欢迎来到优发表网,期刊支持:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数字医学范文

时间:2023-10-11 16:14:39

序论:在您撰写数字医学时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

数字医学

第1篇

英文名称:China Digital Medicine

主管单位:中华人民共和国卫生部

主办单位:卫生部医院管理研究所

出版周期:月刊

出版地址:北京市

种:中文

本:16开

国际刊号:1673-7571

国内刊号:11-5550/R

邮发代号:

发行范围:国内外统一发行

创刊时间:2006

期刊收录:

核心期刊:

期刊荣誉:

联系方式

期刊简介

《中国数字医学》(月刊)创刊于2006年,是中华人民共和国卫生部主管,卫生部医院管理研究所主办,中国医院协会信息管理专业委员会、中华医学会医学工程学分会协办的国内医疗卫生信息化领域唯一的国家级科技学术期刊。杂志读者的对象主要包括:(1)医疗卫生领域、公共卫生领域的各级各类管理人员、医务人员、医学工程技术人员、信息工程技术人员等;(2)医学科研机构中的各类研究人员;(3)医学高等院校教职员工及学员;(4)医学学术团体及相关专业委员会;(5)IT企业、厂商(包括信息系统软件开发商、供应商,信息技术设备制造商,信息技术设备供应商等);(6)数字医疗设备制造商、供应商和服务商等。

第2篇

另一个现实问题也摆在我们临床医生面前:数字医学,我懂吗?我能做什么?普通临床医生应该如何认识自己在数字医学中的角色?实际上,已有不少临床医生敏锐地认识到数字医学实践对推进临床学科发展的重要意义,及早进行了数字医学的临床实践摸索,并取得了优异成绩。例如:浙江医科大学第一附属医院将3D技术应用于活体肝移植实践,有力地支撑了精准手术决策[1-2];广州总医院骨科积极开展了数字骨科的创新性研究,将数字化重建与快速成型技术应用于复杂上颈椎疾患等骨科疾病的诊治,取得了良好的疗效[3-4];新疆医科大学第一附属医院将数字技术应用于对巨大肝泡型肝包虫病的诊断治疗[5],中国人民总医院、福建医科大学第一附属医院、中山大学第一附属医院等单位开展了基于肝脏三维图像的肝段自动划分及虚拟性肝切除临床实践,提高了肝脏外科的精准技术水平等[6-9]。其中有一个团队的发展轨迹十分值得我们关注,即南方医科大学附属珠江医院肝胆一科团队。2002年该团队开始进行数字医学在肝胆胰外科的应用研究。他们在研究工作中克服了常用的国外Myrian等软件只能进行肝脏3D和单面虚拟手术、CT的3D功能也存在重建质量和交互性差异的弱点,在数字虚拟人肝胆胰图像3D和仿真手术基础上,率先通过对64排CT采集数据技术的改进,突破了获取活人体亚毫米图像数据的瓶颈,研发出了具有我国独立自主知识产权、能同步立体显示肝胆胰脏器的MI-3DVS软件,实现了解剖数字化和诊断程序化;同时,在国际上率先自主研发了由外科医生操作的多功能仿真手术器械和仿真手术系统,可有力地配合MI-3DVS进行仿真手术,指导临床术前制定精准手术方案,实现了手术可视化,解决了大量的临床疑难问题,建立了我国首套数字医学肝胆胰外科数据库[10-15]。黄志强院士指出:南方医科大学研发出来的三维成像技术,作为我们国家代表性的三维数字医学技术,应用于外科方面。对于临床上了解肿瘤与门静脉、肝静脉和肝动脉的关系,作为术前评估,比以前更容易了,誉其为转化医学的良好典范[16]。

总结在数字医学实践中获得优异成绩者的成功经验,有以下几个关键性成功元素:(1)创新的攻关理念,即数字医学技术如何直接转化为临床病人实施精准治疗、获得最佳效果服务。(2)明确的攻关目标,如南方医科大学附属珠江医院肝胆一科团队的主要目标是建立可为外科医生直接操纵的、用于指导精准手术的腹部医学三维可视化系统——MI-3DVS—虚拟手术系统,及其要完成这个总目标必须实现的子课题(特殊组织、微小器官信息获取、图像分割、三维重建,手术导航等)。(3)多元的攻关团队,其中包括临床外科医生、解剖学专家、影像学专家、计算机专家、软件制作专家等。(4)坚韧的攻关精神,在临床科研的实施中边学习、边实践、边研究、边验证、边总结、边思考,不断升华,不断赋予新的研究目标和内涵,使课题不断向纵深延伸、向高层发展,始终充满活力。(5)最重要的,他们有一个精诚团结的攻关领导核心。转化医学有三层内涵。第一阶段即T1阶段,是根据临床需求,进行创新性研究,力求实验室和临床研究的成果能用于提高疾病防治效果。个人理解,简言之,就是结合临床“找问题,做研究”。从数字医学角度来说,就是要根据临床的需求,进行数字医学基础研究,获得关于数字人体的新认识,开发出新的临床精准诊断疾病、虚拟手术的应用技术手段以及管理手段,用于临床诊断、治疗和预防等,提高诊治水平和效果。这个阶段,涉及到人体解剖、外科学、病理生理、影像学、计算机三维成像、信息化网络平台的构建等多个学科的联合攻关。中国工程院程京院士最近在中国医师协会外科医师分会第五届学术年会的报告中谈到,我国转化医学路径的特点是“CURING”模式,C:Clinic,临床,从临床发现问题;UR:UniversityResearch,大学研究,将临床发现的问题在大学进行相应的研究;IN:Industry,工业,通过工业化将研究成果制备成产品;最后,还有G:Government,即政府的支持。数字医学的T1阶段正是CURING模式的生动体现。首先,要寻找到与数字医学相关的临床问题,如肝胆管结石病容易复发,术后残石率高达61.3%,再手术率高达56.4%,即使有纤维胆道镜的普遍使用,残石率仍可达19.5%[17]。因而复杂性、多发性肝胆管狭窄并结石病人常需多次、反复手术,给病人带来极大的痛苦。究其原因,主要是肝内胆管的走行多变,狭窄位置不定,术前难以确切显示定位,确定诊治策略存在一定的难度。B超、CT、内镜逆行胰胆管造影(ERCP)、磁共振胰胆管成像(MRCP)等现代化检查手段都不能达到理想的诊断。南方医科大学附属珠江医院肝胆一科团队抓住这个临床问题,将其凝练成“如何获取亚毫米微细脏器、管道数据”这一科学问题,与数字人体解剖专家、影像专家、计算机专家联合攻关,最终突破了高质量胆道数据采集的瓶颈,获得了高清度结石、扩张或狭窄胆管的图像数据,使病变繁杂、难以确定根治性治疗方案的肝胆管结石手术变为病灶明确、手术方式精确。在此基础上经过与软件生产公司的联合,使研究结果变为可用于外科医生在临床独立电子计算机上操作的软件系统,术前进行虚拟手术,拟定精准治疗方案,使Ⅰ、Ⅱa、Ⅱb肝胆管结石病的术后残石率降低至1.0%[18],治疗效果大大提高。目前该软件系统正在接受政府(国家食品药品监督管理局)的审查,争取在国家法律法规的批准、监督下正式上市,在临床广泛推广应用。由此可见,数字医学的T1阶段,要从临床出发考虑问题,研发出直接为临床所用的数字医学设备、软件产品,具有重要的“原始创新”意义。临床是T1阶段的首要启动环节,如果没有临床问题的发现、挖掘,就谈不上此后的一系列转化研究的进程。既往许多基础研究费精劳神完成后却被束之高阁,其主要原因常常是在T1阶段没有选准能解决临床需求的问题所致。临床医生在T1阶段所担负的角色应该是临床问题的发现者、科学问题的凝练者、临床科研的实践者、研究结果的验证者。临床医生的任务是如何深入细致地发现临床中的疑难问题,将其提升、凝练成如何进行科研攻关的科学问题,并参与进行攻关研究,验证研究结果,促进临床诊疗技术的进一步发展。转化医学的第二阶段,即T2阶段,是将研究成果用于日常临床工作及制定预防保健决策。这是使T1阶段研发的成果真正转化成为促进人类健康的有效措施的实践过程。从数字医学实践来看,应是充分应用各种数字技术产品所体现出的数字技术的精准性、快捷性、信息共享的广泛性等,对临床疑难问题进行精确的分析评估,对比分析研究,发现特异性数字征象,总结规律性经验,用于指导和拟定精准的手术或综合治疗方案,并验证其临床效果,挖掘新的问题,进一步转化,进入新一轮T1进行深入研究和改进。

简言之,就是将T1阶段研发出的数字医学技术成果进一步“推广应用,验证提高”。因此,该阶段是消化吸收再创新的重要阶段,内涵更加丰富,范围更加广泛,需要投入更多的人力、物力、精力、财力。也只有通过这一阶段,在T1产生出的数字医学原始创新成果才能得到真正意义上的印证和认可,为临床所接受,为病人服务,创造出巨大的社会效益和经济效益,实现转化医学的真正目的。在此阶段,由于临床医生最接近临床实际,最有利于及时观察、研究、探索、发现T1结果的时效性、准确性,因而应该可以发挥出创新性研究的更大潜能,更多的主观能动性。临床医生在数字医学T2阶段担负的角色应该是T1阶段研究成果的临床实施者、推广应用者、对比研究者、归纳总结者。在这方面,已经有大量的研究报告得以证实,诸如我们在前面所提到的多个优秀团队的杰出工作。转化医学的第三阶段即T3阶段,是将实验与临床研究作为制定卫生法规的依据。T3是更高层次的转化,具有更重要的指导全局的意义。从数字医学实践探讨其含义,我理解就是要充分运用信息传递的快捷性、信息共享的便捷性等数字技术的优势,准确快速地汇集和分析各种资料,进行队列研究及RCT研究,为各项疾病的规范性诊治“指南”、“共识”的制定、医疗机构等级评定、医保的范畴决策等提供依据,以及通过高层次的行政管理、学术规范管理举措,进一步规范医疗行为,增强医务人员素质,提高临床诊治水平。简言之,“拟定规矩,规范行为”。临床医生在此阶段担负着更为重要的角色和任务,他们应该是数据采集者、资料分析者、标准制定者、依据提供者。例如,最近中华医学会外科学分会胆道外科学组应用现代数字医学影像学技术,包括3D成像分析技术,结合解剖学、手术学、病理学依据,制定了胆道疾病规范性诊断治疗文件,用以指导胆道外科临床,使数字医学技术成为开展规范性精准肝胆外科的有力支撑。综上所述,数字医学绝不仅仅是影像学专家、计算机专家、医学管理专家的事情,在数字医学T1、T2、T3相互转化的进程中,临床医生承担着重要的角色,是不可低估的中坚力量。同时,通过数字医学实践,使临床医生对病情的分析、治疗的决策由过去的经验决断转化为今天由信息技术支撑的精准决断,有助于提高分析、决策的精准性,从而使病人获得最佳的治疗效果。这不仅造福于广大病人,而且有助于提高临床医生自身素质,促进学术发展,规范医疗行为,更好地为病人服务。临床医生在数字医学中如何胜任自己的角色?(1)具备多种知识,不断学习提高。临床医生要实现数字医学的转化医学理念,产生创新性研究成果,不仅需要掌握外科学、手术学、解剖学知识,而且要具备计算机学、信息学、影像学等多方面的知识,只有加强学习,不断进取,才有可能适应“知识爆炸”时代数字医学与临床医学相互交融、日益迅速的技术发展。(2)认真思考问题,凝练攻关靶标。创新性成果来源于创新性思维,而创新性思维来源于在看似平凡的临床现状中勤于发现现存问题,善于凝练科学问题。如果每天满足于完成日常工作,熟视无睹,得过且过,是不可能有所发现、有所发明、有所创造、有所前进的。(3)组织交叉团队,团结合作协调。一个人的技术水平再高,所具有的知识毕竟是有限的。临床医生充分认识自己在数字医学T1、T2、T3的角色,是为了更好地发挥主观能动性,主动进行基础研究与临床需求之间的相互转化,使病人直接受益,但应认识到数字医学是个多种知识交叉融合的前沿学科,单凭临床医生是难以完成复杂的整体研究工作的,应注重与其他学科专家的紧密联手,虚心向他们学习,尊重他们的创新思维,协调合作,共同努力,方能完成转化医学大业。(4)注重创新发展,勿忘主题目标。转化医学之所以被高度重视,是因为既往诸多耗费大量资金的基础研究难以付诸于促进临床医学发展、使病人受益的现实,因此,在进行数字医学创新发展的探索时,应时刻勿忘转化医学的根本宗旨,注重从临床找问题,为促进又快又好地精准诊断治疗、切实提高人民健康水平而解决问题,防止重蹈覆辙。

作者:卢绮萍

第3篇

DICOM(digitalimagingandcommu-nicationinmedicine)标准即医学数字成像和通信标准,由美国放射学会(ACR)和国际电子制造商协会(NEMA)共同制定。DICOM标准致力于更有效地在医疗信息系统间(如PACS、HIS/RIS)、医学影像设备间(如CT、MR、CR)传输、共享数字影像[2]。DICOM标准的建立极大地推动了不同厂商的医疗数字影像信息的传输与交换,促进了影像存储与传输系统PACS(picturearchivingandcommunicationsys-tems)的发展与各种医院信息系统(hos-pitalinformationsystems,HIS)的结合,实现了异地、异构诊断资料库的共享。迄今为止,DICOM共颁布了三个主要版本。CR/NEMAPSNo.300-1985,Version1.0,发表于1985年,1986年10月正式成为标准;CR/NEMAPSNo.300-1988,Version2.0,1988年1月颁布为标准;DICOMVersion3.0,源自ACR-NE-MA两次发表的标准,1993年。每年,ACR-NEMA都推出DICOM3.0的修定草案,目前最新的版本是DICOM3.02000年最终草案标准(FDS)[1]。相对于以前的版本,DICOM3.02000明确地划分了设备应遵从的标准范围,更加明确了信息实体,强调了基于多元文档的结构、基于TCP/IP的协议和适用于网络的环境。随着DICOM标准的不断完善,世界医学影像设备的主要供应商都宣布支持DICOM标准。DICOM标准已成为北美、欧洲及日本各国在医疗信息影像系统中的标准。我国的医疗信息综合系统和PACS的建设虽然刚刚起步,但发展很快。在系统的建设和实施中为了确保它们能够实现开放互联并具备与国际接轨的能力,DICOM成为必须遵循的国际标准,因此对DICOM标准的分析和研究必不可少。作为国际标准,DICOM具有覆盖面广,内容复杂的特点。本文旨在分析它的总体框架和关键内容,力图从这个庞大的标准中理出一条明确的脉路,对实际应用起到指导作用。

2DICOM的主要内容和信息模型

2.1DICOM标准的组成、功能及其相互

关系完整的DICOM3.02000标准由15个部分构成[1],各部分是相互关联的独立文件。虽然某些部分的内容在不断补充和完善,但总体框架已经最终确定:(1)介绍与总论:全面介绍DICOM的历史、目的、结构和适用范围,并对其他部分的内容做了简介。(2)兼容性(或称遵从性):详细说明DICOM的兼容性目的和架构,同时给出了在开放互联方面对遵守该协议的设备的具体要求。(3)信息实体定义:针对用于数字化交流的实际医学影像给出一个抽象的定义,同时定义了可以使用DICOM进行通信的类别。(4)服务类的说明:对一系列的服务类进行了定义,给出用于数字化交流的操作行为的抽象定义,即定义使用DI-COM进行通信的服务的类别。(5)数据结构和语义:对数据结构及数据的编码进行说明。(6)数据字典:包括对所有DICOM数据以及所有在DICOM标准内部定义的数据的注册和认可信息。(7)信息交换:本部分定义了DI-COM命令的结构(命令结合相关数据即组成DICOM消息),同时也定义了DI-COM应用实体间的协议握手方式。(8)网络通信支持下的数据交换:这一部分说明了在网络中,DICOM如何使用TCP/IP和OSI网络传输协议。(9)点对点传输下的信息交换:说明在点对点传输下支持应用DICOM协议进行数据交换的服务器和网络上层协议。说明DICOM如何支持50针点对点消息通信的服务和协议。(10)介质储存和存储介质间交换的文件格式:它提供了一个用于不同类型医学影像间数据交换及不同物理介质相关信息交换的框架。(11)介质存储的应用方式:说明将医学影像信息存储于可移动介质的的模式。(12)介质格式和用于内部交换的物理介质:描述了如何便利医疗环境中数字影像计算机间的内部信息交换。这样的交换可应用于医学图像诊断或其他潜在的临床领域。(13)点对点传输下的打印管理:详细说明打印提供者在点对点联接的情况下支持DICOM打印管理所必须的服务和协议。(14)显示的灰度标准:详细说明灰度图像的标准显示功能,它提供了一些样例方法,说明如何调整灰度图像与显示系统。(15)安全策略方法:说明了具体应用所应遵循安全策略的兼容方式。DICOM的15个部分之间既相互独立,又互相联系,从涉及的主要内容和关联程度出发可分为3个集合[4]。数据传输协议集包括第7、8、9部分及第13部分,描述了点对点连接与网络环境下的数据传输协议,定义了网络环境下的打印管理应用。数据格式(编码、储存)集包括第5、6部分及第10、11、12部分,描述了不同条件下数据存储的标准格式。标准框架及其他包括第1、2、3、4部分、第14部分及第15部分,描述整个DI-COM标准的结构、目的和要求及图像灰度标准,并定义了安全策略。

2.2DICOM的一些重要概念

DICOM标准中定义了一些重要的概念,有关模型和协议也是以这些概念为基础来设计和制定的。(1)应用实体:应用实体是指一个具体的DICOM应用程序。(2)服务类:服务类是对现实中医学信息的传递和通信的抽象概括,它包括作用于信息对象的命令及结果。DICOM服务类提供客户/服务角色,通过网络要求DICOM服务的应用实体称为服务类使用者(SCU)。提供DICOM服务的应用实体称为服务类提供者(SCP)。(3)信息模型(informationmodel):信息模型描述了实体之间的关系。通常,用“E-R”模型定义一对多或多对多的关系。(4)消息服务元素(DICOMmessageserviceelements,DIMSE):DICOM标准定义了一系列系统网络命令。SCU/SCP利用消息服务元素在网络上进行服务,消息服务元素可以被认为是网络通信的最基本单位。(5)协议握手:应用实体间必须达成一个协议,才能相互通信。这个协议包括:①哪些服务可以操作,命令和数据如何相互交流;②传输规则,消息流(包括命令和信息对象)如何在通信过程中进行编码。

2.3DICOM的信息模型

DICOM的信息模型,DI-COM协议为外界提供服务的最高层次是服务类,每个服务类可包含多个服务对象对,信息实体定义包含了大量的相关属性。图1清晰的给出了SOP、IOD和服务类之间的关系。下面据DICOM的信息模型,讨论其中的概念。

2.3.1DICOM信息实体的概念DI-COM标准采用了信息实体关系模型E-R模型(如图2)。信息实体代表一个实际的对象、实际对象类或者DICOM内部定义的数据类如信息对象(informationob-jects);关系定义有多少其他实体与该实体有联系[5]。通过建立这个模型,DI-COM标准能够方便的描述医学实践中的事物如病人、报告、图像及它们之间的关系。由E-R模型和真实实体可以抽象出模型定义的实体,每一个实体的特征用属性来描述,例如“病人”这个实体的属性包括“病人姓名”、“病人ID号”等。DICOM称基于其模型的对象为信息对象,对应于某类图像如CT、MR;称定义它们属性的表格和模型为信息实体定义(IOD)。

2.3.2服务类/服务对象对类(serviceclass/SOPclass)服务类指能够发生的各种服务和操作,DICOM中的服务类包括验证服务类;存储服务类;病人管理服务类;查询检索服务类;打印管理类等[3]。服务/对象对类由信息实体定义和消息服务元素组一一对应组合定义。SOP类是DICOM信息传递活动的基本功能单位,它包括了限定消息服务元素组服务和信息实体属性的规则和语意,可以将它类比为ISO/OSI中的管理对象类。

3DICOM的网络通信

3.1DICOM的网络通信

DICOM为了传输医学影像和相关的信息,结合ISO/OSI和TCP/IP协议设计了自己的网络通信协议和消息交换机制[1]。图3的参考模型表明,DI-COM应用实体属于网络分层模型的应用层,它使用上层服务完成消息交换和信息传输。为了实现应用实体间的通信,相应于ISO/OSI协议模型,DICOM标准使用关联控制服务元素、表示层内核、会话层内核提供上层协议服务;相应于TCP/IP协议模型,DICOM标准定义TCP/IP上层协议提供上层协议服务。

3.2DICOM的通信方式符合DICOM标准通信模式的应用实体间的信息交换采用了客户/服务器模型。服务类使用者(SCU)和服务类提供者(SCP)分别扮演了客户/服务器的角色。SCU/SCP采用了DICOM定义的消息机制完成相关信息的交换。实际通信中,应用实体间首先需要建立协商,协商的内容包括:①哪些服务可以操作,哪些命令和数据可以相互交流;②传输语法,消息流(包括命令和信息实体)如何在通信过程中进行编码。给出了遵从DICOM标准的通信方式。第一步和第二步合称为连接协商,确定交换哪些数据以及数据如何编码交换,交换内容包括应用层上下文,其中定义了应用服务元素组、相关操作以及其他相关互操作应用实体的必要信息;表示层上下文,定义连接中的数据表示方式;应用连接信息,列出了与DIMSE协议相关的一些所需信息,包括SCP/SCU角色选择、应用层协议数据单元最大长度等。第三步建立协商,进行数据传输,应用实体间进行信息的传递,DICOM命令和DICOM文件被组装成协议数据单元,并通过协议数据单元服务传送数据。第四步撤销协商,中止应用实体间的通信,可以是连接方发出的正常释放方式或连接某一方发出的突发中止方式。

4DICOM数据结构及文件格式

数据结构是针对如何组织数据而定义的。给出了具体的数据结构,其中数据集(DataSet)定义为DICOM信息对象和服务类信息的集合,如病人IOD就可以用一个数据集合来表示;数据元素用来表示信息对象的属性如病人性别、姓名等,每一个数据元素又可以再分为标识(Tag)、数值表征(VR)、数据长度(valuelength)和数据域(valuefield),其中数值表征只存在于特定的情况下,而其余三个部分是所有数据元素共有的。DICOM文件结构提供了一种打包文件的手段,将代表SOP实例的数据集保存到DICOM文件中。图6给出了DI-COM文件格式。图中,SOP实例必须经过编码,编码的规定涉及JPEG压缩编码描述及传输语法规定等,图中的DICOMFileMetaInformation是必须的,相当于DICOM文件头,它的组成元素见表1。

5DICOM支持的影像压缩方法

医学图像的压缩无疑是降低应用系统成本,提高网络传输效率,减少存储空间的一个重要方式。DICOM标准加入了对图像压缩算法的支持,DICOM已宣布支持的压缩算法有:①JPEG(ISO10918-1)-全部有损(DCT)、无损、Huff-man,arithmetic熵编码;②游程长编码RLE;③JPEG-LS(ISO14495-1)(DI-COMCP-174)无损和近无损。目前,DICOM正在研究对最新的压缩标准JPEG2000支持的可能性[2]。在DICOM标准的传输语法中,为其支持的压缩算法设置了相应的惟一标识值(不同的编码过程,对应有不同的惟一标识值)如惟一标识值1.2.840.10008.1.2.4.80代表JPEG-LS编码过程无损模式。

第4篇

美国医学会期刊《内科医学》发表的一份报告指出,多吃含有丰富欧米伽-3脂肪酸的鱼类如三文鱼、沙丁鱼、鱼等,可把致命心脏病发作的风险降低10%。

1/3

美国西北大学进行了一项新研究,探究女性在孕前、孕期和产后这三个阶段出现抑郁的问题。结果发现,怀孕期间出现抑郁症的女性超过了1/3。具体数据是:有37%的孕妇说他们在怀孕的9个月里患过抑郁症,另外有25%的女性说她们在孕前出现过抑郁症,还有38%的人说她们在产后得了抑郁症。

3

英国南安普敦大学医院一外科专家称,他现在每年要接待大约200名不到30岁因为剧烈运动受伤的患者,而两三年前只有大约50名,且以军人、职业运动员居多。以下3种运动可能导致身体受伤:在短时间里完成多组动作的混合健身法(CrossFit)、以锻炼腿部肌肉为目的的相扑式深蹲、高强度室内自行车运动。

3

英国一份权威研究报告指出,要是世界各国不就抗生素滥用等问题紧急采取行动,到2050年,所谓的超级细菌将会在每3秒钟就导致1名病人死亡。

6

一项由加拿大政府资助的,由德班人体科学研究委员会成员主持的研究发现,产后6个月纯母乳喂养的孩子,患有品行障碍症的风险要比哺乳期少于一个月的孩子低56%。

650万

国际能源署报告称:大气污染已经成了一场重大的公共卫生危机,每年导致约650万人死亡。

0.80

德国糖尿病研究中心的Schulze教授及其团队进行了一项研究,调查哺乳与产妇患2型糖尿病风险之间的关系。研究发现,受试者哺乳时间每增加6个月,其发生糖尿病的风险比为0.80,哺乳时间与糖尿病风险之间的相关性减弱。该研究提示,延长哺乳时间或许可降低糖尿病风险。

57.4%

澳洲迪肯大学研究人员分析了多年积累下来的美国国家健康检查和营养调研数据,发现61%的受调查者有抑郁症状;他们同时表示,在过去的1年里牙齿有疼痛不适感,其中又有超过57.4%的人自认为牙齿健康状况不好。结论是:牙齿好坏与抑郁症存在关联,牙齿越差,心情越不好。

58%

美国威斯康星大学医学和公共卫生学院的研究者发现,经常锻炼有助于保护视力。研究人员选取了近5000名年龄在43~84岁的成年人,对他们进行了为期20年的追踪随访调查。结果显示,在控制了年龄因素之后,与久坐的人相比,每周锻炼三次或以上的人,视觉受损的可能性下降了58%。

第5篇

2011年5月21日,中华医学会数字医学分会在第三军医大学举办隆重的成立大会。该学会的成立,标志着在钟世镇院士倡导下,以解剖学为基础的“虚拟人”发展到“数字医学”,数字医学成为生命科学、工程学与计算机科学交叉的新兴学科。

中华医学会、重庆市政府、总后卫生部、第三军医大学等单位的领导,以及来自全国医疗行业的专家教授200余人出会。大会选举张绍祥教授为中华医学会数字医学分会第一届委员会主任委员。

张绍祥教授认为:数字医学是指现代医学和数字技术相结合,包括医学、计算机科学、数学、电子学、机械工程等多学科的一门新兴的交叉学科。数字医学具有强大的生命力,它不仅突破了传统的学科架构,而且渗透到医学的各个方面,带来医学的革命性变化,现已成为当今世界最为活跃的前沿学科之一。数字医学涉及许多方面,目前在外科手术导航、影像立体重建、人体器官个性化制造等方面有所建树和突破,为临床医学带来全新的手段。

在医学界,钟世镇院士被誉为中国现代临床解剖学的奠基人、中国数字人和数字医学研究的倡导者。2001年,钟世镇院士在第174次“香山科学会议”上首次研讨了“中国数字化虚拟人体的科技问题”。中国人体数据库初步建成后,钟世镇院士开始担任“中国数字人研究联络组组长”。

钟院士介绍,数字医学由“虚拟人”发展而来,而“虚拟人”研究分为四个发展阶段:第一阶段是数字可视人;第二阶段是数字物理人,拥有人体的物理性能,可以模拟肌肉的运动;第三阶段是数字生理人,可模拟人的生理功能,到达第四个阶段的数字智能人则将具备一定的思维能力。

目前,中国对“虚拟人”的研究已经达到第三个阶段――数字生理人。数字人课题组已构建了八套男女全身数据集,数十套人体器官数据集,以及数十套用于了解人体结构的数字化解剖软件。

“虚拟人”技术一经推出便吸引了各个领域的目光。除医学领域,在汽车碰撞实验、航天技术、服装设计业、影视等方面,“虚拟人”技术也充分得到运用。在“神六”返回舱设计和着陆过程中,“虚拟人”数据集同样功不可没。

然而,令钟世镇更为关心的是,如何能让“虚拟人”技术在医学领域推陈出新,将解剖学这一古老的学科变为真正的“朝阳学科”。“要解决‘治病救人’的问题,现在我们更应该倡导‘数字医学’,转向临床当中的实际运用问题。”钟院士说。

为了使“数字医学”这门新兴的学科更好的发展,在钟世镇、戴戎、王正国等院士和傅征教授的联名提议下,经中华医学会、中国科协、国家民政部批准,中华医学会数字医学分会于2011年5月正式成立。

“虚拟人”研究

人体是由一百多万亿个细胞组成的复杂整体,仅人的神经系统就约有1000亿个神经元,而且由细胞构成的组织器官间的相互作用,人体与外界环境的冲突与和谐,这些极为复杂的变化对于人类自身至今还是一个充满未知的神秘世界。

1895年德国科学家伦琴在一次实验中偶然看到了射线下妻子的手骨,这是人类有史以来第一次透过皮肤看到自身内部,由此揭开了人类利用以X线为代表的透视工具探索人体内部奥秘的序幕。

今天科学家们掌握的透视工具越来越多,但是仍然无法满足人类更为全面了解自身的渴望。科学家们为此所做的全部努力都在指向同一个问题,究竟利用什么样的手段能重建可以真实的反应人类生理机能活动的虚拟人体。

1989年美国人在这个领域率先跨出了关键性的一步,他们设想:能否将人体标本通过计算机技术转换成人体数据集,能够让使用者象检索图书资料那样方便的查询、获取人体信息。这个项目由美国国立医学图书馆发起,计划的名字通俗易懂而且充满想象力,它被正式命名为:虚拟人类计划。这个大胆的设想在当时一度引起医学界的怀疑。要采集这些数据必须先将人体标本切成薄片,并用数码相机和扫描仪对切面进行拍照、扫描,之后将数据在计算机里合成三维的立体模型,其中的精心程度与庞大的工作量可想而知。1991年和1994年研究小组分别选择了男女各一具尸体作为标本获取了完整的人体数据,这些数据称为V.H.P.数据集。在1989年到1994年的五年里,美国人把虚拟人类的构想推进到了试验阶段,这意味着美国“虚拟人”技术已经达到了可视程度。

虚拟人类自己这显然是一个大胆的设想,而当人们通过理性分析发现“虚拟人”绝不是另外一种克隆时,“虚拟人”研究就必然成为一项激动人心的重大科研项目。

1996年在美国国防部非致命武器委员会的积极支持下,橡树岭国家实验室牵头酝酿“虚拟人”创新计划。在他们的构想中,“虚拟人”应该能够模拟人体在外界物理刺激下的反应,他会象真人一样骨头会断、血管会出血,有专家称之为:虚拟物理人。如果说虚拟可视人还仅仅是一个可供人们观看的人体模型,虚拟物理人则使得这个模型有史以来第一次对外界刺激有了反应。在科学家的计划中它不再是一个静止的标本,人类将在计算机建造的虚拟世界中看到另一个自己在呼吸、走动,更会通过模拟各种环境的变化,探测人体极限。这个计划的目标已经非常接近科学家一直梦想的虚拟人类。

由于构成“虚拟人”的数据来源于自然人,因而“虚拟人”具有民族、区域等特征,东方人的特点明显的与欧美人不同,因此中国建立具有自已国家人种特征的数字化人体模型成为填补空白的问题。

美国“虚拟人”研究小组在2000年就已经建立了人体主要器官的三维模型,中国的“虚拟人”计划要在技术上占领哪个制高点?人体内的血管系统可以分为四级,数量达到上千万条,手术时医生往往需要更为完整、微观的血管地图,以制定安全的手术方案。长期以来尽管医学专家尝试了很多办法,但是这些大大小小错综复杂的血管网络的具体形态分布仍然充满未知,因此怎样将人体血管系统通过不同颜色准确区分出来,成为一项具有挑战性的课题。

从1996年开始,美国“虚拟人”研究小组就面向全球征集建立血管模型的解决方案,但是其中的关键问题一直没有获得解决,而钟世镇院士独有的血管铸型技术为中国人在这个领域有所突破提供了可能。由此中国“虚拟人”项目的关键技术被正式确定为攻克血管模型。2001年11月举行的第174次香山科学会议被认为是中国数字“虚拟人”研究的开篇。中科院李华博士、第一军医大学钟世镇院士、首都医科大学罗述谦教授等人向国家提出了研究中国“虚拟人”的设想,很快“虚拟人”技术研究被列入国家863项目。

2002年12月,广西一名19岁的女孩因不慎误食毒蘑菇引起食物中毒死于广州,家属同意捐献其遗体。经过科学家们仔细检查与评估,最终决定以她作为人体标本采集数据。中国第一例“虚拟人”――虚拟人女一号数据开始采集。中国第一例“虚拟人”数据采集,每片标本的切削间距为0.2mm,对每片标本进行拍摄平均需要3分钟,为保证切削连续性,工作人员要在低温环境下昼夜轮换持续工作,整个切削过程持续了一个月。2003年2月16日虚拟人女一号完成图像采集。中国第一例虚拟人体数据采集共获得8556张断层图片,每片间距0.2mm,总数据量149.7GB,切片数据被存成计算机可以识别的数字信息,进行数据处理。罗述谦教授领导着一个研究小组,海量数据汇集到这里,他们面对的问题就是将近万张二维图片在计算机里合成,并将其数字化变为三维立体人。要完成这个工作,首先要解决的是数据的精确配准问题,所谓配准就是把这8556层对齐,因为切削加工时间比较长,前后有一个多月的时间,由于机械加工的一些晃动,数码相机的移动,以及照明的不一致性,因此就造成一些断层图像有相对左右位移和上下位移,如果不能有效地校正这些位移的话,重建出来的这个人体周围就是虚的。将8556张图片中大大小小上千个器官组织一一对准,是一个要付出极大耐心的工作。尽管可以利用专门的软件作为工具,要完成这样的任务对于负责模型重建的工作人员仍然是一项极大的挑战。

大脑是人体最为重要的生命器官,人体许多疾病的发生、发展与大脑深度的核团密切相关,长期以来大脑核团的具体形态与结构一直是一个谜。研究人员希望通过“虚拟人”技术将这些大脑核团准确标识出来,为临床医学家提供更为精确的三维图谱。

人体三维模型建立的精确与否直接关系到“虚拟人”数据集的应用价值。血管模型的精确重建为将来临床上的进一步应用奠定了基础。同时李华博士的小组还进行了另一项具有挑战性的工作,他们尝试对人体最为复杂的神经组织进行重建。从2003年虚拟人女一号数据集采集完成以来,经过近一年多的努力,基本完成了人体标本大部分器官组织的重建工作。

数字医学研究取得重要进展

“虚拟人”能做什么?究竟有什么用?成为大家日益关心的问题。

近百年来尽管人类医疗手段在不断更新,但是针对人体重要器官的手术风险依然严重威胁着患者的健康与生命。医生一直致力于建立更为有效地模拟手术平台,训练临床医生便捷的获得手术经验。“虚拟人”技术的出现有助于这个梦想成为现实。它给全球的医学工作者在改变现有手术训练模式方面提供了极大的想象空间。

眼睛是人身上最为脆弱的器官之一,长期以来眼科手术的复杂性以及高危险性,一直是令临床医生头疼的问题。一名眼科医生在走上手术台之前至少要经过50次手术训练。医学上一直在探索一种能够低成本、耗时短、有效的手术培训方式。

针对眼科医生在手术训练方面遇到的困难,厦门大学计算机系王博亮教授尝试建立人体眼球单个器官的模型。在他的实验中,眼球的切削精度达到了20μm的细胞级别。为了使自己的研究成果能够紧密结合临床,王博亮找到了眼科手术专家吴医师作为合作伙伴,共同研究虚拟眼球在临床上应用的可能性。他们的目标是建造一只能模拟人类眼睛的各种生理机能的虚拟眼球。它不仅能够帮助眼科医生进行手术训练,还帮助眼科专家揭示人类眼科疾病的发生机理。

今天已经有越来越多的科学家从自己的专业角度出发加入“虚拟人”技术研究领域。他们纷纷从人体单元器官的重建入手,尝试对人体主要组织器官进行更为细致、精确的重建。他们设想在不远的将来可以通过复杂技术将这些分散的器官整合为一个三维的立体人体模型。这个模型的建立将把人类对自身的认知提高到一个前所未有的水平。尽管目前还处于研究的初级阶段,但是科学家们坚信:他们目前所做的种种努力正在为将来激动人心的各种可能性铺平道路。

在完成可视化人体模型的基础上,科学家们还希望“虚拟人”还能像真实的人类那样具有各种物理、生化反应。在以往的科学实验中,大量的采用动物甚至是真人来得到实验数据,在成本居高不下的同时,实验结果还存在各种不确定性。“虚拟人”技术的成熟有助于改变这种现状。在“虚拟人”身上加载人体物理反应模型之后,能够很方便的获取各种反应数据,从而让“虚拟人”代替人类在不可想象的严酷环境中完成人类不可能完成的任务。

今天“虚拟人”技术的应用设想还在不断延伸,更多领域专家的介入使得我们看到“虚拟人”应用的更多可能,在交通、体育、服装、航空、航天等领域,“虚拟人”将如何改变我们的生活,这个充满诱惑的问题正在不断激发着人类的想象力。毫无疑问“虚拟人”技术的发展为人类生活的改变展现了广阔的前景,与民众对此表现出的极大热情相对应,科学家们对于这种预测表现出更为谨慎的态度。

以“虚拟人”技术为基础的数字医学是新兴的学科,在我国已经有了积极的探索和长足的发展,在服务临床方面进行了积极有益的探索。

第三军医大学交通医学研究所尹志勇等人采用计算机仿真技术开展模拟颅脑、胸部撞击伤的研究,深化了对损伤机制的认识,事故再现的分析研究,协助交通管理部门更准确地判断事故的发生情况和肇事者的责任,受到有关部门的高度评价。第三军医大学野战外科研究所陈青等利用计算机图像重建技术,采用三维图像对外周神经再生规律进行可视化研究。类似的研究工作在全国多家研究机构已经大量开展。

2007年,“怪头娃”刘京在厦门市第一医院手术成功。这是我国完成的首例颅腔重建全颅再造手术,也是国内首例在临床上成功运用计算机三维仿真技术设计全颅再造。厦门大学计算机系王博亮教授带领团队应邀参加设计了颅骨切割和重建的计算机模拟手术过程,精确测算了刘京大脑的容积与颅腔的容积,为手术的成功奠定了基础。

张绍祥教授主持的“中国人体三维结构数据库建立”、“中国数字化可视人体数据获取关键技术研究”、“中国数字化可视人体分割数据集的建立”等6项国家自然科学基金课题获重要研究成果。

北京天坛医院开展的“颅内肿瘤虚拟仿真研究”;昆明军区总医院开展的“数字技术在脊柱侧弯手术治疗中的应用”;广东省自然科学基金支持的“数字医学技术在肝胆胰外科疾病诊断和治疗的应用研究”;南方医科大学珠江医院开展的“数字医学技术在肝血管瘤切除术中的应用研究”、数字医学技术在V、VI段肝癌切除术中的应用”等研究对推动我国数字医学研究的发展做出了重要的贡献。

数字化医学内植物技术研究工程化

植入物在医学领域的应用已非常普遍,仅以在骨科的应用为例, 2002年世界骨科植入物的销售额已达到140亿美元,随着人口的老龄化和严重创伤疾病等的增加,这一数字还以每年20%的速度增长。近年来,随着数字化高新技术和生物科学技术的发展,借助计算机辅助设计与制造技术(CAD/CAM技术)、快速原型技术、计算机图像处理与三维建模等手段,上海交大以人工关节为切入点,研发人工关节设计、制造及临床应用中的数字医学关键技术,同时借助已开发的系列细胞学和分子生物学的手段,增强植入物的生物学功能,促进与人体组织的整合。

1. 个体化人工关节的快速化制作技术和应用

在国家863项目基金支持下,为了进一步克服影响个体化人工关节临床应用与推广的主要障碍,缩短假体的生产周期、降低成本,上海交大基于大批量定制理念开展了有关个体化人工关节的快速化制作技术的研发。依靠CAD/CAE/CAM/PDM技术、参数化变量化设计技术、虚拟制造技术、成组技术等新技术,对各关节假体的个性化需求进行分类,找出尽量多的共性元素,除关节优先区外,在不影响人工关节的力学性能和功能条件下,通过改变肩、肘、髋、膝、踝关节的设计,增加人工关节的共用组件,并减少共用组件的规格品种;统一原材料探伤、表面喷涂、焊接、杀菌、包装的工艺装备。对手术辅助器械设计和工艺流程采用同样的原则,生产用模具、夹具设计尽可能采用互换件,使制造技术合理化,优质、高效、快速地制造出满足用户个体化需求的假体。

2. 人体化人工关节的结构仿生和生物学优化

个体化人工关节多数以形态仿生为主。手术以恢复病损部位的大体形态和基本的生理功能为目的,甚至仅为了保肢,远未达到功能仿生的要求。为了进一步提高个体化人工关节对毁损关节功能替代的质量,上海交大开展了人工关节结构仿生优化研究:包括运动学仿生和稳定性仿生,研发符合正常肩、膝、髋、肘、踝关节的三维共轭活动模式以及重建大节段骨切除和软组织切除患者的关节稳定性,研发出具有自主知识产权的新型个体化假体。同时为了提高人工关节的生物相容性,上海交大开展了假体材料的优化研究,如在β型钛合金中加入生物相容性良好的铌和锆,使钛合金在保持其抗腐蚀性和力学强度的同时,进一步提高生物相容性、降低弹性模量,从而有效降低假体的应力遮挡效应;又如对假体表面真空等离子喷涂生物活性钛(Ti)、氧化钛(TiO2)涂层,使其具有优良的力学性能,加强涂层与合金基体的结合以及假体-骨整合,并实现个体化加工。

数字医学研究机构

全国各地纷纷成立数字医学研究机构,第三军医大学、上海交大、复旦大学分别成立了数字医学研究院和研究中心,国内至今已经构建了8个高精密度的中国人体数据集。

重庆市数字医学研究所(重庆市数字化人体工程研究中心)由第三军医大学建立,开展数字化可视人体的相关研究。第三军医大学于2002年正式成立“计算医学研究室”,并建立了首套中国数字化可视人体数据集,使中国成为继美国之后世界上第二个拥有完整可视人体自主知识产权的国家;2003年5月成立“重庆市数字医学研究所”;2007年成立“重庆市数字化人体工程研究中心”。目前建立了基于数字解剖学和数字医学研究的开放性实验室。研究成果包括2002年完成中国男性数字化可视人体数据集的建立和三维可视化;2003年完成女性数字化可视人体数据集等。中国数字化可视人体数据集荣获2007年国家科技进步二等奖;手部创伤修复解剖学研究及临床应用荣获2001年国家科技进步二等奖。

第6篇

关于数字出版,目前似乎还没有权威、准确、公认的定义。大概有以下几种说法:1,数字出版,是出版资源全生命周期信息交换的过程;是利用网络进行在线或者离线数字写作内容的采集和管理的过程;是把内容中的各种知识析离共享管理的过程;是根据使用者的需要进行全媒体组织输出的过程;是在线信息网络化服务的过程。2,数字出版,是依托于信息技术、数字技术和计算机网络技术而诞生的新的出版形态。3,数字出版,就是将概念、思想、知识借由字符、图像、影像、语音方式整合成0、1的数字内容,经加值后传播于公众。2007年在维也纳举行的第17届国际数字出版会议上是这样定义数字出版的,数字出版是依靠互联网并以之为传播渠道的出版形式。

虽然概念是模糊的,但这不影响人们对数字出版的热情。随着Kindle、iPad、汉王等电子阅读终端的热销,带动了电子书的热销,人们普遍接受了这一新颖的阅读模式,并对之狂热地追捧。当然,电子书只能说是数字出版的一部分,绝非全部。此外,网络游戏、数字期刊、手机报等早已为人们熟悉,并引领着数字出版的潮流。数字出版正在不断被人们丰富其内容,不断延伸着其定义。我们也不必纠结于数字出版是传统出版的延续,还是传统出版的替代,抑或其他。总之,数字出版时代即将全面到来。

国外医学领域数字出版现状

爱思唯尔(Elsevier)

爱思唯尔是一家经营科学、技术和医学信息产品及出版服务的世界一流出版集团。通过与全球的科技与医学机构的合作,每年出版1800多种期刊和2200种新书,以及一系列创新性的电子产品,如Science Direct、MD Consult、Scopus,文摘型数据库、在线参考书目和特定学科入口网站。在数字出版方面,目前爱思唯尔已与中国部分高校建立了合作关系,例如分别与上海交通大学及清华大学图书馆合作建立Science Direct中国镜像站点,提供电子期刊和电子图书的分类浏览、检索和全文阅读功能,其中对于电子图书提供按章节检索和阅读功能,检索和利用极为方便。

麦格劳-希尔(Me Graw Hill)

麦格劳-希尔专业出版包括五大块的内容:商业、医学、技术、教育和大众出版。该社每年出版大约900种图书,他们通过四种方法提高产品的数字化程度。麦格劳-希尔开发得很好的一个产品叫Access Surgery(走进外科手术,用于帮助医学院学生在线观摩最新的手术方式),它应用了搜索、互动、实时更新、内在存储这四种方法,是一种只能通过注册后才能在线使用的产品。在Access Surgery平台中,麦格劳-希尔放上了所有的图书内容和视频等,作者还会经常更新其内容。目前该社已经建成外科、内科、工程、科学等各种数据库类别,投资相当大。麦格劳-希尔对现在经营的六块业务中的三块,即搜索、电子图书和数字授权,有一个界定:搜索是让读者在网上可以找到10%的图书内容,电子图书和数字音像图书内容则是由他们进行数字化转换后提供给发行商拿去销售,数字授权是向需要在线使用该社图书的人收费。对于搜索部分,他们有三家合作伙伴,即谷歌、微软和亚马逊,这一块收入比较少,此举的目的是希望通过这些网站的参与来提高麦格劳一希尔网站的浏览量,这一方面可以提高纸质图书的销售,另一方面可以吸引更多的读者去访问麦格劳-希尔网站。

威科(Wolters Kluwer)

在纸质图书出版和销售时期,威科集团就积累了荷兰几乎所有医科类大中专院校和医院各系及科室用户的名录,这为他们顺利开展数字出版业务,提供数字化产品做好了充分准备。威科集团的数字出版理念是这样的:首要工作就是进行用户需求分析,在此基础上,通过内容编辑人员和技术操作人员,对原有内容进行医学知识的数字化整合,并不断加入新的医学内容,开发出读者真正准备“买单”的数字产品。

威科集团的数字化内容采取由自己完成和交给第三方合作伙伴完成相结合的方式。比如,电子书里的视频内容由他们自己完成,而数字化平台的制作则授权给第三方合作伙伴完成。威科集团强调要向技术公司学习,在数字化技术上,技术公司往往有比传统出版社更丰富的经验。为此,他们雇佣了全职的技术人员,以解决技术问题和提供技术支持。

开展医疗和健康板块数字出版业务后,威科集团对数字出版产品分类进行调整,以前,威科集团通常是按照学生,医生等读者群来进行产品划分,但是现在,更多的是按照客户的生命周期对产品进行分类,这能够使出版内容更全面、更好地满足客户需求。

国内医学领域数字出版现状科学出版社

科学出版社早些年推出科学e书房和科学文库,前者是离线产品,后者是在线产品。

科学e书房是一款采用DRM数字版权保护技术,以U-Key为载体,小巧便捷的移动阅读产品。其内置绿色版阅读器,使读者不用安装任何插件就可以享受近似纸质书的原版原式阅读体验。科学e书房目前已推出17个产品系列,内容包括该社出版的~大批高水平学术著作及文物考古、医学等特色内容。该产品采用传统图书外包装,便于图书馆管理;兼具翻阅、听书、目录导航、检索、笔记勾画和书签功能,是纸质书无法比拟的。

在线产品科学文库是以科学出版社优质的内容资源为基础,为高校图书馆、科研院所等机构用户精心打造的一款基于互联网的在线检索、在线阅读及下载借阅服务产品。其下设5个子库:“基础科学”“实用技术”“医学”“社会科学”和“资源环境”。用户可以根据自身需求自由组合,定制服务方式,既可以在线阅读,也可以下载借阅。此外,还能让用户在不增加成本的情况下享受更多增值服务。

人民军医出版社

2007年,人民军医出版社正式组建数字出版中心一一人民军医电子出版社,至2009年国庆出版了我国第一本真正意义上的跨媒体书,历时8年、投资近500万元。打造出了以“名医指路”品牌为特征的五大类几十个品种,其中数字跨媒体出版物5个系列155种,数据库已建5个、在建6个,网站已建8个、在建7个。

人民军医出版社的数字出版,在起步阶段,只是简单地将纸质图书同步做成电子书,以光盘的形式面世。随后,该社将纸质书和电子书又做成了具有能听、能视、能上网在线阅读、能下载到手机即同时具备纸质书、音频书、视频书、网络书和手机书功能。紧接着,该社集中攻关,将传统的纸媒图书,与经多年努力建成的总容量达4.5亿字的“中华医学资源核心数据库”群实行深度结合,使专业图书实现了随读随查、即点即答的深度阅读,拓展了阅读功能,此外,还具备了同一本书的读者群在线讨论功能。

目前,其跨媒体智能产品主要有6个大类:1.跨媒体智能图书;2.跨媒体智能网络阅读卡,3.跨媒体电子书光盘;4.复合型跨媒体智能出版物;5.大型医学数据库群;6.部队数字医学系列图书。

北京大学医学出版社

北京大学医学出版社在数字出版方面的基本发展思路是在已有资源的基础上,开发拥有自主知识产权的数字产品。其数字出版的理念主要是提供基于内容的服务。技术攻关是目前出版社独立发展数字出版的一个主要瓶颈。基于这种情况,该社首先解决专业技术人才短缺的问题,及时引进一位医学信息学博士,其一方面具有学医的背景,另一方面精于计算机技术的研究和使用,能够对医学领域数字出版的核心性技术进行开发和把关。

在具体实施方面,北京大学医学出版社目前正在集中精力开发数字出版平台一一北京大学医学出版社医学教育网,其核心内容已经成型,目前在迅速和整合信息的基础上,力求实现多种功能的融合与拓展。其设计思路是,以考试书和教材为基础,开发内容拓展型的数据库,提供在线服务,并且所提供的服务型资源将采取免费和收费相结合的方式。比如,教材的内容拓展可以是教材作者的相关教学资料或者教学培训内容,确切地说是一种针对教材本身的增值服务。

医学领域数字出版的几点思考

(一)分析现有产品,优化产品设计

各医学相关出版社,应结合自身特点,分析现有产品结构,设计纵深化产品,以满足数字时代的需要。医学图书的数字出版,或者以独创内容为资本,或者需要大量信息的优化组合,形成有特色的纵向产品,这两种发展模式应该并重。产品设计也就应该基于这两种模式。

作为编辑自身,当务之急是要提高数字出版意识。逐渐培养复合型能力,同时去影响作者,进一步带动作者的数字出版意识,这有利于将来实现数字产品的直接开发。今后一段时期,要重点做好产品储备,特别是原创性、独创性产品,努力提升横向产品线,发展优势学科纵向产品线,增强产品竞争力。作为大型出版集团,可通过兼并重组,整合资源,或者采取合作方式扩充产品线,这将在很大程度上缩短资源的积累过程,加快推进数字出版进程。

(二)处理好传统出版与数字出版的关系

麦格劳-希尔的Jill Reese这么说过:“从编辑的角度来讲,当一本书出版时间很长了,不再出版纸质书了,作者总希望拿走他们的版权,但我们不希望如此,因为我们还希望以电子图书的形式延续销售。”虽然我们不好评判数字出版是传统出版的延续,还是传统出版的替代。但我们可以确定的是,在今后很长一段时间内,传统出版与数字出版并存,两者以其各自优势共同发展。应该说,纸质出版历史悠久,但始终没有退出历史舞台,因为纸质出版有其不可替代性。人们的阅读很难离开纸质媒介,虽然其受众少了,但毕竟还是存在。数字时代的到来,按需印刷也应运而生了,很好地解决了这一现实问题。一本书绝版的概念是比较清楚的,但有了电子图书,这一定义就发生了改变。将来我们或许是先有电子书,再有纸质书;或者两者同时出现,但短期内,我们还是很难改变以纸质书出版为基础的现状。关于这一点在此不做进一步分析。

(三)加快数据库建设

数字出版的商业服务模式主要有以下几种:Kindle模式:“阅读器+内容平台”;iPad模式:“终端设备+内容平台”;Google模式:“海量资源+开放网络平台”;盛大文学模式:中国版的“内容+终端”;方正模式:数字图书B2C;汉王模式:直销、团购模式;中移动模式:“无线图书的整合发行平台”。

但无论哪种模式,内容资源是核心。就像同方知网期刊论文的发展模式一样,数据库建设对图书的数字出版同样非常重要。人民军医出版社在数据库建设方面,已建成了疾病、药品、循证医学、辅助检查、疾病研究进展、医保用药等6个子数据库。其中华医学核心资源数据库涵盖了有关疾病、药品、检查、循证、期刊杂志等五个系统知识。数据库的建设基于内容资源,在相应的平台支撑下最终实现信息服务,也是对资源的整合。

(四)离线与在线结合方式

对于这一点,可以借鉴麦格劳-希尔的做法,即经营搜索、电子图书和数字授权三块业务。搜索只是让读者在网上可以找到10%的图书内容,即在线产品,目的是用来提高其点击率,扩大传播范围,即“广告”阶段,用来吸引读者购买完整的产品。电子图书内容则是在进行数字化转换后提供给发行商拿去销售,也即离线产品的销售。数字授权是向需要在线使用该社图书的人收费。这三者的最终目的是实现销售和赢利。

关于在线产品,网站是平台,这里有很多文章可以做,一般的点击、浏览、下载,以及相应的搜索、查询等都比较为人们所熟悉。此外,我们还可以开展一些其他业务,提供更为全面的服务,如聘请相应学科的专家,一方面为我们提供专业技术支持,比如做标引,还可以定时、不定时做客访谈,融合科普、专业答疑等环节,以扩大网站影响力,提升服务品牌,聚拢潜在读者。此外,也可以与期刊杂志合作,延伸图书产品链,扩大知识涵盖面。经常更新产品内容,为“顾客”提供超值的增值服务。

(五)专业参考书与教材、教辅捆绑模式

医学专业参考书与教材、教辅的结合即提供一站式服务,就如威科集团的做法,在开展数字出版业务前,通常是按照学生、医生等读者群来进行产品划分,但是现在,更多的是按照客户的生命周期对产品进行分类。从学生入学使用数字教材(阅读器+内容平台+在线学习项目),到学生考试,通过国家执业医师、执业护士、执业药师资格考试,提供教辅产品,最后到学生毕业进入医院完成角色转变,提供专著、参考书、工具书,打包销售。在此过程中,均可实现在线和离线产品的结合。

(六)加强复合型人才培养

数字时代,我们要从单纯的内容提供商向服务提供商转变,培养技术型人才是关键,包括平台建设人才,视频、音频制作人才,在线编辑人才以及复合型人才,做到既懂专业出版,又懂信息技术。这是不少出版社目前发展数字出版的瓶颈之一。此外,全面开展数字出版,还存在诸多需要时间解决的问题,如数字出版的版权,涉及立法问题;数字出版的技术问题;数字图书的定价问题,等等。出版社只有掌握数字出版的核心技术,才能在数字出版领域拥有产品定价权,拥有更多发言权。

第7篇

[关键词]医学影像;数字化;实验教学;教学评价

随着科学技术的不断发展,数字化逐渐运用于医学的各个领域,特别是医学影像信息系统的运用,改变了以往临床医学影像资料繁多、查找困难的现象[1-2]。目前,医学影像信息系统(picturearchivingandcommunicationsystems,PACS)已在医学影像科室中广泛应用,其主要目的是将各种影像设备产生的医学影像通过数字化的形式保存在网站的工作平台中,需要时可通过授权很快调出,同时还可通过增加辅助诊断管理功能,为临床影像诊断工作提供帮助[3]。医学影像信息系统的广泛应用,要求对影像学专业学生的教学也做出相应调整,以适应影像学的发展,培养与时俱进的影像专业人才[4]。本研究选取医学影像学专业的学生,在日常教学中,比较医学影像信息系统与传统授课方式的效果,探讨医学影像教学的新模式[5]。

1资料与方法

1.1一般资料选取2012年1月至2015年5月南京医科大学医学影像学专业大三年级300名学生,按照随机数表法将其分为对照组和观察组,每组150名。其中,对照组中男性90名,女性60名;年龄20~24岁,平均年龄(22.25±0.21)岁;入学成绩为400~520分,平均成绩(450.23±10.43)分。观察组中男性91名,女性59名;年龄19~24岁,平均年龄(22.46±0.31)岁;入学成绩为410~523分,平均成绩(450.43±10.31)分。对照组和观察组学生的一般资料比较无差异,组间可进行良好的对比。1.2教学方法(1)对照组:采用传统授课方式对学生进行影像学学科的授课,老师通过搜集影像学资料及图像,制成幻灯片,并结合理论知识对学生授课。(2)观察组:在传统授课模式上,结合医学影像信息系统进行授课,具体措施为:①授课老师在理论知识结合相关图像资料做出幻灯片对学生进行讲解的基础上,通过影像信息系统挑选出相关临床病例,从不同角度及层面对学生进行讲解,并提出问题,让学生自行讨论,协商解决找出正确答案;②开设医学影像信息系统实验课程,让学生在实践中更多地接触数字系统,教会学生如何使用医学影像信息系统查询相关影像资料,并通过链接共享其他医院的影像信息资源,更好地了解医学影像信息系统带来的巨大方便。1.3观察指标将对照组和观察组学生的学习成绩、对教学效果的评价及满意度进行对比。①学生成绩评分采用随堂测试的方式,每次授课结束后对所有学生进行所授知识的测试,采用同一影像资料,选择统一评分标准,满分为100分;②教学效果的评价采用问卷调查的形式,主要调查内容有学习积极性、知识理解程度、知识广度、课程内容印象性以及教学方式新颖度等8项,每个项目总分为10分。1.4统计学方法采用SPSS18.0统计软件对数据进行处理,两组学生的学习成绩及对教学效果的评价用均数±标准差(x-±s)表示,两组比较采用t检验;两组学生对教学的满意率比较采用卡方检验。以P<0.05为差异有统计学意义。

2结果

2.1两组随堂测试成绩比较观察组学生的医学影像专业病例分析、典型征象辨认及疾病判断各成绩评分与对照组相比更具有优势,差异有统计学意义(t=117.281,t=74.515,t=50.106;P<0.05),见表1。2.2两组教学效果评价比较观察组学生的对教学方式新颖度、知识理解程度、知识广度、课程内容印象性以及学习积极性各教学效果评价分值均高于对照组,差异有统计学意义(t=196.620,t=31.365,t=6.283,t=38.509,t=21.394;P<0.05),见表2。2.3两组对教学效果满意度比较观察组学生对教学效果满意度为96.00%,对照组学生对教学效果满意度为78.67%,观察组更具有优势,两组相比差异有统计学意义(x2=20.369,P<0.05),见表3。

3讨论

在医学影像学专业学生的学习过程中,要求学生能够将理论知识与实践联系起来,做到融会贯通,并通过临床实践将理论知识在实践中进一步得到验证,从而有效提高学生的实践能力[6]。临床医学不单纯是理论知识的掌握,同时还要求理论和实践有机的结合起来,这就对教学人员提出了更高的要求[7]。传统的医学影像教学模式主要通过胶片及观片灯形式进行围观式教学,以教师主动讲授及学生被动接受知识为主,学生无法观看到完整的影像学图像的处理过程,不能满足更高层次教学的需求[8]。随着医学影像学科建设的飞速发展,医学影像信息系统在影像科室教学中得到了广泛的运用,其能够提高教学质量,进一步加强学生的理解力和记忆力,因此受到影像学专业学生的广泛认可[9]。医学影像信息系统运用于影像学专业的教学中,是适应当今数字化教流的重要举措。对医学影像学专业学生的教学,由于内容主要是各类影像图像,即使是同一病例也会产生多种不同的影像,加重学生的负担,使教学变得枯燥。采用传统授课方式,单靠老师的描述及学生的记忆,很难激发学生潜能[10]。因此,将医学影像信息系统运用于对影像专业学生的教学中,具有以下的优势。(1)医学影像信息系统能够充分发挥学生的主体作用,并将理论与实践进行有机结合,从而加深学生的印象,提高学习的积极性[11]。教学中采用医学影像系统与传统授课方式相结合,可调出不同类型的影像资料,并对资料进行重建和后处理,帮助学生进一步理解如何对疾病采用不同影像检查进行综合分析判断,以免漏诊和误诊[12]。(2)采用医学影像信息系统,授课老师可将病变部位进行360o无死角动态旋转显示,从而全面分析病变部位的特点,将整个诊断过程示范给学生,加深学生对影像诊断技巧的认识[13-14]。传统授课方式授课老师需从不同渠道搜集影像的临床资料,并通过制作幻灯片进行教学,过程较繁琐,且不能将系统化、清晰化的影像学资料展示给学生,造成学生学习的不全面、不细致,而医学影像信息系统的应用,方便查找,且其具有海量、高清影像存储的特点,能够轻松将系统全面的临床医学影像资料呈现出来[15]。(3)医学影像信息系统不仅能够提高学生的专业技能,同时还能培养学生运用数字化工具的综合能力,在医学影像学教学中具有显著的临床价值[16-17]。

4结论