欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

电子机械技术范文

时间:2023-10-12 09:39:06

序论:在您撰写电子机械技术时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

电子机械技术

第1篇

关键词:电子机械技术;特征;应用;发展趋势;分析

中图分类号:TH16文献标识码:A文章编号:1674-957X(2021)02-0201-02

0引言

机械电子技术是机械领域的一种新技术,主要是将电子技术和机械生产结合起来,以提高生产效率,降低劳动强度,减少成本投入,提高企业生产的经济效益。当前人们对机械电子的应用引起了广泛的重视和关注,我国也将其作为一项重要的发展內容。当前,机械电子技术还在不断的发展中,通过研发新技术,开发出机械电子新的生产潜能。

1电子机械技术概述

电子机械技术是新兴技术,是为满足社会发展需求所产生的,当前我国众多高校纷纷设立了电子机械专业,和普通机械相比较而言,电子机械具备了更加明显的优势。电子机械技术的应用,能够极大的提升电子设备的电气系统性能,将电子机械技术和机械设备相融合,能够赋予电子设备更加完善的性能,进而更好的满足新时期各个领域发展需求。

1.1电子机械技术发展现状

现阶段,我国对于电子机械技术的研究,主要包括下述方面:首先是电子机械设备如何应对恶劣环境,尤其是在面对强烈震动、撞击的情况下,如何才能够保证电子机械设备的安全可靠运行。在恶劣环境下,如何才能够有效控制电子机械设备温度,保证设备及元件温度处于限定范围内。如何避免电子机械设备应用中所造成的环境污染问题。如何提升电子机械设备的防潮、防腐蚀性能等等。其次是机械结构参数对于电子机械设备性能所造成的影响问题,例如天线伺服驱动系统结构谐构振频率对于控制系统宽带所造成的限制;电子机械设备在摩擦、变形时候对于控制系统性能所造成的影响;天线结构变形、反射面误差对于天线效率所造成的影响。只有明确上述问题对于电子机械设备造成影响的原因及规律,并有针对性的设计结构参数,才能够更好的发挥出电子机械设备的价值作用。最后是电子机械组装技术和电子精密机械设计方面的问题,如何正确的组装连接大量的电子元器件并形成高效运转的电子机械设备,必须要充分考虑到每一个电子元器件彼此之间的相互影响,外部环境对于电子元器件所带来的影响,以便于更好的保证电子机械设备的安全性、可靠性,同时应确保便于维修和操作。电子机械设备功能的实现,往往离不开雷达天线等精密机械的支撑,其具备较高的精密程度,对于技术人员专业水平有着较高的要求,对电子机械设备展开精密化设计,旨在提升电子机械设备的性能,以便于更好的满足新时期在各个领域中的使用需求,推动电子机械技术发展与社会进步。

1.2电子机械技术的特征

市场经济快速发展的背景下,机械制造业竞争越来越激烈,机械制造企业是否具备较高的核心竞争力,成为是否实现可持续发展的关键因素,电子机械技术的发展与应用,为机械制造业发展带来了巨大的机遇。电子机械技术的特征,主要体现在以下几个方面:首先是具有明显的电子信息技术特征,信息时代的到来,电子信息技术应运而生,并在电子机械结构设计中实现了广泛有效的应用。现如今,电子机械设计并不仅仅是简单的机械工程,而是要依靠电子信息技术来展开全面、完善的机械设计,以便于更好习的满足新时期的发展需求,推动社会发展。其次是具备灵活性的特征,和传统机械技术相比较而言,应用电子机械技术所设计制造的产品,具备更高的灵活性,实用性,并且产品的应用更加的简单方便,为机械制造业发展提供了巨大的便利。基于此,要高度重视对电子机械技术的应用,创新设计产品,充分满足各个领域的个性化需求。最后是能够极大的提升工作效率及质量,电子机械技术的应用,和传统人力操作相比较而言,不仅不会受到人员主观因素的影响,同时还能够按照设计要求高效完成预定生产制造内容,整个过程具备较高的效率,同时其工作质量也得到了充分的保障。

2机械电子技术的应用分析

2.1质量检测

现阶段,随着科技的快速发展,信息呈现出快速流动趋势,并且产生了诸多新型材料,其性能更高,并逐渐替代了传统的工业材料,因而引发了社会各界的高度关注。新时期,依靠以往传统的人工模式已经逐渐无法满足机械产品质量检测工作需求,而借助电子机械技术所生产制造的产品,其质量要高的多,并且利用高精度设备展开机械产品质量检测工作,能够及时发现潜在的质量问题并将其解决,满足应用需求。

2.2农业应用

信息时代的到来,进一步助推了农业现代化发展,促进了农业经济增长。但是,当前农业现代化发展中也存在着诸多的问题,例如:现代化生产效率低、品质低等,这给农业现代化发展造成了严重的阻碍。在这种情况下,要充分发挥出电子机械技术的优势,加强电子机械技术和农业机械设备的融合发展,完善农业机械功能,提升农业机械生产效率,促进农业现代化发展步伐。不仅如此,电子机械技术、信息技术的应用,能够实现农业机械设备的自动化控制,提升其智能化水平,满足新时期农业现代化发展需求。

2.3电子产品应用

在机械生产的过程中,为了便于操作,同时也缩小设备体积,减轻其重量,需要利用电子部件替换部分零件,使得机械设备更加灵活高效的进行生产操作。现阶段,电子机械技术在电子产品生产中有着非常广泛的应用,取得了良好的应用效果,尤其是以纳米技术为代表的电子机械技术,能够精确掌控机械设备的内部结构,并结合实际情况展开优化改造。不仅如此,快速成型技术作为电子机械技术的重要组成部分,在电子产品领域的应用也极为广泛,极大的提升了加工技术的可靠性、灵活性,同时也达到了良好的成型效果,产品质量得到了充分的保障。再例如:3D打印技术,通过3D打印的方式来构造电子产品,极大的提升了电子产品的性能,生产效率及质量显著提升。

3电子机械技术的发展趋势探讨

3.1实用性

电子机械技术发展中,应紧随时展潮流,确保满足社会发展需求,避免盲目性。要做好对市场的调查工作,以市场需求为基础创新电子机械技术,扩大电子机械技术的应用范围,并获得良好的效益。不仅如此,要明确电子机械技术的发展方向,树立超前发展意识,在保证电子机械技术具备较高实用性的同时,更好的满足市场发展需求。

3.2绿色化

绿色、生态、环保背景下,电子机械技术的绿色化发展成为必然趋势。电子机械技术发展过程中,要遵循绿色、节能、环保的理念,在减轻环境污染,避免资源浪费的同时,获得良好的应用效益。要积极的创新应用节能技术,实现对资源的循环再利用,减少资源消耗,降低成本,保证电子机械技术的绿色、可持续发展。

3.3微型化

在先进技术的带动下,电子机械技术功能将会更加完善,电子机械设备体积将会更小,同时也能够充分满足各项功能需求。特别是在信息领域、医学领域以及军事领域当中,要重视对微型自动化产品的研发,加强技术攻关工作,进一步缩小产品的体积,更好的服务于电子机械制造领域。

3.4数字化

微控制器的发展,为电子机械产品的数字化发展提供了重要的机遇,计算机网络的发展,则为电子机械技术的数字化設计与制造铺平了道路。数字化是电子机械技术及其产品发展的必然方向,能够极大的提升其可靠性,并且更加便于维护和操作,同时能够实现故障自我诊断和修复的目的。

3.5集成化

集成化涵盖渗透了多种技术,是各项技术融合下的产物,包含着多道工序,包括:加工、检测、管理等等。具备集成化特征的电子机械技术,能够提升系统的柔性,进而自动高效完成对多品种、小批量产品的生产。将系统功能借助软件和硬件有机联系,能够有效提升电子机械技术及设备的功能和性能,满足应用需求。

3.6模块化

企业快速发展的背景下,电子机械技术产品生产商家数量越来越多,产品数量也不断增加,在这种情况下,加快研发电子机械技术产品单元模块成为一项关键性工作,但是该项工作的开展面临着一系列的难题,例如:实现动力、环境、标准机械接口功能等,这能够为新产品的研发提供重要的技术支撑。举个例子来说:研发集减速和变频调速电机一体的动力驱动单元,能够为电机一体控制单元的研制起到重要借鉴。

3.7网络化

互联网时代背景下,为人们的生产生活带来了极大的便利,随着网络的普及,远程控制技术、远程监测技术应运而生并广泛普及。远程控制技术的实现,依靠的是电子机械技术产品。现场总线和局域网技术的出现与应用,促进了电器网络化发展,将家用电器利用网络进行连接,构建计算机集成家用电器系统,并且能够实现实时化监测与控制,促进电子机械技术及产品的网络化发展。

3.8人性化

电子机械技术及产品无论如何发展,其应用对象终究是人,因此在接下来的时间里,电子机械技术的人性化发展成为必然。在完善电子机械技术及产品的性能的同时,赋予其人的智能、人的情感以及人的思维,实现人机一体化发展。

第2篇

1 电子机械概述

电子机械主要是以研究电子信息设备与电子系统的机械与结构的设计与制造为核心的,努力提高设备或系统在不同的复杂环境中的电性能。我国工业与电子装备发展过程已经超过40年,在电子设备的设计和制造商处于世界前列,但是也必须认识到先进的电子机械,不仅取决于电子设备的可靠性,也与结构与工艺密不可分。电气设计、结构设计及制造工艺在电子装备中有融为一体的发展态势,当今的电子机械工程就是应这种趋势而产生的新兴学科,国内很多高校也设立了电子机械专业。电子机械同以往的普通机械相比,有其自身的特性:从目的上来说,电子机械旨在于提高电子设备的电气性能系统;从实现手段上来说,电子机械主要通过在机械中加入电子信息技术等来实现电子设备的性能;从机电一体化的载体方面来说,电子机械是电子系统,常规机械是机械结构系统;从电子系统对机械的重要性来说,机电一体化对电子设备至关重要。

2 电子机械故障诊断技术分析

所谓电子机械设备故障,就是指机械系统已偏离其设备状态而丧失部分或全部功能的现象。如某些零件或部件损坏,致使工作能力丧失;发动机功率降低;传动系统失去平衡和噪声增大;工作机构的工作能力下降;燃料和油的消耗增加等,当其超出了规定的指标时,均属于机械故障。电子机械故障诊断技术主要有以下几种:

2.1 基于小波分析的故障诊断方法

小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型,这对于那些难以建立解析数学模型的诊断对象是非常有用的。具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。其基本原理是利用信号在奇异点附近的Lipschitz指数。Lipschitz指数时,其连续小波变换的模极大值随尺度的增大而增大;当时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0。因此,可以利用小波变换区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(援变或突变)。因此,利用小波变换可以区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿奇变。动态系统的故障通常会导致系统的观测信号发生奇异变化,可以直接利用小波变换检测观测信号的奇异点,从而实现对系统故障的检测。

除此之外,小波变换可以看作一个带通滤波器,从而可以对信号进行滤波。近年来,已经出现了很多基于小波变换的去噪方法。Mallat提出了通过寻找小波变换系数中的局部极大值点,并据此重构信号,可以很好地逼近未被噪声污染前的信号。Donoho也提出了一种新的基于阈值处理思想的小波去噪技术。利用去噪后的信号可以直接对系统进行故障诊断,也可利用此信号进行残差分析。通过去噪获得系统输出信号来进行故障诊断,方法上比较简单,但对故障的判断受限于观测人员自身的经验。

2.2 光学检测技术

由于故障诊断资料不足,对故障的认识受到较大限制,给明确诊断带来困难,有时所怀疑的故障的一般规律与故障征兆不完全相符,另外排除了一种故障的可能,因此故障诊断的推理过程往往也是模糊的,具有一定程度的不确定性。近年来,光学技术得到了快速的发展并被应用到工业领域,例如在数控机床中光栅系统的应用。光栅测量是利用光的衍射原理,通过叠放的光栅的相对运动,产生与之同步移动的莫尔条纹信号,然后通过读数头与后续电路,将导轨、工作台的位置等信号转变成信号读出来,其读数分辨率可达5nm。当两块相同的长光栅跌合,如果栅线的夹角很小时,莫尔条纹的方向与光栅条纹方向近似垂直。光栅盘上黑白刻线的相对移动,会产生光强度周期性变化,此光信号经光电池转换成为周期性的电信号,对电信号进行分析处理,就可获得光栅相对移动的位移量。

2.3 人工智能诊断

机电设备在运行时均会产生物理变化或者化学性能的转化,这样势必会造成设备的外在形态的改变,如温度升高、电压电流以及功率的变化等,检测人员可以通过对设备的这些参数变化的分析来了解设备的运行状况。故障诊断技术就是依照不同参数的不同变化规律,而预判断设备是否出现故障及出现故障的具置,以便及时采取科学有效的措施,防止出现不必要的损失,提高了设备运行效率和安全性。近年来,人工智能和计算机技术迅速发展,在机械诊断中的运用也越来越广泛。例如,用于大机组和燃气轮机的诊断专家系统、采用概率神经网络、自组织映象和径向基函数网络等的智能诊断神经网络等。Zadeh曾将专家系统、模糊集合、神经网络、概率计算和遗传算法统称为软计算。将软计算中各种方法集成,形成各种类型的混合系统,如用于诊断的模糊专家系统、模糊神经网络等,使各种方法互相取长补短,相辅相成,是一种值得关注的动向。

第3篇

一、微电子机械技术发展的概况

微电子机械技术具有体积小、可靠性强、重量轻以及工作速度快等特点。微电子机械技术是根据集成电路为核心的半导体器件发展起来的一项新型技术。微电子机械技术的发展推动了电子信息时代的进步以及社会工业化的革新。微电子机械技术是微电子技术和微加工技术的结合体。在认识微电子机械技术的过程中还应当要对微加工技术和微电子技术有相应的了解。在微电子机械技术发展之前就已经有科学家从事了相应的电子元器件制造、设备维护、质量控制和半导体芯片等工作。这些工作的进行对探索集成电路为核心的电子技术发展中具有促进作用。微型机械系统可以完成其他电子技术所不能完成的任务。微型技术与微型机械相互结合使得种类繁多的微型器件相继问世。这些器件的批量生产广泛的运用于生活的各个方面。微电子机械技术的产生为各行各业发展带来了巨大的前景。微电子机械技术在电子技术发展的领域中具有极强的灵活性。其发展不仅带动了科学技术的进步,还在一定程度上促进了国民经济的增长。微电子机械技术为技术和工艺提供了一个全新的发展空间。

二、微电子机械技术发展面临的问题

1965年GordonE.Moore作为Intel公司创始人之一,他根据1C芯片发展的规律曾预言了摩尔定律。该定律的预言使得半导体技术发展成为一种可能。当前,集成电路的主要技术为8英寸的0.25um,同时12英寸的0.18um技术发展也已经渐渐成熟,随着科学技术的发展0.15um、0.13um产品己开始投产,正在向0.10pm前进,按照微电子技术这种发展速度,微电子技术发展的速度比预期的还要快。随着微电子技术的发展,使得微加工技术发展的进程加快。微型加工技术是微电机械技术发展的一个关键性技术。LIGA加工、准LIGA加工和硅加工在随着微电子技术的发展朝着更复杂和更高深度的方向发展。微加工技术的发展使得加工技术对材料的要求进一步提髙。我国微型加工技术分别在航空、环境、生物学等领域中广泛运用。如今,微电子机械技术的发展能力在进步的过程中实现了产品非常小的愿望。采用微电子机械技术生产的产品较其他方式产生的产品具有一定的优越性。但是,在我国微电子机械技术不断发展的过程中,微电子机械技术在发展的过程中同样存在一定的问题。其呈现的问题主要有以下几点:首先,由于微电子机械技术并不是传统的机械,其无论是在概念上还是在尺度上远远超出了传统机械运用。导致其在设计和制造方面存在一定的问题。其次;微型机械技术生产的产品具有微小化的特征,使得在生产中存在较大的难度,导致微电子机械技术的产品需要经过专业化的处理才能够被理解和运用。最后,微电子机械技术的发展是在微型电子的发展基础上发展起来的。因此,微电子机械技术的发展始终以微电子技术的发展为前提。

三、微电子机械技术在我国发展的现状和对策

我国在微电子技术发展方面较其他国家落后。但是,在我国微电子机械技术不断发展的过程中,太细的微电子机械并不影响我国电子机械的发展。当前,我国半导体工艺加工水平已经完全满足微电子机械技术发展的要求。同时,根据原有硅基压力传感器和相应的石英加速器,使得我国在微电子机械技术发展的过程中,把握微电子技术发展的方向,结合国外发展的经验,将我国微电子机械技术发展的更为先进。当前,我国科学技术与国外相比存在一定的差距。差距的产生不仅仅是科学技术水平的原因,还存在一定的原因就是国家应当加大相应的资金投入,鼓励我国微电子机械技术的发展。微电机械技术的发展对我国科学技术的发展具有重要的促进作用。为能够保证其他科学技术能够获得更好的发展,微电子机械技术的发展必不可少。唯有加大资金的投入,培养更多更优秀的人才,促进微电机械技术的发展,才能够更好的促进我国各方面的发展。

四、结束语

微电机械技术的发展给我们的生活带来了翻天覆地变化。无论是从科研成果方面还是科技创造方面都已经取得了较为满意的成绩。

第4篇

在电子机械设备故障诊断过程中,诊断对象的故障过程是复杂多变的,在故障发展过程中,由于引起故障的因素在性质、特点及作用方式上是不同的,机械功能状况和所受损害的具体情况也不同,使得故障征兆和演变具有不同形式,诊断中往往难以迅速准确地认识故障的性质,导致误诊。 

1 电子机械概述 

电子机械主要是以研究电子信息设备与电子系统的机械与结构的设计与制造为核心的,努力提高设备或系统在不同的复杂环境中的电性能。我国工业与电子装备发展过程已经超过40年,在电子设备的设计和制造商处于世界前列,但是也必须认识到先进的电子机械,不仅取决于电子设备的可靠性,也与结构与工艺密不可分。电气设计、结构设计及制造工艺在电子装备中有融为一体的发展态势,当今的电子机械工程就是应这种趋势而产生的新兴学科,国内很多高校也设立了电子机械专业。电子机械同以往的普通机械相比,有其自身的特性:从目的上来说,电子机械旨在于提高电子设备的电气性能系统;从实现手段上来说,电子机械主要通过在机械中加入电子信息技术等来实现电子设备的性能;从机电一体化的载体方面来说,电子机械是电子系统,常规机械是机械结构系统;从电子系统对机械的重要性来说,机电一体化对电子设备至关重要。 

2 电子机械故障诊断技术分析 

所谓电子机械设备故障,就是指机械系统已偏离其设备状态而丧失部分或全部功能的现象。如某些零件或部件损坏,致使工作能力丧失;发动机功率降低;传动系统失去平衡和噪声增大;工作机构的工作能力下降;燃料和油的消耗增加等,当其超出了规定的指标时,均属于机械故障。电子机械故障诊断技术主要有以下几种: 

2.1 基于小波分析的故障诊断方法 

小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型,这对于那些难以建立解析数学模型的诊断对象是非常有用的。具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。其基本原理是利用信号在奇异点附近的Lipschitz指数。Lipschitz指数时,其连续小波变换的模极大值随尺度的增大而增大;当时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0。因此,可以利用小波变换区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(援变或突变)。因此,利用小波变换可以区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿奇变。动态系统的故障通常会导致系统的观测信号发生奇异变化,可以直接利用小波变换检测观测信号的奇异点,从而实现对系统故障的检测。 

除此之外,小波变换可以看作一个带通滤波器,从而可以对信号进行滤波。近年来,已经出现了很多基于小波变换的去噪方法。Mallat提出了通过寻找小波变换系数中的局部极大值点,并据此重构信号,可以很好地逼近未被噪声污染前的信号。Donoho也提出了一种新的基于阈值处理思想的小波去噪技术。利用去噪后的信号可以直接对系统进行故障诊断,也可利用此信号进行残差分析。通过去噪获得系统输出信号来进行故障诊断,方法上比较简单,但对故障的判断受限于观测人员自身的经验。 

2.2 光学检测技术 

由于故障诊断资料不足,对故障的认识受到较大限制,给明确诊断带来困难,有时所怀疑的故障的一般规律与故障征兆不完全相符,另外排除了一种故障的可能,因此故障诊断的推理过程往往也是模糊的,具有一定程度的不确定性。近年来,光学技术得到了快速的发展并被应用到工业领域,例如在数控机床中光栅系统的应用。光栅测量是利用光的衍射原理,通过叠放的光栅的相对运动,产生与之同步移动的莫尔条纹信号,然后通过读数头与后续电路,将导轨、工作台的位置等信号转变成信号读出来,其读数分辨率可达5nm。当两块相同的长光栅跌合,如果栅线的夹角很小时,莫尔条纹的方向与光栅条纹方向近似垂直。光栅盘上黑白刻线的相对移动,会产生光强度周期性变化,此光信号经光电池转换成为周期性的电信号,对电信号进行分析处理,就可获得光栅相对移动的位移量。 

2.3 人工智能诊断 

机电设备在运行时均会产生物理变化或者化学性能的转化,这样势必会造成设备的外在形态的改变,如温度升高、电压电流以及功率的变化等,检测人员可以通过对设备的这些参数变化的分析来了解设备的运行状况。故障诊断技术就是依照不同参数的不同变化规律,而预判断设备是否出现故障及出现故障的具置,以便及时采取科学有效的措施,防止出现不必要的损失,提高了设备运行效率和安全性。近年来,人工智能和计算机技术迅速发展,在机械诊断中的运用也越来越广泛。例如,用于大机组和燃气轮机的诊断专家系统、采用概率神经网络、自组织映象和径向基函数网络等的智能诊断神经网络等。Zadeh曾将专家系统、模糊集合、神经网络、概率计算和遗传算法统称为软计算。将软计算中各种方法集成,形成各种类型的混合系统,如用于诊断的模糊专家系统、模糊神经网络等,使各种方法互相取长补短,相辅相成,是一种值得关注的动向。 

第5篇

随着科技的发展,电子机械技术呈现出以下的发展趋势:

1宽频带、多波段、离功率

当前和将来对电子设备的其它要求是:(1)宽频带,如要求射电望远镜的工作频率从200MHz到8.8GHz,甚至更宽;(2)多波段,如要求同一天线可工作在几个波段;(3)高功率,如卫星上的设备,则希望在体积不变的情况下,发射功率尽可能的大。这三个要求给电子设备的设计与制造带来了新的问题和更大的难度。辟如,场耦合关系更加复杂,加工精度要求更高,需要进行新材料、新结构与新理论的探索和研究。

2离密度、小型化

电子设备正向着体积更小、密度更大、功耗更低的方向发展,如电子设备组装的密度越来越大,而且由二维组装向三维组装的方向发展。与此相应地,设备的体积却越来越小。

3智能化

即要求机电产品有一定的智能,使它具有类似人的逻辑思考、判断推理、自主决策等能力。例如在CNC数控机床上增加人机对话功能,设置智能I/O接口和智能工艺数据库,会给使用、操作和维护带来极大的方便。随着模糊控制、神经网络、灰色理论、小波理论、混沌与分岔等人工智能技术的进步与发展,为电子机械技术发展开辟了广阔天地。

4快速响应与准确定位

对设备的机动性与反应速度的要求也越来越高,而且在要求快速跟踪的同时,还应能够精确定位。例如,某舰载雷达天线座与稳定平台,要求其具有极高的快速性、低速平稳性以及定位精确性。

5数字化

微控制器及其发展奠定了机电产品数字化的基础,如不断发展的数控机床和机器人;而计算机网络的迅速崛起,为数字化设计与制造铺平了道路,如虚拟设计、计算机集成制造等。数字化要求电子机械技术产品的软件具有高可靠性、易操作性、可维护性、自诊断能力。数字化的实现将便于远程操作、诊断和修复。

6集成化

集成化既包含各种技术的相互渗透、相互融合和各种产品不同结构的优化与复合,又包含在生产过程中同时处理加工、装配、检测、管理等多种工序。为了实现多品种、小批量生产的自动化与高效率,应使系统具有更广泛的柔性。首先可将系统分解为若干层次,使系统功能分散,并使各部分协调而又安全地运转。然后再通过软、硬件将各个层次有机地联系起来,使其性能最优、功能最强67网络化

由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾。而远程控制的终端设备本身就是电子机械技术产品,现场总线和局域网技术,使家用电器网络化成为可能,利用家庭网络把各种家用电器连接成以计算机为中心的计算机集成家用电器系统,使人们在家里可充分享受各种髙技术带来的好处。因此机电一体化产品夫疑应朝网络化方向发展。

8人性化

电子机械技术产品的最终使用对象是人,如何给电子机械技术产品赋予人的智能、情感和人性显得愈来愈重要,电子机械技术产品除了完善的性能外,还要求在色彩、造型等方面与环境相协调,使用这些产品,对人来说还是一种艺术享受,如家用机器人的最髙境界就是人机一体化。

电子机械技术的创新,对于现代机械设备的科学应用与管理都是具有重要作用的,同时机械设备应用技术的科学创新也是有一定促进作用的。电子机械技术与机械设备应用技术是相互影响、相互促进的关系,两者之间的科学创新是建立在现代科学技术应用的基础上,并结合和借鉴世界先机的技术理论,才能有效保证两者的共同科学创新发展。

第6篇

电子机械制动技术的应用能在满足节能环保要求的同时,打造更加安全的汽车发展平台,配合信息技术、自动化技术以及智能技术等核心技术方案,为汽车行业多元发展提供保障。

1汽车电子机械制动系统的市场价值

一方面,汽车电子机械制动系统的应用大大提升了汽车行业节能水平,充分秉持环保要求,在提高控制精准性的同时也为系统响应效率的全面优化提供了保障。也正是基于汽车电子机械制动系统突出的应用优势,能为企业实现节能环保效益和经济效益的共赢目标。

另一方面,汽车电子机械制动系统的研发和应用真正意义上推进了绿色环保行业发展进程,整合生产发展模式,维持综合应用性能,创设了更加合理且规范的汽车发展体系,促进综合管理模式的全面进步。

综上所述,汽车电子机械制动系统具有重要的市场价值,是实现多元效益和谐统一的核心技术体系。

2汽车电子机械制动概述

汽车电子机械制动系统的应用能有效提高自动化控制水平,配合主动巡航控制模块等,减少制动器响应时间,有效提高整体系统的稳定性。为了发挥电子机械制动的应用优势,要明确其基本结构和工作原理,维持整体系统运行的科学性。

2.1基础结构

在汽车电子机械制动工作过程中,制动踏板和制动器是最关键的两个基础结构单元,维持两者的非机械连接性,才能满足制动的实际应用要求。与此同时,汽车电子机械制动结构会借助电子控制的方式完成程序数据控制处理,用户在实际操作过程中,需要向电子机械制动系统单元输送对应的信息数据,配合传感器完成指令的汇总,从而维持汽车完成安全运行。相较于传统液压制动系统中利用制动器进行真空助力处理,新型的EMB制动系统能配合踏板感觉模拟器和EMB系统完成制动控制。另外,汽车电子机械制动系统中,还需要配合电子元件实现信号和指令的处理,相较于传统的液压元件,其大大提升了安全的效率和应用的效果,并且减少元件空间占比,在满足多元组装和整合的基础上,形成更加和谐且应用效率高的运行整体,为系统综合功能和特性优化奠定坚实基础。第一,制动踏板模拟设备。是电子机械制动系统的核心元件,最基本的作用就是能配合驾驶操作,驾驶员在向踏板施加作用力后,汽车就会利用移动的方式将传感器获得的信号转变为电信号,从而完成信号传输到ECU系统的目的,在系统接收到相关指令后,就能结合指令的具体内容完成响应。

第二,电子控制器设备。其中包括冗余ECU、CPU、输出电路、输入电路等,在实际应用过程中,要利用信号转化的方式,将传感器电信号转化为数字信号,从而形成对应的响应处理工序,提高应用效果。与此同时,数字信号会汇总在CPU中,完成匹配的判定和响应处理,确保电信号分析和计算工序的合理性。值得一提的是,要结合工况完成计算标准的处理和分析,有效了解计算数值后评估统计制动力参数。与此同时,电子控制器设备还能借助输出电路将电子制动器形成的信号直接传送到控制台。

第三,传感器,分为踏板传感器、制动传感器以及轮速传感器,要结合不同的形态应用对应传感器进行信号的传输和汇总,有效建立多元的信号传播模式,最大程度上提高指令接收和应用控制的综合水平。

第四,电能制动设备,主要分为盘式电能制动单元和鼓式电能处理单元,在实际应用中,主要是借助运动转化的处理方式,将电机运行中形成的力矩参数直接转化到制动盘位置,提升汽车制动的实施性水平。需要注意的是,汽车轮毂结构的空间有限,应用电能制动传感器能在维持综合性能的基础上,依据科学化的尺寸设计节省空间,满足应用处理的基本需求,打造更加合理有效的制动处理结构。

2.2工作原理

驾驶员利用踩踏制动踏板的方式,就能将对应的制动信号直接结束输入通道传输到电子机械制动系统中,在ECU获取对应信号后,结合驾驶员的用力参数和情况,提供对应的制动响应,并且配合CAN总线分布处理模式,有效维持不同电子机械制动器信号的处理模式,满足控制制动力的目标。值得一提的是,借助电子机械制动系统不仅仅能对传感器信号予以采集处理,还能配合实际应用环境完成数据的修改和整理,进一步完善制动流程,提升制动力控制的科学性和规范性,最大程度上减少不良问题造成的隐患。例如,在汽车电子机械制动过程中,若是主控制系统异常运行,冗余ECU就会发挥其备用资源处理的优势,更好地维持启动、制动以及行驶的安全性。

与此同时,利用计算机技术将电子机械制动系统和交通管理系统连接,就能更好地发挥附加功能模块的作用,配合驻车制动等基础单元提高综合安全监管的效果,利用自动化控制功能模块提高汽车运行的整体质量,减少能耗和不安全因素。

3汽车电子机械制动关键技术

在汽车电子机械制动技术应用工序中,不同的技术模块发挥其不同的作用和功能,汽车电子机械制动关键技术的应用,不仅能提高系统的稳定性,减少制动距离,还能优化系统调控水平,打造更加和谐安全的驾驶环境,共同维持汽车电子机械制动应用的平衡。

3.1容错需求处理技术

伴随着科学技术的不断发展,电线电子元件能更好地取代液压元件,并且完成后备执行技术,能在优化容错效果的同时,整合资源模式,搭建更加匹配的技术控制结构。与此同时,借助电子机械制动关键技术还能建立容错系统,提高整体结构的可靠性和安全性。

一方面,电子控制元件利用容错需求处理技术能快速进行后备装置的启动,维持其运行状态,及时避免电子控制元件运行异常产生的问题。

另一方面,容错需求处理技术还能制定更加科学合理的容错范围,技术操作人员在引用电子机械制动系统的过程中,配合容错处理技术模块,将重要的信息予以备份处理,借助传感器信息控制确保信息和数据应用的规范性,也能最大程度上提高指令的合理性。

因为电子机械制动系统支持容错处理功能,所以,在应用技术模式的过程中,要配合通信协议进一步促进技术的升级和开发应用。

3.2干扰信号处理技术

在汽车行驶过程中,干扰信号源较多,为了避免干扰信号对汽车运行安全产生影响,要结合汽车电子机械制动系统的应用规范,对不同干扰特性予以分析,利用对称型控制系统和非对称型控制系统建立匹配的应用模式。

其一,对称型控制系统,能应用在具有相同性质CPU制动信号和计算程序制动信号的采集处理工作中,保证信号应用控制的最优化,并且减少信号冗余和信号干扰产生的不良作用。

其二,非对称控制系统,主要是结合部件化设计分析,对不同性质的CPU进行制动信号的采集和分类,完成匹配处理模式。

其三,在电子机械制动技术不断发展的基础上,技术人员要想提升软件和硬件的应用水平,就要结合汽车配置标准和具体要求,落实更加合理的制动处理模式。在抗干扰技术体系应用的同时,将导航技术、转向技术和制动处理技术融合在一起,配合算法建立部件管理模式,满足数据总线系统控制应用标准的基础上,为制动系统运行稳定性和安全性提供保障。

3.3执行器能量控制技术

对于汽车电子机械制动系统而言,要想发挥其实际作用和应用优势,更好地提升汽车运行的稳定性,就要匹配充足的电能结构,维持电能供给的合理性和及时性。结合相关数据可知,传统12V汽车电器系统已经不能满足实际应用要求,传统控制体系逐渐向着42V高性能电压系统方向发展是必然趋势。

一方面,执行器能量控制技术能有效减少高电压造成的安全性能不良问题,打造更加合理且科学的应用平台,合理调控能量模块,确保资源利用率符合实际运行要求。另一方面,技术人员在进行电子机械制动关键技术应用升级的同时,还能对执行器能量控制模式进行标准的优化,匹配完整的应用标准,才能在约束机制统筹管理的同时,发挥技术优势。

除此之外,制动执行器设备的标准也是控制技术应用的关键,技术人员要结合标准和优化要求选择性价比、尺寸等均满足实际标准要求的半导体,结合制动执行设备的应用环境,要求其具有耐高温特性,从而优化能量控制技术应用的效果。

第7篇

从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着高速公路的迅速发展、车辆技术的进步、汽车行驶速度的普遍提髙和车流密度的曰益增大,这种重要性表现得越来越明显。20世纪80年代ABS的出现,到了90年代制动系统开始有了循迹控制和侧倾稳定性控制等功能。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。

随着电子科技和网络技术的发展,出现了更加高效、节能的线控技术(X-by-wire)。电子机械制动系统(Electro-MechanicalBraking,EMB),也就是结合线控技术和汽车制动系统而成的线控制动系统(Brake-By-Wire,BBW),改变传统液压或气压制动执行元件为电驱动元件。电子机械制动系统是一种全新的制动理念,由于电驱动系统的可控性好、响应速度快的特点,电子机械制动系统极大的提高了汽车的制动安全性能,显现出良好的发展前景。

2汽车电子机械制动系统的发展现状

目前电子机械制动技术已成为国外企业和研究机构的研究热点。

从20世纪90年代起,一些著名的汽车电子零部件厂商陆续开始了与电子机械式制动系统(EMB)相关的研究。ContinentalTeves公司已经有了比较成型的试验品,推出了几代电子机械式制动执行器,如图1所示。Bosch、Siemens也都取得了各自的研究成果,并申请了一系列专利-TRW也在进行电子机械制动系统(线控制动系统)的研究。目前EMB仍在试验阶段中,并无批量装车产品进人市场,而国内在这方面的研究才刚刚起步。

3.电子机械制动系统的性能特点

与传统的液压制动系统相比,电子机械制动系统有许多优点:

1)缩短制动距离,优化稳定性;由于制动执行器和制动踏板之间没有了液压和机械连接,取而代之的是数据线,无疑这将大大的减少制动器起作用的时间,进而有效地缩短制动距离;

2)无需制动液,有利于环保,不仅安装更加简单、快速,也有助于提髙系统的再利用性,同时也减少了系统的重量;

3)没有了常规制动系统的真空增压器,减少了所需的空间,使机罩下的布局更加灵活,零件减少,安装简易;

4)制动踏板可调,使舒适性和安全性更好、在ABS模式下踏板无回弹振动,几乎无噪音;

5)可实现所有制动和稳定功能,如:ABS、EBD、TCS、ESP、BA、ACC等;

6)可方便地与未来的交通管理系统联网、可方便地集成附加功能,如电子驻车制动;

7)-些髙级的车辆控制系统,如主动巡航控制系统可以很简单地通过数据总线与制动系统相连,而其它一些简单的功能只需额外的软件或传感器连到制动系统即可。

EMB系统目前还有一些问题,如由于汽车外部环境的变化和磨损,引起的制动执行器效率变化不定,这就给控制带来了困难等。

4电子机械式制动系统的工作原理及结构

4.1EMB系统的工作原理

与传统的液压制动系统相比,在电子机械制动系统中,电源代替了液压源,机电作动器代替了液压作动装置。在EMB系统中,常规制动系统中的液压系统(主缸、真空增压装置、液压管路等)都被如图2所示的电子机械系统所代替,而液压盘和鼓式制动器的调节器被电机驱动装置(制动执行器)所代替,制动力由电机产生,大小受电子控制器的控制。EMB系统的中央电子控制单元根据电子踏板模块传感器的位移和速度信号,并且结合车速等其它传感器信号,向车轮制动模块的电机发出信号控制其电流和转子转角,进而产生需要的制动力,以达到制动的目的。由于没有备用的机械或液压系统,EMB系统的可靠性变得非常重要,要求系统有备用的电源(在主电源失效时工作)和冗余的通讯链路(也就是连接制动踏板的三重冗余链路)。

图2电子机械制动系统示意图EMB系统的控制器采用高可靠度的总线协议,控制系统冗余设计。为了减小空间,可以把电子元件安装在EMB

汽车电子机械制动系统主要由车轮制动模块、中央电子控制单元和电子踏板模块、电源、线束等组成。图3为电子机械制动系统控制框图⑷。

1)车轮制动模块

车轮制动模块是整个制动系统中的关键部件,也是系统的执行元件,由制动执行器、制动执行器ECU等组成。制动模块采用电力制动、电子控制,有两个输人:即控制电信号输入和供能电流输入,制动执行器ECU接受控制信号,根据它控制制动执行器电机的输出力矩和旋转方向,以产生和改变制动力。制动执行器有两种设计方案:一是集成了力或力矩调节器内。

4.2EMB系统的结构组成

传感器;二是没有集成力或力矩传感器。第一种方案,由于有了力或力矩传感器,可省去对制动力或制动力矩这一重要参数的计算,使系统变得更准确、可靠。但力或力矩传感器价格昂贵,而且集成困难。第二种方案,需要根据电流或电机转子转角来估算制动夹紧力。但由于外界环境的变化带来的温度的变化及磨损的影响,不可能只根据电流或电机转子转角来计算夹紧力,须将两者结合起来,才能收到好的效果。

2)中央电子控制单元(ECU)

接收制动踏板发出的信号,控制制动器制动;接收驻车制动信号,控制驻车制动;接收车轮传感器信号,识别车轮是否抱死、打滑等,控制车轮制动力,实现防抱死制动和驱动防滑;ECU还将对系统的电源进行管理,分配电流。由于未来车辆中各种控制系统,如卫星定位、导航系统,自动变速系丨统,转向系统,悬架系统等的控制系统与制动控制系统髙度集成,所以ECU还得兼顾这些系统的控制。

3)电子踏板模块

电子机械制动系统取消了传统液压制动系统中机械式传力机构和真空助力器,取而代之的是踏板模拟器。图5为ContinentalTeves公司的电子踏板模块。电子踏板模块可以提供与踏板转角成比例的反馈力,它将作用在踏板上的力和速度转化为电信号,送给中央电子控制单元。可编程的中央电子控制单元将控制电流输人到制动执行器模块,控制其输出所需的制动力。尽管看起来从踏板转换到制动执行器的输出变得更复杂,但可编程的控制单元使系统设计者能够实现机械系统无法达到的更柔性的传递功能。踏板模块的信号还能够与发动机电子控制单元及变速器控制器共享,从而大大改进车辆的性能。踏板模拟器的输人输出特性曲线要很好地符合人们的驾驶习惯,并根据人体工程学设计以提高舒适性和安全性。目前已经应用的电子液压制动系统(EHB)

相对以前的制动系统的最大的改进就是使用了踏板模拟器,有效地提高了制动响应速度。

2)电源

为整个电机机械制动系统提供能源。为保证整个系统能正常工作,系统应有备用电源,当主电源系统电力不足或发生故障时,备用电源起作用。

3)车轮轮速传感器

为中央电子控制单元提供准确、可靠的每个车轮的轮速信号,判断在制动过程车轮是否发生抱死。

4)线束

给系统传递能源和电控制信号。

5)驻车制动器

EMB系统在装配电子驻车制动系统,提供驻车制动和解除驻车制动的电信号。

4电子机械制动系统的关键技术

EMB系统由于没有后备的机械或液压系统,所以系统的可靠性要求更高,并且系统必须是能容错的。另外还要求系统至少要有与现有系统一样的制动性能,系统的使用寿命要长,易于维护、价格便宜,适合批量生产等。因此,EMB系统需要有下列特点:可靠的能源来源、容错的通信协议和一些硬件的冗余控制等。下面是一些开发中的关键技术。

1)执行器的能量需求。采用全电的制动系统,需要很多的电能,日前的12V车辆电器系统难以支持执行电气制动的髙功率需求。因此,建立42伏电压系统十分重要,同时需要解决高电压带来的安全问题。

2)对容错的要求。在完全取消了液压元件的系统中,没有独立的后备执行系统。虽然许多技术能提髙容错系统的安全性,更为根本的办法还是提供后备系统。当节点或电子控制单元出现故障时,在不破坏现有系统完整性的情况下,启用后备装置。容错程度应随应用场合不同而不同,但重要的传感器和控制器都应该有备份。另外,系统中每一个节点之间的串行通信必须支持容错。而容错就需要开发相应的通信协议。因为现在车辆应用的一些普通通信系统,如CAN等都不能满足容错的要求,所以需要开发一种新型的通信协议。目前世界上对协议研究的比较多,大体有TTP/C、FlexRay、TTCAN等几种。

3)制动执行器的要求。装用电机控制的制动执行器,要求高性价比的半导体具有较好的高温性能,以承受在制动执行器附近产生的髙温。另外,需要开发重量轻、低价位的车辆制动器,而且由于轮毂尺寸的限制,它们的尺寸也需要满足设计要求。

4)抗干扰处理。车辆在运行过程中会有各种干扰信号,目前常用两种抗干扰控制系统:对称式和非对称式控制系统。对称式抗干扰控制系统是用两个相同的CPU和同样的计算程序处理制动信号。非对称式抗干扰控制系统是用两个不同的CPU和不一样的计算程序处理制动信号,两种方法各有优缺点。

另外,电子机械制动控制系统的软件和硬件如何实现部件化,以适应不同种类车型的需要;如何实现底盘的部件化,是一个重要的难题。只有将制动、转向、悬架、导航等系统综合考虑进来,从算法上部件化,建立数据总线系统,才能以最低的成本获得最好的控制系统。

4结语

现代汽车的发展方向是模块化、集成化、机电一体化,电子机械制动系统正是这一发展趋势的体现,它将取代以液压或气压为主的传统制动控制系统。同时,随着其它汽车电子技术特别是超大规模集成电路的发展,电子元件的成本及尺寸不断下降,汽车电子机械制动控制系统将与其他汽车电子系统,如汽车电子悬架系统、汽车主动式方向稳定系统、电子导航系统、无人驾驶系统等融合在一起成为综合的汽车电子控制系统,各种控制单元集中在一个ECU中,并将逐渐代替常规的控制系统,汽车底盘系统进一步电控化,实现车辆控制的智能化。

                                                                   张立新