气或柴油批发价格的三分之一左右,利润空间巨大,具备极高的投资价值。
西安老科协开发的生物醇油具备其它同类产品所不具备的优势:①技术系列化,可以适应不同市场条件的需求;②独创核心乳化剂配方解决了传统醇基燃料热值低,耗量大易挥发、不安全的问题;③工艺简单,投资更省。
西安老科协开发的生物醇油、甲醇柴油、车用甲醇汽油,现已全面上市,开创了可再生能源的新纪元!
最新开发的柴草气化炉系列专利产品,技术全面升级,无焦油无风机准气化可烧大料湿料。克服了原气化炉对燃料要求苛刻、焦油含量大、烟气排放超标、需使用风机等缺点。操作简单,热效率高达50%以上,火力超强相当于3000瓦电炉,可适用于炊事沐浴和取暖。
西安老科协专利技术开发中心
网址:西安市雁塔路99号北四楼(省科技大院)
电话:029-85525023 85538190
动植物油脂的主要成分是甘油三酸酯,通过酯交换法制备的脂肪酸单烷基酯,工业上应用主要是脂肪酸甲酯,俗称为第一代生物柴油。生物柴油是指天然油脂制备的柴油,也可以是其他柴油,若以动植物油脂为原料通过加氢裂解工艺生产非脂肪酸甲酯生物柴油,称为第二代生物柴油。若以脂肪酸甲酯为代表的生物柴油需达到“GB/T20828-2007柴油机燃料调合用生物柴油(BD100)”标准指标;若是非脂肪酸甲酯生物柴油需达到石化柴油相应的《轻柴油》(GB252-2000)技术要求指标。
一、第一代生物柴油发展现状及酯交换法工艺存在的问题
各种动植物油、草本植物油、木本植物油、动物油、废弃油脂(如地沟油、泔水油)、藻油等都可用来加工生物柴油。
生产生物柴油主要采用动植物脂类的可再生资源,能够通过各种催化和化学方法转化为适宜碳链长度的可再生液体燃料。目前利用油脂制备液体燃料的主要方法是酯交换法,经过多年的发展,酯交换法已形成比较完备的技术体系,在欧美国家主要以大豆油、菜籽油生产生物柴油,生产工艺相对成熟,产品质量稳定,已部分进入石油市场弥补石化柴油的不足。
我国不同于欧美国家,我国人多地少的国情,决定了生物柴油原料的发展应遵循“不与人争粮,不与粮争地”的原则,利用非粮作物和林木质物质生产生物质液体燃料。近期主要利用回收的废油脂生产生物柴油,目前已经形成产业,我国每年产废油脂的数量是巨大的,利用大中城市回收的废油及餐饮废油制备生物柴油,以此废油作原料可以降低生物柴油生产成本;又是综合利用工业废油及其他废油,使废物资源达到经济与环保的目的。
发展生物柴油产业可以增加一条由可再生资源生产清洁柴油的渠道,但是其瓶颈问题是产品的质量和价格,不能参与石油市场竞争,与石化柴油缺乏竞争力。所以积极开发降低生产成本,提高油品品质的研究,采用廉价的原料,通过技术创新、生产工艺进一步优化、改进、提高产物综合利用值,以获取低成本、高质量的生物柴油,是我国生物柴油生产技术的发展趋势。生物柴油生产工艺及采用原料可导致生物柴油生产成本有较大差异,在一定程度上限制了生物柴油技术的推广及应用,因此在制备工艺及配套装置上,着重研究适合各种不同的原料,特别是对于游离脂肪酸含量较高的油脂,如各种餐饮废油、地沟油、酸化油等,不能直接通过酯交换反应制备生物柴油而开发出比较适宜的技术先进适用和经济有利合理的工艺路线,不但能够增加新建生物柴油企业的经济效益,还能够推动生物柴油产业的大力发展,普及应用。
目前动植物油脂通过酯交换法制备的脂肪酸甲酯,即第一代生物柴油存有原料利用品种单一、工艺复杂、设备繁多、反应过程使用过量甲醇,后续工艺必须有相应的甲醇回收装置;能耗高、色泽深;油脂原料中的游离脂肪酸及水严重影响生物柴油的收率及品质;油脂中的不饱和脂肪酸在高温下容易变质,酯化产物难以回收;成本高,生产过程有废碱液、废酸液排放造成环境二次污染等问题。常规工艺制备的脂肪酸甲酯,由于自身性质决定的缺陷在实际应用中还存在一定的问题:如①低温流动性差,冷凝、冷滤点较高,不能在气候寒冷地区及冬季使用;②分子结构中含有氧官能团造成热值较低,通常比石化柴油低9%13%;③黏度较高,为5-10mm/s-1,在柴油中输送困难,使其供油不充分;④密度较高,为0.87-0.90cm3/g,易造成不完全燃烧;⑤储存稳定性差,容易发生氧化变质等问题。又因动植物油脂资源少、价格高,制约了生物柴油的实际应用及产业化的大力发展。
天津市迪创生物能源科技有限公司研发的“环保型提炼清洁液体燃料真空催化改质装置”是具有自主知识产权的生产第二代生物柴油的技术装置,解决了上述的这些问题。
二、第二代生物柴油转化机理
从总体来看,通过第一代酯交换工艺生产的脂肪酸甲酯,其对原料油品的要求较高,同时副产甘油,加大了产品分离的提纯难度,增加了生产成本,又由于第一代生物柴油在使用过程中的弊端,研究者们通过第一代生物柴油进行加氢脱氧,异构化反应,得到类似柴油的烷烃,形成了第二代生物柴油。与第一代生物柴油相比,第二代生物柴油具有优异的调和性质和低温流动性等特点,适用范围更广泛。国外已开始逐渐进入工业应用阶段,为生产超清洁柴油奠定了基础。在我国只停留在试验研究阶段,迄今为止还尚未有进入工业化生产的企业,第二代生物柴油是未来生物柴油的主要发展方向。
动植物油脂作为可再生资源,由于其结构特点中含有与柴油相似的脂肪酸长碳链,使其作为石油资源的替代品成为可能。
废油脂的主要成分还是动植物油的成分,动植物油中所含的脂肪酸(无论是饱和或不饱和)绝大部分为偶碳直链的,主要脂肪酸有C12、C14、C16、C18、C20和C22等几种,其他的脂肪酸含量很少,这些脂肪酸链长度与柴油碳数非常接近,这也是作为生物柴油的重要依据,而长碳链在高温条件下会发生分解、断链、产生小分子烃类。动植物油脂通过热裂解、催化裂解和催化加氢可得到烃类产物,能有效地利用油脂结构的特点,作为石化原料的补充,生产小分子的烃类等有机化工原料,或转化为新型燃料——生物柴油。这为废弃油脂的资源化利用又开拓了新的途径。
催化加氢裂解的过程是石油化工行业常用的工艺过程,对提高原料的加工深度,合理利用石油资源、改善油品质量,提高轻油收率等具有重要意义。第二代生物柴油利用催化裂解技术进行加氢处理,从而得到与柴油相似的烷烃。
动植物油脂的主要成分是脂肪酸甘油酯,在催化加氢条件下,甘油三酯、单甘酯及羧酸在内的中间产物,经加氢脱羧基、加氢脱羰基、加氢脱氧反应生成正构烷烃的最终产物是C12-C24正构烷烃,副产包括丙烷、水和CO、CO2。由于正构烷烃的熔点较高,使得所制备的生物柴油的浊点偏高,低温流动性差,再通过加氢异构化反应,将部分或全部正构烷烃转化为异构烷烃,从而提高其低温使用性能。
催化加氢裂解是指在高温、高压、有氢气存在的条件下进行加氢裂化,催化加氢裂解能够得到高品质的燃料油,其燃油性能甚至超过常规的石化柴油,但是加氢过程使用高热值氢气,自身就是高热值燃料,将其转化不可燃烧的水,不仅操作成本高,也是一种资源的浪费。目前在我国经济上可行制备生物柴油的主要原料是高酸价油脂、废弃动植物油脂,分布相对分散,原材料集中相对困难,而且设备投资大,比较适宜石化炼油企业大规模生产。因此该法在我国近期还不太适用,高温、高压、催化剂昂贵,不适宜中小型规模的企业采用。
三、供氢催化裂解改质工艺生产第二代生物柴油技术的先进性
催化加氢裂解是一种有应用前景的油脂转化燃料油技术,即生产第二代生物柴油的技术。是将生物油脂通过供氢催化裂解改质制备生物液体清洁燃料,是开发生物柴油替代燃料的又一条途径,是一种新能源的生产方式,与目前第一代生物柴油的酯交换法制备工艺相比较有其独有的优势。
根据中华人民共和国第200920151218.8专利,名称“环保型提炼清洁液体燃料真空催化改质装置”的实用新型专利技术,授权公告日:2010年1月27日,生产第二代生物柴油。该项专利技术被国家知识产权局评为“2011年度10项优秀专利”。
该装置是应用第二代生物柴油的转化技术提高油品质量的装置,克服了第一代生物柴油现有技术存在的生产成本高、工艺过程复杂,对环境造成二次污染的缺点;又因动植物油资源少、价格高,制约生物柴油的实际应用及产业化的大力发展。而第二代生物柴油研究的重点是扩大油脂资源和其他可利用资源的应用范围,根据原料的性质,提炼清洁液体燃料真空催化改质的转化方法和提高生物柴油油品品质的技术。
该装置是采用先进的催化裂解技术,将裂解釜中液相悬浮床流态化与精馏塔固定床催化改质提炼燃油耦合同一装置体系,将二步联产法工艺改为一步分流法,简化工艺流程,减少中间环节,有利于节能和节省设备投资;采用催化裂解、改性提质、技术先进适用,经济有利合理,从而获得符合国标的高品质清洁液体燃料。催化加氢脱氧,降低生物柴油的氧含量,提高其能量密度;加氢异构化,提高油品低温性能,同时保持高十六烷值、辛烷值,避免了传统工艺酯交换法的缺点。
采用供氢催化裂解改质是运用本装置的核心技术,是第二代生物柴油新的一种转化方式。本项目的供氢催化裂解技术不同于高温热裂解、催化裂解和催化加氢,有自己独有的优势。其特点是:在废油脂中加入一定量的具有供氢效果的化合物,也能起到氢气存在的同样效果,这些化合物能在热反应过程中提供活性氢自由基,有目的地抑制自由基缩合,从而提高裂化反应的苛刻度,增加中间馏分油产量。供氢催化裂解是在常规裂化工艺基础上加入具有供氢效果的溶剂,使反应过程中液体供氢剂释放出的活性氢与生物油脂热解过程中产生的自由基结合生成稳定具有协同效应的低分子,从而抑制自由基的缩合,可提高热裂解反应的速率,防止结焦,增加轻馏分汽油和中间柴油馏分的收率。
塑料是碳氢化合物,塑料裂解油中含有大量氢原子,H/C原子比相对较高,加热时挥发分也比较高,为了获得廉价的氢气,废塑油、橡胶油与废油脂加热共熔裂解,富有优势互补的协同效应,富含氢的塑胶中含氢基团在反应过程中会向动植物油裂解产物进行加氢转移,塑胶裂解油在油脂裂解中起着供氢作用,是主要的供氢者,油脂中的含氧化合物最容易加氢脱氧,很快反应生成烃和水,同时伴随脱羧基、脱羰基、异构化反应实现加氢裂解,使动植物油裂解为柴油,少量汽油馏分,具有很高的十六烷值、辛烷值和较低的硫含量和芳烃,可单独使用或与柴油任一比例掺合使用,是一种优质的石化燃料的替代品。该技术已在天津中试装置进行中试,其产品能达到国标要求指标,技术成熟。由于利用垃圾中的废料为原料,原料易得且价廉,既减少对环境的污染,又能获得可利用的丰富资源,生产成本较低,有巨大的经济效益和环境效益,目前在石油燃料市场竞争中有很强的竞争力。
供氢催化裂解工艺与酯交换工艺技术对比其先进性是:
1 用于制备生物柴油的原料:酯交换工艺对其原料中游离脂肪酸的质量分数要求最为苛刻,无论任何油脂都要进行脱酸、脱胶处理;供氢催化裂解工艺对原料中的游离脂肪酸要求最低,大部分油脂不需要脱酸、脱胶就可作原料使用,从而减少了脱酸、脱胶质对油的损耗,扩大了对原料的使用范围,更加适合我国生物柴油原料来源广、适用性强、性质不稳定和游离脂肪酸质量分数高的现状。该法具有很好的工业前景。
2 酯交换工艺合成的脂肪酸甲酯中含有氧和各种杂质,同时由于脂肪酸甲酯在化学组成方面不同于石化柴油,不能长期储存,在其与油接触时会使油污染,酯交换工艺合成的脂肪酸甲酯虽然低硫、低芳烃,符合其清洁柴油发展方向,但其比重大、热值低、稳定性差,不能扩大柴油产量和清洁油品升级换代,只能低比例与石化柴油混合使用,从而限制在石化柴油中的大量应用;而供氢催化裂解工艺制备的生物柴油低硫、低芳烃,符合清洁柴油发展方向,同时产品的比重小、热值高、稳定性好、低温性能好,可适应多种环境条件,全年都可使用,即使在-20摄氏度以下气温极低地区也能够使用。因此,供氢催化裂解工艺不仅成为生物柴油发展的主要方向,而且也是为将来石化柴油提供升级换代的途径。
3 供氢催化裂解法与酯交换法制备生物柴油相比,催化裂解的产物组成发生了根本变化,通常得到的是烷烃、烯烃、羰基化合物、脂肪酸的混合物,由于这些化合物的物化性质与柴油十分接近,发热值、黏度、密度、闪点、馏程等主要指标都能达到国标无铅汽油和轻柴油相应的指标要求。
4 供氢催化裂解工艺不需要对原料进行脱酸、脱胶质等预处理步骤,没有副产物甘油和甲醇回收的问题,只存在裂化一道工序,工艺设备简单,生产用工、设备投入、原材料成本大为减少,在生产成本和燃油性能上占有优势,在现有技术及目前石油市场竞争中,在没有国家政府现行政策资金补贴的情况下仍具有很强的竞争力。
5 采用悬浮床流态化反应器、固定床塔式反应器、隔板节能精馏塔、管式加热炉及自动排渣装置系统连续化生产,副产品回收利用,无“三废”污染物排放,是一种清洁生产工艺。
四、第二代生物柴油发展前景
生物柴油作为一种可再生与环境友好的清洁燃料,将成为石油燃料油的理想替代能源。目前使用的生物柴油是常规酯交换法制备的第一代生物柴油,即以油料作物、油料植物和工程微藻等水生植物油脂、动物油脂及餐饮地沟油等为原料通过酯交换工艺生产脂肪酸甲酯(FAME),生产过程中同时副产甘油。这一技术比较成熟,已部分进入市场弥补石化柴油的不足。在第一代生物柴油的基础上,第二代生物柴油是以动植物油脂为原料通过催化加氢裂解工艺生产的非脂肪酸甲酯生物柴油。与第一代生物柴油相比,第二代生物柴油具有优异的调和性质和低温流动性能等优点,明显优于第一代脂肪酸甲酯,适用范围更加广泛,是未来生物柴油的主要发展方向。目前国外第二代生物柴油已经进入工业生产和应用阶段,为生产超低硫清洁柴油奠定基础。从目前来看,植物油作为石油替代资源的成本较高,因此植物油的开发利用受到制约。但是从长远来看,由于石油资源不断减少以及日益严格的环保要求,开发可再生的绿色替代能源是必然趋势。我国每年的废食用油和其他碳氢废油的资源十分丰富,这也比大豆油、菜籽油便宜很多,利用废弃动植物油脂和碳氢废油生产第二代生物柴油,清洁汽油,认真提高废油资源的综合利用,符合循环经济发展思路,不仅对于缓解燃油的紧缺局面起到了一定的补充作用,而且对于新增企业经济效益和环境效益将是巨大的。
据测算,该项目投资500万元即可投产。按全年生产生物柴油产品10000吨,所需原料为12500吨,料油市场价格按其平均价格4800元/吨计算,年净利润总额可达1211.90万元,投资利税率可达21.78%,投资回收期为半年。另外,本项目有较强的抗风险能力。正常生产年份以生产能力利用率表示的盈亏平衡点为12.86%。计算表明,当项目正常生产年份的生产能力利用率达12.86%时,可不亏不盈,即当年生产第二代生物柴油1286吨,即可保本。发明人冯善茂表示,他本人以及他所在单位愿意向广大企业和个人提供技术合作与咨询。
五、联手共创,打造生物柴油低碳时代
第二代生物柴油的发明人冯善茂及他的研发单位天津市迪创生物能源科技有限公司是拥有可再生生物质能源自主知识产权的科技型企业,从20世纪90年代初就从事可再生能源生物液体燃料的研究,不用国家一分钱,将自己的经济收入全部投入到科学研究工作中,在坚持不懈的努力下,取得多项发明成果,在生物液体燃料中相继发明了①“环保型生产生物柴油的酯化装置”(ZL200620149130.2)、②“节能环保型生物柴油粗酯精制装置”(ZL200820136768.1)、③“环保型提炼清洁液体燃料真空催化改酯装置”(ZL200920151215.8)等,其中①、②两项专利技术在2009年第9届香港国际专利发明博览会上均荣获发明金奖;“节能环保型生物柴油粗酯精制装置”的学术论文(成果)在2010年国际交流评选活动中被评为“世界重大学术思想特等奖”;“环保型提炼清洁液体燃料真空催化改酯装置”(ZL200920151215.8),该项专利技术被国家知识产权局评为“2011年度10项优秀专利”。上述3项专利是针对现有技术存在的不足,并根据国内、国外比较成熟的工艺,经过多年的科学研究与实验而研制开发出具有节能环保、产业延伸、生产链接的生物柴油配套技术与装置。根据当前我国能源的紧缺状况,燃料油品的市场需求及用户生产者的要求,生物柴油升级换代的第二代生物柴油应运而生,为了使生物柴油新兴产业持续发展,实施产、学、研结合,天津市迪创生物能源科技有限公司与山东潍坊春泉环保设备有限公司已签订长期合作合同,建立“资源综合利用科研实验基地”,加快生物质燃料的研发与设备开发,加快适用技术的专利转化,使生物柴油新兴产业健康稳步发展。充分发挥山东潍坊春泉环保设备有限公司制造压力容器与设备的专有技术与优势,专业生产生物柴油与生物质炼化的专用设备。中国首套第二代生物柴油的全整套的中试炼化设备,在山东潍坊春泉环保设备有限公司投资、加工落成,已于今年5月试车投产,这标志我国第二代生物柴油生产技术开发成功,首套装置在山东落成投产。
该装置,采用供氢催化、裂解改质生产低凝生物柴油的工艺,装置适用范围广泛,既可用植物油、动物油又可用废弃油脂、废机油、废塑料油及石化炼厂的废料,经过裂解改质后都可转化为替代石油的燃料油品。
能源是人类社会赖以生存和发展的重要物质基础。纵观人类社会发展的历史,人类文明的每一次重大进步都伴随着能源的改进和更替。在过去100多年里,发达国家先后完成了工业化,消耗了地球上大量的自然资源,特别是能源资源。当前,一些发展中国家正在步入工业化阶段,能源消费增加是经济社会发展的客观必然。可以说能源的开发利用极大地推进了世界经济和人类社会的发展。中国是当今世界上最大的发展中国家,发展经济,摆脱贫困,是中国政府和人民在相当长一段时期内的主要任务。改革开放以来,中国成为世界上发展最快的发展中国家,经济社会发展取得了举世瞩目的辉煌成就,为世界的发展和繁荣作出重大贡献的同时,也消耗了大量的能源。资源的节约、集约、循环利用,仍是今后乃至更长一个时期在能源利用方面一个重要的方向。21世纪能源发展的一个重要趋势是多类能源转换系统的集成,将是物理能、化学能、生物能以及物理、化学、生物的优化梯级利用。
地沟油,这个长期伴随着人们生产、生活而存在的产物,却因为受再利用技术条件的限制被“忽略”了很多年,甚至回流到餐桌,侵害着我们的健康。在西方及个别发达国家,地沟油的安全利用早已超越“流向餐桌”的价值,在美国、加拿大、德国、英国、新西兰、日本等国,地沟油被制作为生物柴油、肥料等工业和农业生产的原料已屡见不鲜;而在我国,地沟油“利用”尚未大规模展开,以至于给了一些不法分子可乘之机。
随着科技的不断发展和相关领域专家的持续探索,地沟油高效利用的诸多技术难点已在实验室攻破。2013年8月1日,上海市食品安全委员会办公室、市绿化和市容管理局、同济大学汽车学院、市食品安全工作联合会、上海市华谊集团技术研究院和上海中器环保科技有限公司在同济大学新能源汽车工程中心举行了“上海市餐厨废弃油脂循环利用合作协议签署仪式”,“协议”中地沟油将成为沪上公交车的辅助能源,到2014年,上海将有1000辆公交车开始应用含有餐厨废弃油的生物柴油。而在此之前,昆明红火科技公司法人代表刘一江(发明人)与昆明理工大学退休教授董天敏经过多年的潜心研究,已经通过专利技术将地沟油开发制造成不同用途的生物醇油并由昆明红火科技有限公司进行推广。目前,红火科技公司利用高科技、微生物技术将地沟油开发成4个系列产品:1号产品用于家庭、饭店的取暖、照明等(400—1200度),2号产品用于柴油机发电、抽水等,3号产品用于中小形工业锅炉的燃烧(800—1300度),4号产品用于各种柴油机车辆,比如小汽车、大客车、货车、农用车、工程机械等。
昆明红火科技公司负责人刘一江介绍说,以甲醇、地沟油为原料研发的生物醇油系列产品全部通过了国家检测,而且利用目前国际先进技术,还解决了其它燃料的诸多缺点,比如煤炭的烟尘、柴油的异味、液化气的易爆和毒性、天然气及管道煤气的管道设施和毒性、汽油的烷烃、烯烃、硫化物的污染。最引人注目的是,除了没有以上这些传统燃料的各种缺点外,用地沟油制造的生物醇油较传统燃料还可节约30%—50%的燃料资金。发明人刘一江说,用地沟油生产的生物醇油具有性能稳定、不易挥发、无压力、不爆炸、无毒性、无烟尘、不腐蚀、不氧化、不放射、成本低、应用广泛、使用便捷、不受管道限制等等优点,不仅对人畜、农作物及柴油机零部件无腐蚀和影响,而且在生产过程中无“三废”排放,不会形成二次污染。该生产技术整合了物理、化学、生物、纳米等技术,是多领域的高新技术的科学组合,并非单一的物理勾兑或化学合成。
我国地沟油资源丰富,据不完全统计,每年我国消费的动、植物油总量大约3000万吨左右,而地沟油产量约为动、植物油消费总量的30%,由此推算,可利用的地沟油将不低于1000万吨,总量相当惊人。科学的利用地沟油,不但可以防止废弃食用油脂返回餐桌,还可缓解能源危机、解决环境污染等社会问题。所以,开拓地沟油回收再利用渠道,使地沟油变成有价值的工业资源是百利而无害的朝阳产业。目前虽然从技术上实现了地沟油的工业利用,但因各种原因,这一产业也受到诸多因素的困扰:一是随着各地地沟油再加工项目建设的兴起,对地沟油的需求也不断增大,地沟油收购价不断上涨,导致相关企业利润微薄,从事该行业的企业积极性锐减。二是国家对生物柴油生产企业的税费扶持政策和力度远远不足,相关企业仅靠生产生物柴油难以为继。三是目前我国还没有建立规范的废弃油脂收集、流通、管理体系,不少餐饮企业为了牟利,把泔水卖给非法加工商,而正规油化企业收不到地沟油的现象依然存在。要解决好这些问题,则需要国家进一步明确配套政策,在规范地沟油流通环节管理的同时,加大对违法使用地沟油的惩处力度,另外,辅以对合法企业的财政补贴和鼓励市场使用地沟油工业产品,从多方面入手,彻底解决好地沟油的再利用问题。
由于石油能源资源有限,随着世界工业的快速发展,能源消耗急剧增长,导致石油价格不断上涨、全世界都面临着能源安全的问题。石油能源按目前的使用和开采速度,50年内世界石油资源将有可能耗尽。同时,随着现代社会人们环境保护意识的不断增强,人们逐渐认识到汽车尾气排放所造成的空气污染是造成城市“光化学烟雾”污染频繁出现以及现代人类许多重大疾病的主要原因。因此,寻求资源丰富、环境友好和经济可行的大宗代用燃料已成为人类亟待解决的重大问题。
目前,已经开发的代用燃料可分为非含氧代用燃料和含氧代用燃料两大类,前者如天然气、液化石油气及氢能源等,后者包括二甲醚、醇类燃料及生物燃料等。这些燃料中,虽然天然气、液化石油气、氢均早已投入使用,但由于使用机械的内部构造以及燃料的补给及贮存等方面的问题,使得它们的应用范围受到很大的限制;二甲醚作为汽油的替代品,可以由一碳原料(如甲醇)直接合成,是一种很有发展前途的产品;醇类燃料如乙醇等也主要用作汽油的替代品种而使用,但成本较高;生物燃料主要用作柴油的替代品。
生物燃料主要是指由植物中获取的燃料,还包括从其他可再生资源如动物脂肪和已经使用过的油和脂肪中提炼获取的燃料。其中植物油分子一般由14—18个碳的链组成,与柴油分子的组成相似。植物油的性质与普通柴油相当接近,尤其是植物油的有些性质如冷滤点、闪点、十六烷值、硫含量、氧含量及生物可降解性等都优于普通柴油。植物油的含氧为10%—11%,尾气排放低,具有优异的环保特性。另外,植物的生长期远短于石油的生成期,植物可人工种植,且生长过程中吸收CO2,对减少大气中的CO2有深远意义。
但植物油单独用作柴油机燃料时,因粘度较大、有些植物油的凝点和冷滤点较高,如棕桐油的凝点达40℃以上,故冷启动较困难;植物油的热值较低,因此发动机动力性能有所下降。另外,植物油中不饱和脂肪酸非常多,容易形成结胶,堵塞油路;不完全燃烧的残余物沉积在燃烧室,并使活塞环粘结、喷油器结焦,影响柴油机的使用寿命。此外,从喷油器喷出的植物油油滴比喷出的柴油滴径大得多,导致气缸内混合气的形成质量较差,未燃烧的燃料喷到气缸壁后容易流入曲轴箱,引起油变质。植物油的排气烟度与柴油差别不大,在高负荷时比柴油低,排气中气态污染物随着植物油及机型不同会有所变化。因此植物油一般不能直接应用于内燃机,必须经过改性处理。
比较常见的改性方法有下列4种:①直接混合法:将天然油脂与石油柴油、溶剂或醇类按不同比例直接混合后作发动机燃料。②微乳液法:将动植物油与甲醇、乙醇和1—丁醇等混合制成微乳液直接应用。③高温裂解法:在惰性气流中将甘油三酯裂解成一系列混合物,包括烷烃、烯烃、二烯烃、芳烃和羧酸等。④酯交换法:利用甘油三酯与低级醇在催化剂作用下得到脂肪酸低级醇酯,即生物柴油,这是目前油脂改性的主要方法。
这4种方法中,混合法和微乳液法属于物理法,高温裂解法和酯交换法属于化学法。使用物理法可以降低动植物油脂的粘度,而且简单易行,但十六烷值不高,易变质,油的高粘度和不挥发性可导致喷嘴不同程度的结焦、活塞环卡死和结炭、油污染等问题,不能长时间应用。高温裂解法过程简单,没有任何污染物产生,缺点是在高温下进行,需要催化剂,裂解设备昂贵,反应很难控制,且当裂解混合物中硫、水、沉淀物及铜片腐蚀值在规定范围内时,其灰分、炭渣和浊点就超出规定值。另外,高温裂解法的产品中生物柴油的含量不高,大部分是生物汽油。酯交换法主要利用酰基转移作用将高粘度的动植物油脂转化成低粘度的脂肪酸酯,使得天然油脂的分子量降低至原来的1/3,粘度降低8倍,与柴油接近,同时提高了燃料的挥发度,十六烷值达50。可以作为矿物柴油的代用品直接使用。
2 生物柴油的概念
生物柴油这一概念最早由德国Rudolf Desel博士于1985年提出,并在1990年巴黎博览会上展示了使用花生油作燃料的发动机。生物柴油较系统的研究工作始于20世纪50年代末60年代初,在70年代的石油危机后得到了大力发展。
生物柴油的主要成分是高级脂肪酸的低级醇酯,即软脂酸、硬脂酸、油酸、亚油酸等长链饱和或不饱及脂肪酸同甲醇或乙醇等醇类物质所形成的酯类化合物。
生物柴油基本不含硫和芳烃。生物柴油的十六烷值高达52.9,氧含量达10%-11%。与普通柴油相比,富氧燃烧对燃油完全燃烧有利,特别是在高负荷下、高燃料浓度区,可减少CO、SO2、碳氢化合物、多环苯类致癌物质和“黑烟”等污染物排放;而高十六烷值,使得燃油着火性能好,滞燃期短,故未燃碳氢和裂解碳氢均少,CO排放量降低;生物柴油有较好的发动机低温启动性能,无添加剂时冷凝点达-20℃;有较好的性能,可降低喷油泵、发动机缸和连杆的磨损率,延长其使用寿命。同时,生物柴油的开口闪点高,储存、使用、运输都很安全,不在危险品之列。生物柴油和常规柴油的性能比较见表1所示。
目前,国外对生物柴油的燃烧特性和排放特性已进行了较为系统的研究。结果表明,生物柴油和柴油按一定比例混合后,未损坏柴油机性能,未增加燃料成本,使用安全性高,排放性能优于纯柴油,完全可以替代柴油。采用生物柴油的发动机废气排放指标不仅满足目前的欧Ⅱ标准,甚至满足在欧洲颁布实施的更加严格的欧Ⅲ排放标准。如使用菜籽油甲酯的柴油机,按FFP75规程试验时碳氢化合物排放减少20%,CO排放下降15%,烟度约减少40%,多环芳香烃的排放也减小,而NOx排放约增加了10%,醛和酮的排放增加了40%。国内对此较为系统的研究报道目前还较少。
实际使用时,生物柴油可以与柴油以任意混合比混合使用,也可以单独使用。使用普通柴油的发动机(对有些机型仅需换密封圈和滤芯),无需作任何改动,并对驾驶无任何影响。驾驶者根本无法区分两者的驾驶动力差别。实际上如果将生物柴油作为矿物柴油的调合组分,可以起到提高十六烷值,降低硫含量,特别是改善性能的作用。如在炼油厂深度加氢生产的低硫、低芳烃柴油中加入质量分数为2%—5%生物柴油,即可改进性能,比采用添加剂经济合理,排放性能也可大幅度提高。
生物柴油的主要缺点是甲酯易于氧化和聚合,当它渗入油时会形成堵塞机油泵的油泥;其次生物柴油中通常含有微量的醇与甘油,这会使与之接触的橡胶零件如橡胶膜、密封圈、燃油管(即燃油接触的橡胶配件)等逐渐降解;另外,甘油容易堵塞输油管道和喷油嘴。尽管如此,由于生物柴油本身无毒,生物降解率达98%,其降解速率是石油柴油的两倍,对土壤和水的污染较少,可以降低90%的空气毒性,降低94%的致癌率;没有硫散发,可减少酸雨发生,有益于保护生态环境。特别是生物柴油具有可再生性,作为一种可再生能源,资源不会枯竭。因此,作为优质的柴油代用晶,目前世界上许多国家正大力开发这种技术并推进其产业化进程。
3 生物柴油的生产
3.1 酯交换法合成生物柴油
目前,工业生产生物柴油主要是应用酯交换法。在油类酯交换反应中,甘油三酸酯与醇在催化剂作用下酯交换得到脂肪酸甲酯和甘油。
各种天然的植物油和动物脂肪以及食品工业的废油,都可以作为酯交换生产生物柴油的原料。可用于酯交换的醇包括甲醇、乙醇、丙醇、丁醇和戊醇。其中最为常用的是甲醇,这是由于甲醇的价格较低,同时其碳链短、极性强,能很快地与脂肪酸甘油酯发生反应,且碱性催化剂易溶于甲醇。该反应可用酸、碱或酶作为催化剂。其中碱性催化剂包括NaOH,KOH、各种碳酸盐以及钠和钾的醇盐,还包括有机碱,酸性催化剂常用的是硫酸、磷酸或盐酸。
酸催化酯交换过程产率高,但反应速率慢,分离难且易产生“三废”。碱性催化反应速度快,工业生产中主要采用碱性催化的生产工艺。尽管酸催化转酯反应比碱催化慢得多,但当甘油酯中游离脂肪酸和水含量较高时,酸催化更合适。而影响酯交换反应的主要因素有:催化剂、游离脂肪酸和水分、醇/油摩尔比、反应温度、反应时间。
3.2 原料的选择及其预处理
理论上分子量与柴油相近的动植物油脂均可以用作生物柴油的原料,但实际上由于动物油脂一般饱和脂肪酸含量高,熔点和粘度较高,与甲醇的互溶性较差,且成本相对较高,所以生产上更多以植物源油脂为原料。世界上能提炼油脂的植物约有80种以上,可以用作内燃机代用燃料的植物油有菜籽油、棉籽油、大豆油等40多种。不同来源的油脂中油类的成分又各不相同。植物油中不同的脂肪酸含量见表2。
油脂的选择主要决定于成本以及来源的广泛性。在欧洲,生产生物柴油主要以双低菜籽油(即芥酸、硫甙含量低)为原料,而在美国主要以转基因大豆油为原料。
转贴于
油脂的预处理主要是先去除油脂中大部分的游离脂肪酸。水分的去除可以通过简单加热的方法进行。即将油加热并控制在105℃左右,搅拌,持续一段时间,直到没有水蒸气泡冒出为止,测定水分含量至符合要求,然后停止加热,再进行后续处理。油脂中高含量脂肪酸的脱除可以使用液—液萃取的方法。即利用热甲(乙)醇能溶解油脂和脂肪酸,温度降低后,油脂在甲(乙)醇中的溶解度大大降低,而脂肪酸在其中的溶解度仍较大的原理进行脱酸处理。如果使用经过精炼过的植物油制备生物柴油时则不需要预处理过程。除此以外,作为生物柴油原料的油脂还有其他品质指标的要求。一般来说,如果使用植物油,经过除水和脱酸的预处理后即能基本满足生产要求。
3.3 生物柴油生产技术路线
以化学法生产生物柴油为例,常见的生产技术路线见图1。
据此可以设计连续化生产工艺和间歇式生产工艺。间歇式生产工艺较符合精细化工生产的特点,但生产效率和生产能力有限,成本也相对较高;连续式生产工艺则可以使生产效率和生产能力达到很高的水平,从而显著降低生产成本。
4 目前生物柴油的生产和应用现状
4.1 国外的生产应用情况
生物柴油使用最多的是欧洲,份额已占到成品油市场的5%。欧洲主要以菜籽油为原料。目前欧洲已建立了数家生物柴油工厂,2005—2006年德国于Piesteritz投资6400万欧元建成了20万吨/年生物柴油装置,而规模最大的生物柴油工厂在意大利,生产能力达25万吨/年。德国拥有8家生产生物柴油的工厂,拥有300多个生物柴油加油站,并有逐渐上升的趋势。德国对生物柴油实行免税政策,石油柴油为1.60马克/升,生物柴油的零售价格约为
1.45马克/升,在价格上颇具竞争优势。目前德国的奔驰、宝马、大众和奥迪等汽车生产厂家生产的汽车均允许使用净生物柴油,而无需改装发动机。
2003年欧洲生物柴油产量已达270万吨。欧盟各国生物柴油需求量在增长,计划到2010年生物燃料产量提高5.75%,到2020年达到20%。欧盟之所以大力发展生物柴油技术是由于欧盟为了履行“京都议定书”中减轻地球温室效应的承诺。事实上,植物生长过程吸收的C02大于生物柴油燃烧排放的CO2,大力发展生物柴油产业既可以拉动农业的生产,又可以缓解石油工业面临的压力,同时可以直接有效地降低温室气体的排放,可谓一举多得。
美国从20世纪90年代初开始小规模地使用大豆油生产生物柴油。1992年美国能源部及环保局提出以生物柴油作为燃料,以减少对石油资源的消耗。1999年克林顿总统签署了开发生物质能的法令,其中生物柴油被列为重点发展的清洁能源之一,并对生物柴油的生产实施了免税优惠政策。截至2005年4月,包括筹建的工厂在内,美国共有60家生物柴油生产厂,并计划到2011年生产生物柴油115万吨,2016年330万吨。迄今为止已有纯态形式的生物柴油燃料和混合生物柴油燃料,纯态形式的生物柴油又称为净生物柴油,已经被美国能源政策法正式列为一种汽车替代燃料。
日本于1995年开始研究生物柴油,并在1999年建立了用煎炸油为原料生产生物柴油的工业化实验装置。现在日本的生物柴油产能已达40万吨/年,其生物柴油产品售价仅为80日元/升,与石油柴油略同。2004年5月,日本三井公司宣布在南非建设10万吨/年生物柴油装置。同时日本政府正在组织科研机构与能源公司合作开发超临界酯交换技术。日本以废弃食用油脂为原料制得生物柴油,其理化性质可以达到德国标准,动力和排放性能与以优质植物油为原料生产的生物柴油相当,可以达到欧Ⅲ排放标准。
韩国则引进了德国技术,以进口菜籽油为原料,于2002年建成10万吨/年的生物柴油生产装置。
其他国家如捷克、巴西、马来西亚、印度、菲律宾等都根据本国国情相应建成了生物柴油的生产装置或制定了生物柴油的发展计划。
4.2 生物柴油在我国的生产应用情况
我国对生物柴油的开发和研究尚处于起步阶段。目前存在着生产规模小、技术落后、后续发展不好等缺点。主要利用菜籽油、大豆油、米糠油脚料等作为原料制备出生物柴油。由于我国在税收上对生物柴油还未实行免税政策,使得生产生物柴油的生产成本居高不下(其中75%的成本为原料成本),约为矿物柴油的3倍,因而很难实现大规模生产。目前,各科研院所及企业主要以开发廉价原料的生物柴油的生产技术为主攻方向。海南正和生物能源有限公司、四川古杉油脂公司和福建卓越新能源发展公司等都已开发出拥有自主知识产权的技术,都建成了1—2万吨/年生产装置。另外,海南正和生物能源公司还以黄连木树果油为原料,并建有约66.67平方千米原料种植基地。北京市科委可持续发展科技促进中心正与石油大学合作,利用北京市餐饮业废油为原料来制造生物柴油。江西巨邦化学公司进口美国转基因大豆油和国产菜籽油生产生物柴油,正在建设10万吨/年生产装置。四川大学生命科学院正筹备以麻疯树果油为原料,计划建2万吨/年的生产装置。
5 关于生物柴油的标准
生物柴油的生产应有标准作指导,保证其品质,同时标准化也是市场准人的一个重要条件,生物柴油的发展刺激着生物柴油标准的建立。1992年奥地利制定了世界上第一个以菜籽油甲酯为基准的生物柴油标准,很快德国、法国、捷克和美国也分别建立了各自的生物柴油标准。生物柴油可以由不同的植物油制成,这些植物油种类不同,产地气候各异,甘油三酯组成有较大差别,因而各国的标准存在着一些差异。除去经济、健康和环境方面的好处外,标准的建立增强了生物柴油使用者、发动机生产商和其他团体的信心,成为其商业化应用的一个里程碑。
就国内生物柴油而言,其规模化生产刚刚起步,生产量较小,目前以生物柴油作为纯态燃料使用的条件尚未成熟。我国已把发展生物柴油列入国家能源发展计划中,着眼于生物柴油的长期使用,为了加强生物柴油的生产和管理,及时制订生物柴油的国家标准无疑是十分必要的。
6 展望
随着石油资源的短缺,生物柴油生产技术的研究与应用已成为世界各国政府优先考虑发展的方向。对我国来说,目前采用柴油为燃料的动力设备很多,而柴油每年需要进口一部分,柴油的供需平衡是我国未来较长时间石油市场的一个焦点问题。随着国民经济重大基础项目的相继启动,柴汽比的矛盾比以往更为突出。以城市公交系统车用柴油为例,2002年我国车用柴油消费量约1800万吨,预计到2020年车用柴油消费量将达6100万吨。若按2%(重)比例加入到低硫、低芳清洁柴油中以改善其性,届时生物柴油需求量就达122万吨/年。因此,开发生物柴油对调整油品产业结构,提高柴汽比,促进农业产业结构的调整与农产品的加工转型,加强国防安全,保护环境等都具有重要意义。
为解决目前我国生物柴油生产成本高的问题,可从以下方面着手研究。
一是要解决原料数量、质量、渠道问题。制约生物柴油生产的最主要问题是廉价、来源稳定的原料问题。我国地域广泛,拥有丰富的生物柴油资源(大豆油、玉米油、葵花籽油、菜籽油、棕榈油、椰子油、棉籽油、动物油脂等),同时饭店产生大量的煎炸油,如果很好加以利用,有很大市场潜力。在技术资源储备上,可结合应用现代生物技术培育高油植物或工程藻类。
关键词 新能源汽车;锂离子电池;燃料电池;生物燃料
中图分类号 F4 文献标识码 A 文章编号 1674-6708(2016)172-0194-02
当下,我国汽车保有量增长快速,一方面导致对石油的需求量大幅增长,自上世纪以来我国石油进口依存度迅速上升,1993年尚处于原油净出口国,1995年石油进口依存度则变为5.3%,2007年达到49%[ 1 ],2015年我国石油进口量超越美国,达到740万桶/日,成为世界上最大的石油进口国[ 2 ]。另一方面汽车在生产和使用的过程中加重了环境污染,危及了人类的日常生活。2013年我国只有约1%的城市空气质量符合世界卫生组织的标准,2014年国家减灾办、民政部于正式将雾霾天气列为自然灾情,2015年我国东北部、华北中南部、黄淮及陕西北部等地陆续出现重度污染天气。因此迫于资源、环境的双重压力,开发节能环保的新能源汽车已成为我国汽车产业的必然选择。按照动力提供方式的不同,新能源汽车主要可分为充电式电动汽车、燃料电池汽车、燃气汽车、生物燃料汽车等类别分述如下。
1 新能源汽车的分类
1.1 充电式电动汽车
充电式电动汽车以蓄电池为动力源,通过电机驱动,提供动力。这种汽车具有结构简单、噪声小、排放少、能量转换效率高、适用范围广等等优点。但其缺点也较多,比如过分依赖充电设施,充电时间长,续驶里程短,电池寿命短、制造成本较高等,因而在商业化的过程中困难重重。目前,研制经济的、持久的、高效的电池是充电式电动汽车发展的关键性问题,经过20多年的研究发展,目前已开发出多种适用性较强的蓄电池,如早期的铅酸电池、在混动汽车中采用的镍氢电池以及在当前及以后有着极大发展空间的锂离子电池等等。锂的原子序数为3,是最轻的碱金属元素,其化学特性十分活泼,易形成电荷密度很大的氦型离子结构。锂离子电池的储能能力是在电动自行车上广为应用的铅酸电池的3倍,其在地壳中的蕴藏量第27位,可利用资源较丰富,因此有很大的发展前景。
以目前应用最为广泛的磷酸铁锂电池为例,锂离子电池的工作原理如下:整个电池以含锂的磷酸铁锂作为正极材料,负极为碳素材料(常用石墨)。两极之间为聚合物隔膜,一方面可分隔正负极,另一方面也是锂离子在正负极往返的通道所在。当对电池充电时,正极发生脱嵌,形成的锂离子在电解液的帮助下,通过隔膜,进入负极碳层的微孔中,同时正极产生的电子也会通过外电路向负极迁移。放电时,锂离子从负极碳层中脱嵌,又嵌回正极。
目前,欧洲、美国、日本等主要发达国家均斥巨资进行锂电池技术的研发,在中国由于国家新能源产业政策的推动锂离子电池制造业也得到了篷勃发展,各种锂离子电池技术不断涌现,生产商业化电动汽车用锂离子电池的企业更是达到300家之多,但是锂离子电池的核心材料比如正负极材料、电池隔膜以及电解液却“技不如人”,过度依赖进口,因而生产成本难以下降,目前其价格3倍于铅酸电池,因此,产品难以规模化生产。近几年来,我国锂离子电池核心技术取得巨大突破,所有关键性材料均初步实现了自动生产,生产成本降幅较大,不少产品价格仅为刚面市的1/3左右,这与铅酸电池相比,已形成明显的性价比优势。锂离子电池成本的下降,使得充电式电动汽车的商业化规模化生产不再是一句空话。
1.2 燃料电池汽车
在诸多的新能源汽车中,燃料电池汽车目前被公认为是21世纪最核心的技术之一,可以说它对汽车工业发展的重要性,不亚于微处理器之于计算机业。燃料电池汽车直接将燃料的化学能转化为电能,中间不经过燃烧过程,不受卡诺循环的限制,能量利用率高达45%~70%,而火力发电和核电的效率大约在30%~40%;燃料电池汽车最终排放物为H2O,几乎不排放氮氧化物和硫化物,CO2排放量远低于汽油的排放量(约其1/6)。
整车的核心部件燃料电池并不需要充放电的操作,在一定程度上它很类似于汽油汽车,直接将燃料(常用H2、甲醇等等小分子燃料)注入贮存箱,即可获得动力。根据所用电解质类型的不同分为五个大类,分别为熔融碳酸盐燃料电池、聚合物电解质燃料电池、碱性燃料电池、磷酸盐燃料电池和固体氧化物燃料电池。目前在汽车工业中应用的多为聚合物电解质燃料电池,它以荷电的薄膜状高分子聚合物作为电解质,以离子交换的形式选择性地传导离子(H+,OH-),达到导电的目的[3]。工作时与直流电源相当,阳极作为电池负极,燃料在阳极发生氧化反应;阴极作为电池正极,氧化剂在阴极发生还原反应;反应生成的离子通过隔膜在电池内迁移,而电子则通过外电路对外做功输出电能,整个体系形成回路。
燃料电池但其在商业化的过程中仍存在着一些困难与瓶颈急需解决,比如由于采用贵金属催化剂铂及造价高昂的全氟磺酸膜,因此生产成本极高;再如由于工作环境多为酸碱性较强的溶液,对部分元件具有一定的腐蚀性,因而耐久性较差。目前随着非铂催化剂及无氟耐久性膜材料研发的成功,生产成本呈下降趋势,燃料电池汽车的市场普及率逐年上升。虽然以家用小汽车的形式进入普通家庭尚有一段时间,但燃料电池大巴已经完全可以产业化。目前,国外生产一辆燃料电池大巴造价约在400万元左右,若引入其核心部件及技术,采用国内人工生产,采用国内辅件及包装,可将其成本降至100万元左右,这一价格已与传统大巴接近,如果我国能抢占先机,与行业内先进的外企紧密合作,加快研发核心技术,假以时日,燃料电池大巴完全可能成为我国经济绿色增长的支柱产业。
1.3 燃气汽车
燃气汽车是以液化石油气、压缩天然气及氢气为燃料的气体燃料汽车。目前市场供应以天然气为主要燃料。与常规燃油汽车相比,燃气汽车的排放污染很小,铅,CO排放量减少90%左右,碳氢化合物排放减少60%以上,氮氧化合物排放减少35%以上,且尾气中无硫化物和铅,因此它是一种较为实用的低排放汽车。此外这种汽车能大幅度降低使用成本,一方面由于目前天然气的价格低于汽油及柴油,营运过程中能使燃料费用下降50%左右;另一方面由于发动机采用天然气做功,运行平稳、无积碳,发动机寿命长、也无需频繁更换火花塞及机油,维修费用亦可下降50%以上。但它也有不少缺点,比如由于存有大量高压系统使用的零部件,安全系数及密封性要求高;天然气汽车动力性比常规燃油下降约5%~15%;受到能源不可再生的约束限制;燃气缸占地面积大等。
天然气汽车工作时,高压天然气经过减压调节器减压后送到混合器中,与净化后的空气混合后,利用传感器、动力阀和计算机调节混合气的空燃比,以使燃烧更加充分,再经化油器通道进入发动机气缸燃烧做功。我国于1988年正式推行燃气汽车,多采用气/油混动改装的形式,并于同年建造了第一座加气站。发展迄今,我国已经加气站近千座,改造汽车数十万辆。中国从对燃气汽车的推广力度仍逐年上升,各大城市均有部署,可见目前以气代油,是最切实可行的一条新能源汽车之路。
1.4 生物燃料汽车
生物燃料汽车的创新之处在于从农林产品、工业废弃物和生活垃圾中提取燃料,比如从玉米出发制备的汽车用乙醇燃料,利用回收食用油为源料获得的生物柴油等等。生物燃料与传统的石油燃料不同,它是一种可再生能源。近年来,生物燃料汽车得到了迅速发展,美国认为生物燃替代汽油切实可行并将其列为国家重点发展项目,目前使用生物柴油燃料的汽车己经累计运行1 600万km;欧盟于2005年也推行法规,要求成员国2010年生物柴油消费量从占交通运输油料总消费量的2%提高到5.75%,2020年进一步提高到占20%。生物燃料汽车降低了对石油的需求,且其运行中的排放污染也大大降低,以常规燃油汽车相关数据为分母,生物燃料汽车尾气中有毒物含量仅为10%,颗粒物约20%以下,CO和CO2排放量仅为10%,硫化物和铅含量为0,同时,燃料燃烧较为彻底,对发动机的维护保养要求低[4]。
尽管生物燃料有较多的优点,但其发展遇到难以克服的瓶颈。第一,产能有限。在生物燃料汽车推行力度最大的美国,据有关资料显示,即便将所有玉米和大豆都拿来制造生物燃料,也仅能满足国家柴油需求量的6%和汽油需求量的12%。而玉米和大豆首先是粮食产品,只能将其少量产品用于生产生物燃料。在我国,若能将农业副产品秸杆加以利用,则将对生物燃料汽车的推广有很大的促进。第二,耗水量太大。生物燃料主要来源于农业,每年农业消耗掉的水资源高达70%,若将其产品大量用于制造燃料,往往是得不偿失的。而我国是人均水资源拥有量位于世界后列,用大量的水换回少量燃料,只能说看上去很美,实际操作性较低。第三,存在与粮争地的问题,生物燃料的推广已经造成美国和墨西哥玉米价格上涨,并可能导致发展中国家粮食短缺,因此有业内人士指出使用粮食生产生物燃料是“反人类的罪行”。
2 结论
当下,我国新能源汽车产业迎来了篷勃发展的大好机遇。但由于多数新能源汽车造价过高,许多关键技术还未完全攻克,而且配套基建设施远不足以支撑行业的发展,这些因素严重阻碣了新能源汽车行业的良性发展。从我国新能源汽车近几年发展的态势来看,目前还难以实现大规模的量产。从价格方面来看,新能源汽车的造价普遍高于传统汽车,如果国家不提高购车补助,很难提高民众对新能源汽车的购买热情。从技术角度来看,我国的电池、燃料等相关技术的研发才刚刚起步,远远落后欧美等发达国家。从配套设施角度来看,我国目前的配套设施基本处于空白状态,比如很多城市未建设电动车充电站,如果不能及时充电,电动车无法前行,这给使用带来不便。虽然在当今中国新能源汽车的推广困难重重,但从国家对汽车工业的发展部署来看,发展新能源汽车己经被确定为汽车工业未来的发展方向。因此,我国汽车企业和相关科研机构必须抓住机遇,在提高自身实力的同时,推动我国新能源汽车产业的迅速发展。
参考文献
[1]国务院发展研究中心产业经济研究部,等.中国汽车产业发展报告(2009)[M].北京:社会科学文献出版社,2009.
[2]中国石油新闻中心.“中国成为最大石油进口国”意味着什么[EB/OL].[2015-05-19(7):59].http://pc. /system/2015/05/19/001542111.shtml.
2006年5月份,一列特殊的火车在瑞典开始正式运营。该火车共有10节车厢,最高速度可达每小时130公里――这是世界上第一列使用生物燃料的火车,使用的燃料是由屠宰场里扔掉的牛油、内脏等经过高温发酵而产生的沼气。据报道,瑞典打算用10年的时间,对所有办公用车、公共汽车、旅游车和校车进行改造,最终使它们能够使用生物燃料。
生物燃料是指从植物,特别是农作物中提取适用于汽油或柴油发动机的燃料,包括燃料乙醇、生物柴油、生物气体、生物甲醇、生物二甲醚等,目前以燃料乙醇和生物柴油最为常见。国际市场原油价格持续处于高位,由于生物燃料能有效替代汽油和柴油,并且更具环保优势,所以近年来,生物燃料成为世界范围内可再生能源研究的热点。
在生物燃料的规模化生产方面,巴西、美国、德国和中国处于世界领先位置。2005年全世界燃料乙醇的总产量约为3000万吨,其中巴西和美国的产量都为1200万吨。我国每年生产燃料乙醇102万吨,可以混配超过1020万吨生物乙醇汽油,乙醇汽油的消费量已占全国汽油消费量的20%,成为世界上第三大生物燃料乙醇生产国。
在生物柴油方面,2005年世界生物柴油总产量约220万吨,其中德国约为150万吨。据《南德意志报》报道,2006年,德国生物柴油销售量已经超过300万吨,占德国汽车柴油总消费量的10%。
短命的第一代生物燃料
美国的乙醇燃料已占运输用燃料的3%。2006年美国国会通过的《能源政策法》规定,到2010年,汽油中必须掺入的生物燃料应是目前的3倍。欧盟在2006年春天公布的《欧盟生物燃料实施计划》称,到2030年欧洲将有27%至48%的汽车使用生物燃油,这将大大减轻欧盟各成员国对于石油能源的依赖。日本的一项环保计划透露,日本要在4年内让国内40%的汽车改用生物燃料。
中国也在积极推广生物燃料,特别是燃料乙醇。除2004年2月已批准的黑龙江、吉林、辽宁、河南、安徽5省以外,湖北、山东、河北、江苏等也将进行乙醇汽油使用试点。东北三省已经实现了全境全面封闭推广使用车用乙醇汽油。国家发改委报告称,2005年我国生物乙醇汽油的消费量已占全国汽油消费量的20%。同时,国家有关部门正在研究制定推进生物柴油产业发展的规划以及相应的激励政策,提出了“到2020生物柴油生产能力达到200万吨”的产业发展目标。
国内生产燃料乙醇,主要原料是陈化粮。中国发展生物燃料的初衷,除了能源替代之外,还有消化陈化粮、提升粮食价格、提高农民收入方面的考虑。目前全球各地生产生物燃料,也是大多以粮食作物为原料,如玉米、大豆、油菜子、甘蔗等。
使用粮食作物作为生产原料的生物燃料被称为第一代生物燃料。尽管第一代生物燃料到现在为止也只不过经历了区区几年的发展,并且只是在很少的几个国家实现了规模化生产,但是它的局限性很快就显示出来。目前世界各国都在着力研发第二代生物燃料。
第一代生物燃料的最大缺点是占用耕地太多以及威胁粮食供应。纽约理工大学教授詹姆斯・乔丹和詹姆斯・鲍威尔前不久在《华盛顿邮报》上撰文指出:生物燃料不是满足我们对交通燃料需求的一个长期而实用的解决方案、即便目前美国三亿公顷耕地都用来生产乙醇,也只能供应2025年需求量的一半。可是这对土地和农业的影响将是毁灭性的。
美国明尼苏达大学一个研究小组2006年7月10日在美国《国家科学院学报》上指出,未来的生物燃料应该在产出效率上有明显提高,其生产用地也不能和主要农作物用地冲突。文章指出,能在低产农田和较恶劣环境种植的作物如柳枝稷、莎草和木本植物等,可能更有前途。
2006年10月份在北京举行的“2006中国油气投资论坛”上,国家能源办副主任徐锭明指出,发展生物能源不可一哄而上,要以战略眼光,结合各地的资源情况,从实际出发。此前,国家发改委、农业部的官员,也分别对地方政府在发展生物能源方面的冲动提出忠告,要求一定不能与人争地、争粮、争水。
第二代生物燃料渐成气候
鉴于此,生物燃料业加快了新技术的开发,并将目光投向非粮作物。国际能源机构大力支持推进第二代技术的研发,二代生物燃料不仅有更加丰富的原料来源,而且使用成本很低,草、麦秸、木屑及生长期短的木材都能成为原料。加拿大已建成使用麦秸生产乙醇的工厂,德国开发了使用木材和麦秸等生产生物柴油的技术,哥伦比亚已成功地从棕榈油中提炼出乙醇。乌拉圭畜牧业非常发达,开始以牛羊脂肪为原料提炼生物柴油。日本已经在大阪建成一座年产1400吨实验性生物燃料的工厂,可以利用住宅建筑工程中废弃的木材等原料生产能添加到汽油中的生物燃料。
中国在第二代生物燃料技术方面的研发也不落后于其他国家。中国科学院一个实验室研制出一项最新科技成果,可以将木屑、稻壳、玉米秆和棉花秆等多种原料进行热解液化和再加工,将它们转化为生物燃料。据统计,中国目前能够规模化利用的生物燃料油木本植物有10种,这10种植物都蕴藏着盛大潜力。丰富的植物资源,使中国生物燃油的前景非常光明。
中国除了进行以木本植物为原料的实验外,还扩大了粮食原料的实验范围,探索以低产农田和较恶劣环境种植的作物为原料,并在一些技术上取得了突破。2006年8月,河南天冠燃料乙醇有限公司投产的年产3000吨纤维乙醇项目,成为国内首个利用秸秆类纤维质原料生产乙醇的项目。2006年10月19日,中粮集团在广西开工建设的40万吨燃料乙醇项目,所用原料为木薯,也属于非粮作物。加工1吨燃料乙醇,用木薯的成本比用玉米和甘蔗分别低500元和300元左右。而且由于木薯适于在土层浅、雨水不宜保持的喀斯特地区种植,更有助于帮助农民增加收入。
种种迹象表明,生物燃料的发展方向正在悄然转变,生产生物燃料的原料将由“以粮为主”向“非粮替代”转变。
随着全球石油、煤炭的大量开采,能源日益枯竭库,存量不断减少,能源短缺和随之而来的环境污染日渐引起人们的关注,并已成为制约我国经济社会又快又好发展的瓶颈。改善能源结构,利用现代科技开发生物质能源来缓解能源动力,减少污染物排放等问题刻不容缓。我国政府及有关部门对生物质能源利用也极为重视,已将“大力发展生物质能”列入国家“十二五”规划。
2、我国生物质能产业发展现状及前景
现阶段我国的生物质能应用主要集中在沼气利用,生物质直燃发电,工业替代燃料和交通运输燃料这四方面。
2.1 沼气利用
近年来沼气利用在中国发展迅速,在中央投资的带动下,各地也加大投入,形成了户用沼气、小型沼气、大中型沼气共同发展的新格局。沼气开发利用现在不仅能解决农民的烧柴问题,更重要的是我国的沼气发展正从分散式农户经营向产业化方向转变。2008年山东民和牧业建成了一个利用鸡粪为原料的3MW热电联产沼气工程;2009年安阳贞元集团通过与丹麦技术资金伙伴合作,以养殖场,公共污粪和秸秆为原料在安阳建立了一个年产400万m3的车用气的沼气项目。从目前情况看,通过生物发酵产沼气的技术相当成熟,但是现阶段还存在沼气工程总体规模较小效益不高,产气不是很稳定,特别是在北方冬季产气明显不足,和沼气副产品市场需求不足等因素约束。
2.2 生物质直燃发电
生物质直燃发电是最早采用的一种生物质开发利用方式,也是消耗量最大、最直接、最容易规模化和工业化的能源利用方式。早在2004年,山东单县、河北晋州和江苏如东这三个地方就开始了生物质直燃发电的试点示范,而2006年《可再生能源法》的施行更极大促进了生物质直燃发电行业的发展,年投资额增长率都在30%以上,到2010年我国生物质直燃发电量已达到550万千瓦。其中,我国生物质最大的企业国能生物发电集团有限公司在2010年投入运营和在建生物质发电项目近40个,总装机容量100万千瓦。到2013年,该公司规划生物质发电装机数量达到100台,装机容量达到300万千瓦。届时每年可为社会提供绿色清洁电力210亿千瓦时,年消耗农林剩余物可达3000万吨,每年可为农民增收约80亿元,每年可减排二氧化碳1500万吨以上。
生物质直燃发电技术比较成熟,而且它是增加农民收入、促进农民增收的直接载体,是实现工业反哺农业、加快农村经济发展的重要途径。需要注意的是生物质直燃发电还存在项目投资和运营成本较高,原料供应季节性强,需要政府补贴,受国家政策影响风险大等问题。
2.3 工业替代燃料
生物质作为工业替代燃料主要包括生物质成型燃料、生物质可燃气和生物质裂解油。
生物质成型燃料一般以木块、木粉、木屑和秸秆等农业生物质废弃物为原料,用作工业锅炉的燃料。生物质成型燃料的技术研究开发始于20世纪80年代,早期主要集中在螺旋挤压成型机上,但存在成型筒及螺旋轴磨损严重,寿命较短,电耗大等缺点,导致综合成本较高,发展停滞不前。进入2000年以来,生物质成型技术得到明显的进展,成型设备的生产与应用已初步形成了一定规模。国家发改委规划到2010年,生物质成型燃料生产量可达100万t。生物质成型燃料多用在一些中小型的工业蒸汽锅炉、有机热载体锅炉和商业蒸汽锅炉方面。其中,珠海红塔仁恒纸业有限公司的“生物质固体成型燃料替代重油节能减排项目”项目是目前全国最大的生物质成型燃料节能减排项目,该项目2011年投入运行,以两台40t/h生物质成型燃料专用低压蒸汽锅炉,代替现有的六台燃油锅炉。
生物质可燃气较早使用在气化发电方面,一般是生物质气化净化后的燃气送给燃气轮机燃烧发电或者将净化后的燃气送入内燃机直接发电。生物质气化发电厂的规模一般为几十千瓦到十几兆瓦,与生物质直燃发电相比,它的规模较小,但它发电效率较高,投资成本较少,对原料的来源限制也较少。除了气化发电,生物质可燃气也越来越多地应用在工业替代燃料方面。深圳华美钢铁厂就是国内首家使用生物质能源的钢铁企业,它将原燃烧重油的两段式连续推钢加热炉改烧生物燃气,该项目在2009年初立项,并2010年5月正式投产至今运行正常,这是目前世界范围内建成运行的最大的工业生物燃气项目。
生物质裂解油是指将秸秆、木屑、甘蔗渣等农业废弃物通过高温快速加热分解为挥发性气体,再经冷却后提炼出的一种液体。生物质裂解油的热值一般为16~18MJ/kg,产油率可达70%,它可直接用作锅炉和窑炉的燃料,也可进一步加工转换成化工产品。我国在生物质裂解油这方面的研究起步较晚,但近年来发展较快。浙江大学,中国科技大学,山东理工大学等高校在生物质热解液化装置优化和油品的应用、分析和提纯方面都做了大量的研究工作,也取得了不错的成绩。在生物质裂解油的工业化应用过程中,2007年广州迪森公司在广州萝岗开发区成功建设了一套年产3000吨的生物油工业实验装置并一直连续运行。易能生物公司则使生物油迈入了工业应用的新阶段,从2007年在安徽合肥建立起第一套年产万吨的生物油装置以来,其2009年在山东滨洲和2011年在陕西铜川宜君科技工业园分别投产了第两套和第三套的年产万吨的生物油装置,这也标志着生物质裂解油的产业化进入了实质性阶段。生物质裂解油与生物柴油、燃料乙醇相比生产成本较低,但是它热值较低,又具有一定的酸性,需要对燃烧设备进行少量改造。生物质裂解油除能直接用于中低端燃料市场外,还可以进一步通过精炼工艺生产多种化学品,开发利用的市场潜力巨大,具有十分广阔的发展前景。
2.4 交通运输燃料
生物能源作为交通运输燃料主要包括生物燃料乙醇和生物柴油。上世纪末,利用粮食相对过剩的条件,我国开始发展生物燃料乙醇。从目前的情况看,玉米、小麦等粮食类作物和甘蔗、木薯等经济类作物加工燃料乙醇的技术比较成熟,但基于对国家粮食安全的担心,和发展经济类作物会发生品种单一,种性退化较严重等问题,国家一直有意保持国内燃料乙醇的产量在一定的限制水平。
玉米和木薯加工燃料乙醇目前已处在比较尴尬的境地情况下,我国的企业和科研院校正加大力度地投入研发纤维素等新的燃料乙醇的生产。据了解,中国拥有发展纤维素乙醇的原料优势。纤维素广泛分布于农作物秸秆、皮壳当中,资源丰富且价格低廉。2008年吉林燃料乙醇有限公司和2009年安徽丰原生化公司都以玉米秸秆为原料分别建立了一套年产3000t和一套年产5000t燃料乙醇工业化示范装置。中粮集团与中石化、丹麦诺维信公司联手建造的中国规模最大的年产万吨的纤维素TU将于2011年正式投建。纤维素乙醇的生产代表了中国未来燃料乙醇的主流方向,目前需要做的是加快研发力度,突破技术瓶径,降低生产成本,加快商业化生产的速度。
生物柴油主要应用于运输业和海运业,是一种重要的交通运输燃料。生物柴油在国内的发展状况与燃料乙醇相似,用油类植物生产生物柴油的技术比较成熟,但是它受原料的制约严重。要发展大力生物柴油产业,必须要有稳定的原料来源。据了解,欧美国家主要以菜籽油、大豆油为原料生产生物柴油,但我国人多地少的国情决定了我国生物柴油产业不宜以食用油为原料,只能大力发展丘陵盐碱等非粮用地发展麻风树、黄连木等乔灌木油料作物。2010年底中海油在海南中海油东方化工城内的6万t生物柴油项目正式投产运行,其采用的是高压酯交换(SRCA)生物柴油生产工艺的装置,产品已在海南岛内的柴油零售批发网点推广使用,这是我国首个麻风树生物柴油产业化的示范项目。
近年来,利用微藻制备生物柴油受到了国内外的广泛关注,因为微藻繁衍能力高,生长周期短,可大量培养而不占用耕地,能有效解决原料来源不稳定的问题。美国在2007年推出“微型曼哈顿计划”,其宗旨就是向藻类要能源,目标是到2010年每天产出百万桶生物燃油,实现藻类产油的工业化。2008年10月英国碳基金公司也启动了目前世界上最大的藻类生物燃料项目,投入的2600~-英镑将用于发展相关技术和基础设施,该项目预计到2020年实现商业化。我国的科研人员也在政府和企业的大力支持下加紧研发这项新技术,希望能早日实现产业化。虽然现在较高的生产成本制约着微藻生物柴油产业的发展,但通过今后技术的不断改进,相信微藻生物柴油产业的前景是十分广阔的。