欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

人工智能辩论范文

时间:2023-09-28 15:44:40

序论:在您撰写人工智能辩论时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

人工智能辩论

第1篇

1.1一般资料

两组80例平均年龄(49.83±6.28)岁;病程最短者2个月,最长者7年,平均病程(3±1.68)年。两组患者年龄、性别、病程等资料经统计学处理,无显著性差异(P>0.05),具有可比性。

1.2西医诊断标准参照1992-06安徽太平《中华内科杂志》编委会肾脏病专业组制定的诊断和分期标准[2]。80ml/min>内生肌酐清除率(Ccr)>10ml/min;133μmol/L<血肌酐(Scr)<707μmol/L。有慢性肾脏病史,或累及肾脏的系统性疾病病史者。

1.3中医辨证分型及疗效标准参考1993年的《中药新药临床研究指导原则》[3]中CRF临床分型。本虚证:脾肾气虚型、气阴两虚型、脾肾阳虚型、肝肾阴虚型、阴阳两虚型。标实证:湿热型、湿浊型、血淤型、湿热挟淤型、其他型。疗效标准也参考该文献。

1.4辨象标准辨象标准参照《中国医学百科全书》朝医学[4]卷中辨象标准,均属“肺小肝大”者。

2方法

2.1实验室指标及方法①血常规及离子:红细胞(RBC)、血红蛋白(Hb)。②肾功能:Scr,BUN,Ccr。

2.2统计学方法数据均以±s表示,SPSS11.0软件统计,采用单因素方差分析组间比较。

2.3治疗方法治疗组48例太阴人组用太阴化浊汤加减:薏苡仁20g,干栗15g,黄芩15g,桔梗10g,莱菔子20g,生大黄10g,石菖蒲10g,杏仁15g,白头翁15g,泽兰20g,地龙15g;如浮肿甚加蛴螬15g,浮萍15g;若尿浊(蛋白尿)加鹿角霜15g,佩兰10g;血压高加天麻15g,15g。对照组32例,用由广州康臣药业生产的尿毒清颗粒,5g/袋,1袋/次,服用4次/d,服用1个月。对照组与治疗组48例患者进行相关比较,各以1个月为1个疗程,观察1个疗程。

3结果

3.1有效率与症状出现规律经观察太阴人在四象人CRF患者中,所占人数为47.52%,比例最多,治疗组总有效率78.2%,明显优于对照组的47.8%,而85%的太阴人患者多以继发性发病为多。在糖尿病、高血压病、高脂血症等疾病引起肾脏负荷过重而引起该病,其发病证型以中医证型的气阴两虚型、肝肾阴虚型、湿浊型、湿热挟淤型者为多。

3.2两组疗效比较结果见表1。经观察治疗组能有效改善贫血等症状,且有显著控制肾功衰的疗效。结果见表2。表1两组治疗前后血常规、离子比较(略)表2两组治疗前后肾功能比较(略)

4讨论

CRF病情危重,临床表现极为复杂,属中医的“关格”“癃闭”“肾风”“水毒证”“肾劳”等范畴,其病机错综复杂,有正虚邪实、寒热错杂、虚实互见等。肾小球硬化的病机目前有虚、淤、湿、浊、毒、痰等看法[5]。体质辨治CRF也追随以上理论。朝医体质理论发端于《灵枢·通天》七十二篇中的五太人论,但舍弃了阴阳和平体质之人,仅保留了其余四种体质。认为太、少阴阳体质不同其体内的气血运行亦不同,引起本病也有相应的规律。太阴人“过偏于阴之人”“肺小肝大”。肺主呼吸、主气、主肃降、通调水道,肺小则肺气推动血液、津液运行不畅,又肃降不利,治节失度,故生淤酿痰,痰淤互结生浊气,痰浊壅遏于里。肝藏血,主疏泄喜条达,肝大则其功能相对亢进,表现为肝实病变,故肝失疏泄、肝络瘀阻,最终致“血浊气涩”。血浊与气涩互为因果,二者相参恶化脏局,促使浊邪壅遏于内、充斥三焦。三焦决渎失司,痰浊阻滞肾络,气化不利故成本病。故其病初起多以高血压病、高脂血症、冠心病、糖尿病等以肝实、邪浊的病变为早期原发病,并以实证为主。到代偿期、失代偿期时多伴有神疲乏力、浮肿、呕吐等临床表现,所以此时也常被确认该病。

本方是太阴人清肺泻肝汤化裁,顾名思义清泻肝实,降利肺气;生大黄、薏苡仁、白头翁、黄芩以通腹泻浊,桔梗、杏仁、莱菔子、石菖蒲降气化痰,泽兰、地龙活肾络的功效。完全针对太阴人体质以及CRF病机而设,与中医理论的专注于病位在肾的治法有所出入,其辨体质的治疗特点亦在此。此外太阴人“肺小肝大”,故平时注重调补肺脏,谨防感冒的发生;积极治疗太阴人易感之疾高血压、高血脂、高血糖、高胰岛素血症等疾病,防止该病引起对肾单位的损伤。通过以上对太阴人CRF的治疗,可看出浊毒淤阻是首要病机,而且与其“血浊气涩”体质的病理特点有紧密相关。所以在治疗上我们既要辨其病、又要辨证、更要辨体质,这样才可做到“审机论治”“辨质论治”和“辨病论治”3者有机地结合起来,并能获得最佳疗效。

【参考文献】

[1]匡调元.匡调元医论[M].上海:上海中医药大学出版社,2004:113.

[2]王海燕,郑法雷,刘上春,等.原发性肾小球疾病分型与治疗及诊断标准专题座谈会纪要·慢性肾衰诊断标准及分期[S].中华内科杂志,1993,32(2):131.

[3]中华人民共和国卫生部.中药新药临床指导原则,第1辑[S].1993:167.

[4]中国医学百科全书编辑委员会.中国医学百科全书(朝医学)[M].上海:上海科学技术出版社,1992:4.

[5]刘玉宁.DN肾小球硬化的中医病机探讨[J].新中医,2003,35(7):8.

第2篇

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行教育体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能足球机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。

(三)提倡课堂辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列辩论会。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验报告。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

第3篇

关键词:人工智能;学习兴趣;教学方法

1956年,在美国Dartmouth大学,由数学家J.McCarthy和他的三位朋友M.Minsky、N.Lochester和C.Shannon共同发起一个历时两个月的夏季学术讨论班,他们在此讨论班上第一次正式使用了人工智能(Artificial Intelligence)这一术语。人工智能是一门多学科交叉的课程,涉及计算机科学、数学、控制论、信息论、神经生理学、心理学、哲学及语言学等多个学科,是新理论和新技术不断出现的综合性学科。当前,人工智能领域加强了从人类智能与生命现象中汲取养分的趋势,加快了向分布式系统与复杂系统靠拢的步伐,智能化的应用更为深入,影响更为广泛,其发展已对人类的经济、社会、文化等方面产生了深远影响[1]。

1人工智能导论课程特点

人工智能导论是人工智能领域的引导性课程,介绍人工智能的基本理论、方法和技术,目的是使学生了解和掌握人工智能的基本概念和方法,为进一步学习奠定基础。人工智能是计算机科学与技术学科一门重要的基础课程,需要相关课程作支撑。离散数学、概率论与数理统计等课程是其数学基础,数据结构、程序设计基础、算法分析与设计等课程则为人工智能中知识表示、逻辑推理和问题求解提供了设计与实现手段。与其他软件课程相比,人工智能课程有鲜明的特点,主要表现在思想方法上强调启发性、算法上强调不确定性。同时,由于人工智能是一个新思想和新技术层出不穷的开拓性领域,因此其对学生的训练是鼓励创新的,具有其他课程不可替代的作用。

人工智能导论是计算机相关专业的必修课,在许多信息类相关的本科教学中也有开设,一般开设在第六或者第七学期。我国目前本科教育的定位是专才教育,培养某方面的专业人才。完成公共基础课程和部分专业基础课程的学习之后,本科高年级学生应该了解本专业的应用领域和发展前景,因此在教学过程中要注意内容的专业性和应用性。由于本科阶段学生缺乏科研意识,初步的科研训练设置在第八学期,即所有课程学习完毕之后的毕业设计,而人工智能课程强调科研性,因此教学难度较大,由此带来的最直接后果就是学生学习兴趣不高。同时,对有志于读研的学生而言,本科阶段的学业也是研究生教育的起点,在教学过程中要适时的进行科研引导,提升学生对科学研究的兴趣,为研究生阶段打下基础。可见,圆满完成人工智能导论课程这一教学任务是重要且极具挑战性的。

2教学内容安排

人工智能的研究和应用领域非常广泛,包括问题求解、机器学习、自然语言理解、专家系统、模式识别、计算机视觉、机器人学、搏弈、计算智能、人工生命自动定理证明、自动程序设计、智能控制、智能检索、智能调度与指挥、智能决策支持系统、人工神经网络、数据挖掘和知识发现等。人工智能导论旨在为这些具体领域的研究提供引导和基础保障。

人工智能导论课程涵盖内容较多,因此需要明确“精讲”和“泛讲”的内容,以使教师和学生在教学活动中都有所侧重。当然,首先应和学生说明,泛讲并不代表内容不重要,只是由于课程性质和课时的关系,暂时不作深入探讨。日后如有需要,可在此基础上进一步学习和研究。结合当前人工智能学科的发展状况,根据教学大纲和作者的教学经验,对人工智能导论课程教学内容的精讲和泛讲安排如表1所示。

3提升学生学习兴趣的教学方法

3.1穿插背景故事

为激发学习积极性,针对学生喜欢听奇闻轶事、想象力丰富的心理特点,通过讲述一些与教学内容有关的故事或者趣事来吸引其注意力,辅助思维并丰富联想,使学生在愉悦中完成学习[2]。下面列举几个我们在课程教学中用到的背景故事,通过这些故事,不但传授了知识,也活跃了课堂气氛。

1) 人类智能的计算机模拟与人机大战。

讲授人类智能的计算机模拟时,可以给学生简述一下IBM公司的超级电脑和国际象棋世界冠军卡斯帕罗夫之间的人机大战,以促进学生对人类智能和人工智能的进一步思考。北京时间1997年5月12日凌晨4点50分,在美国纽约公平大厦,当IBM公司的“深蓝”超级电脑将棋盘上的一个兵走到C4的位置上时,国际象棋世界冠军卡斯帕罗夫对“深蓝”的人机大战落下帷幕,“深蓝” 以3.5U2.5的总比分战胜卡斯帕罗夫。2003年1月26日至2月7日,卡斯帕罗夫与深蓝的升级版“小深”又进行了一场人机大战,先后进行了6局比赛,最终卡斯帕罗夫以1胜1负4平的结果和“小深”握手言和。这也表明了人工智能和人类智能之间的较量还将持续下去。

2) 问题规约法与老和尚说教。

问题规约法是从要解决的问题出发逆向推理,建立子问题以及子问题的子问题,直到最后把初始问题归约为一个本原问题集合。本原问题指不能再分解或变换且直接可解的子问题。可见,问题规约的本质是递归的思想。此时,可以给学生简述我们小时候就听说过的老和尚说教的故事,即“从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……”。

3) 模糊理论与秃头悖论。

模糊推理是一种重要的不确定性推理方式,是指基于模糊理论进行的推理。讲授模糊理论时,可以先讲一下秃头悖论让学生讨论。一个人有10万根头发,肯定不能算秃头,不是秃头的人,掉了一头发,仍然不是秃头,按照这个道理,让一个不是秃头的人一根一根地减少头发,就得出一条结论,即没有一根头发的光头也不是秃头!秃头悖论的出现源于在严格的逻辑推理中使用了“秃头”这一模糊概念,因此需要以模糊逻辑代替传统的二值逻辑解决该问题。

3.2课堂辩论和多媒体教学

人工智能从其诞生之日起就充满争议,各种学派的争论使得人工智能的发展更趋完善,加快了其纵深发展。目前,人工智能的争论主要有两方面,即研究方法的争论和技术路线的争论。前者争论的主要问题有人工智能是否得模拟人的智能;对结构模拟和行为模拟是否可以分离研究;对感知、思维和行为是否可分离研究;对认知与学习以及逻辑思维和形象思维等问题是否可以分离研究;是否有必要建立人工智能的统一理论体系。后者争论的主要问题是沿着什么样的技术路线和策略来发展人工智能。

在课堂教学中,可以充分利用人工智能中存在的争论较多这一特点,针对相关议题组织课堂辩论,如可用议题“机器的反叛――机器的智能会超越人类吗?”。让学生在图书馆或者从网上查阅相关资料,明确自己的论点并准备证据材料,并在课堂上进行辩论。这类辩论无所谓输赢,旨在通过这种活动,增进学生思考[3]。教学中,还可以充分利用多媒体教学的特点,如让学生观摩电影《终结者》系列、《人工智能》、《黑客帝国》等,增强学生对人工智能的直观感受,提高课堂教学效果[4]。

3.3应用实例分析

普遍而言,本科学生对单纯的理论讲解不太感兴趣,因此在教学过程中,适当增加一些实验和设计,提高学生分析问题的能力和实际动手能力。比如,讲解知识的产生式表示法时,给出产生式的概念和基本表示形式之后,可以通过“野人与传教士过河”问题来说明产生式表示法的具体应用过程;讲解计算智能的进化计算部分时,给出进化算法的几种具体形式和算法流程之后,可以通过中国旅行商问题(CTSP)来说明算法求解问题的过程。教师在教学过程中,可以根据需要,选择一些合适的应用实例进行分析。通过这些实例,既能加深学生对知识的理解,又能增加学习的兴趣。下面给出两个实例的简单描述。

1) 产生式表示法求解“野人与传教士过河”问题。

问题:传教士和野人各N人过河,现只有一条船,传教士和野人都会划船,船一次只能载k人,船上野人多于传教士时野人就会吃掉传教士,问如何安全过河?(不失一般性,以N=3,k=2为例求解)。

求解简述:设综合数据库中状态用三元组(m, c, b)表示,其中m、c、b分别表示传教士、野人和船的数目,则有:

0≤m, c≤3, b ∈{0, 1}

以左岸为参照点,则初始状态和目标状态分别为(3,3,1)和(0,0,0)。据此,可以给出一条产生式规则如下:

IF (m, c, 1) THEN (m-1, c, 0)

以此类推,把所有可行的规则都求出之后,就可按照规则集和控制策略得到问题的解。

2) 遗传算法求解31个城市的CTSP问题[5]。

问题:给定有限个城市的集合C={c1,c2, …,cm}及每两个城市之间的距离矩阵D=[dij]m×m,其中m∈N,dij=d(ci, cj)∈Z+,ci、 cj∈C,1≤i、j≤m,求出满足的城市序列cπ(1)、cπ(2)、…、cπ(m),其中π(1),π(2),…,π(m)是1、2、…、m的一个全排列。我们以CTSP问题为例,即求解中国31个城市之间最短巡回路线的问题。

求解简述:路径表示直接使用城市在路径中的相对位置,如有编号分别为1、2、3、4、5的5个城市的一条路径4-1-2-5-3,用路径表示方法直接可写为(4 1 2 5 3)。适应度函数值用路径的实际长度表示。交叉算子采用次序杂交,即选择父体的两杂交点,交换相应的段,其它城市则保持在父体中的相应次序。变异算子采用倒位算子,即随机选择两个位置,然后将它们之间的城市反序。通过运用遗传算法求解,可得最优解为15 404 km,对应的巡回路线为“北京―呼和浩特―太原―石家庄―郑州―西安―银川―兰州―西宁―乌鲁木齐―拉萨―成都―昆明―贵阳―南宁―海口―广州―长沙―武汉―南昌―福州―台北―杭州―上海―南京―合肥―济南―天津―沈阳―长春―哈尔滨―北京”。实例讲解完成后,可要求学生采用相同或者不同的方案自己去实现一下问题的求解过程。

4结语

人工智能是计算机科学与技术专业的一门核心课程,同时也是一门交叉学科,涉及面广,理论性强,教学难度较大,学生的学习兴趣有待提高。本文作者根据自己在人工智能导论课程中的教学实践和课程特点,明确了教学中的精讲内容和泛讲内容,总结了三种提高学生学习兴趣的教学方法,并给出相应的实例说明,旨在为本门课程的教师提供教学参考。

参考文献:

[1] 蔡自兴,徐光v. 人工智能及其应用(本科生用书)[M]. 北京:清华大学出版社,2003:288-296.

[2] 薛占熬,齐歌,杜浩翠,等. 离散数学的课堂导入法研究[J]. 计算机教育,2010(8):95-99.

[3] 徐新黎,王万良,杨旭华. “人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.

[4] 李春贵,王萌,何春华. 基于案例教学的“人工智能”教学的实践与探索[J]. 计算机教育,2008(9):53-54.

[5] 杨利英,覃征,贺升平,等. 改进的演化近似算法求解TSP问题[J]. 微电子学与计算机,2004,21(6):126-128.

Teaching Methods for Promoting Learning Interests in Introduction to Artificial Intelligence

YANG Liying

(School of Computer Science, Xidian University, Xi’An 710071, China)

Abstract: This paper presents three teaching methods for promoting learning interests based on the characteristics of Introduction to Artificial Intelligence and our teaching experience. These methods have been used in practice. The teaching practice shows that the methods proposed in this paper can promote learning interests effectively.

第4篇

关键词:人工智能;教学内容;教学方法

中图分类号:G642 文献标识码:A

1 引言

人工智能(AI)是二十世纪五十年代后期兴起的利用计算机模拟人类智能活动去求解问题的学科,与空间技术、原子能技术一起被誉为二十世纪三大科学技术成就,目前广泛应用于专家系统、机器翻译、语音识别、文字识别、计算机视觉、机器人、电子游戏等方面,已经成为计算机技术发展以及许多高新技术产品中的核心技术。

为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程,特别是作为计算机方面专业的核心课程之一。我校自从1993年开始为自动化专业本科生开设“智能控制”选修课,1996年为自动化、计算机、机械等专业本科生开设“人工智能导论”、“人工智能及其应用”课程。目前,我校软件学院、信息学院、机电学院都开设了“人工智能导论”课程,已经成为计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其目的是使学生了解人工智能的基本概念和基本原理,初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,为学生提供最基本的人工智能技术和有关问题的入门性知识,提高学生应用开发软件的能力和水平,为今后在相关领域的研究和应用奠定更为坚实的基础。因此,建设好“人工智能导论”课程具有重要意义和很广的受益面。

由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有望而生畏的感觉,在教学过程中,老师教、学生学都比较吃力。为了更好地实现上述教学目标,提高本课程的教学质量,协调好教与学的双边关系,使学生由望而生畏的感觉,变为有用有趣的感觉,根据已有人工智能课程在教学与实践方面的经验和方法,结合“人工智能导论”课程的近几年教学实践,对课程的教学体系、教学内容、教学方法、教学手段、考核方式等方面进行了探索总结。

2 调整与优化教学体系和教学内容

“人工智能导论”是计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其研究领域及内容十分丰富,涉及的基础面广。因此如何选好教学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件重要而又困难的事情。

进入21世纪以来,人工智能学科又有了新的发展。为了及时反映人工智能研究和学科的最新进展,我们修订了“人工智能导论”的教学大纲,对教学内容进一步优化和更新,极大充实了各个系统的内容。我们确定的教学内容主要分为三部分:第1部分为概论,介绍人工智能的基本概念、基本内容、主要研究领域及发展过程;第2部分是知识表示,推理和搜索技术,讨论几种常用的知识表示方法、推理技术(包括确定性推理方法和不确定推理方法)和搜索求解策略;第3部分是人工智能应用研究领域,包括专家系统、自然语言理解、机器学习、人工神经网络、遗传算法等的基本概念和方法等。其中第2部分是基础理论,是人工智能的重要基础,应该循序学习。第3部分是人工智能的应用,由于每个研究内容都相对独立、自成体系且有其专门的学术著作研究、热点,因此针对高等院校的本专科生来说,不必循序学习,而且结合专业特点可以选择其中几个研究领域。例如对自动化专业的学生来说,可以选择专家系统、人工神经网络、遗传算法等,同时可增加在自动控制领域的应用,包括专家控制、神经网络控制和进化控制等热点:而对计算机科学与技术专业来说,可以选择专家系统、自然语言理解、机器学习等,并辅以动物识别系统、语音识别系统、智能机器人等实例。总之就是要把握课程性质和教学目的,调整本课程教学体系,优化教学内容,让学生以有限的时间学到人工智能的基础知识和基本方法。

另外,在选择和确定教学内容时必须兼顾基础知识和新兴技术,注意与相关课程(如离散数学、数据结构、概率论、自动控制原理、Matlab系统仿真、面向对象的编程技术等)的链接,密切理论与实际的关系,通过课堂讲授和课外训练,注意学生能力培养,提高他们的学习效果和整体素质。

3 加强课程立体化建设和系列教材研究

在课程的立体化建设中,教材充当了地基的角色,所有的课程内容安排,无不体现出以教材为基本,以教材为模板。所以本着基础、实用的原则,我们先后编著出版了《人工智能及其应用》课程教材导论部分概括性强,引人入胜;基础部分系统全面,叙述深入浅出,循序渐进;应用部分密切理论与实际关系,典型形象。其中第二版在第一版的基础上,增加了证据理论、模糊推理、神经网络等理论的一些典型应用,使学生能够更深入地理解和应用这些理论;另一方面,又新增了自然语言理解及其应用内容,以适应目前计算机翻译、人机自然语言交互等技术日益广泛应用的需要。系列教材适应了人工智能导论新课程开设的需要,反映了人工智能学科的发展,为人工智能课程确立了基本框架,发挥了重要作用。系列教材的问世不仅解决了本校“人工智能导论”课程教学用书的问题,而且也被各兄弟院校普遍采用,促进了该课程的普遍开设,推动人工智能学科的发展。

为了配合教材第二版的教学和自学,在已有教学经验和教学成果积累的基础上,制作了高质量的教学课件和完整的教学视频录像,并刻录成光盘随书供读者使用;同时又研究与开发了网络课程(http://),以更好地调动学生的学习兴趣和主动性,促进本课程的教学改革。

包括主教材、电子教案、教学视频录像、网络课程及教学资料库等在内的课程立体化建设符合二十一世纪高校教学的要求,支持教师提高教学手段现代化的水平,更贴合学生的学习需求。

4 改革与创新教学模式和教学方法

在“人工智能导论”课程教学的过程中,我们积极探索教学新路,经过数年辛勤试验,结合蔡自兴教授等对人工智能课程的建设经验,对课程的教学模式和教学方法进行了如下一些的改革与创新。

(1)通过多种途径激发学生的学习兴趣

“兴趣是最好的老师”,“人工智能导论”课程的学习效果,直接受到学生兴趣和参与意识的影响。由于这是一门导论性前沿课程,一般来说,学生开始学习兴趣很大。但是,当一些学生开始接触到抽象概念和算法时,往往感到不易接受。我们通过各种途径和方法,激发和培养学生的学习兴趣。例如,鼓励学生参与课堂讨 论、布置读书报告和课外实验、以问题为导向的启发式教学、专题讨论/辩论等形式。特别,我们精心组织和准备了模糊控制技术及其应用、智能机器人技术与应用、智能交通、BCI(脑机交互接口)等专题,以及智能调度软件、语音识别系统、动物识别系统、足球机器人比赛、机器人轨迹跟踪、倒立摆的智能控制等课内演示,使学生扩大了眼界,增加了感性知识,达到提高学生学习兴趣的目的与效果。

(2)面向问题的启发式教学

人工智能中的许多问题,有的似是而非,有的引人入胜。在教学中,有意识的提出相关问题,提请学生思考,鼓励学生提出自己的猜想和解决方案。然后逐步进入教材中的解决方案,启发学生求解这些问题,并进行分析和比较,从而强化了学生学习的主动意识和参与意识,提高了学生的学习积极性。例如,在讲到比较抽象的“遗传算法”时,提出“遗传算法如何用于优化计算?”这一问题。针对该问题,先从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用;然后通过一个简单的例子,从特殊到一般地启发学生思考“遗传”、“变异”和“选择”的实现,最终让学生与教师一起导出遗传算法用于优化计算的基本步骤。这样,学生不但从中学习了遗传算法,而且得到一次逻辑思维的训练,取得很好的教学效果。

(3)课堂辩论与交互式教学

组织课堂辩论,讨论的议题包括人工智能的应用前景和其他比较等有争议的问题。学生对这些问题展开了激烈的争论,激发了学习潜能,明确了学习目标。例如,为了加深学生对智能机器人内涵的理解,我们组织了“机器智能能否超过人类智能”的辩论会。会前正反双方结合本课程内容及其相关知识,认真进行准备;辩论会上正反双方唇枪舌战,激烈争辩,气氛热烈。辩论后,学生余意未尽,讨论热情不减。无论是哪一方获胜,都达到了预期的效果。教学中我们还注意采用了多种交互式策略,如课堂上教师提问可鼓励或指定学生提问,也可由学生自由地就某个知识点进行主题发言后老师点评等。

(4)个性化学习与因材施教

在本课程教学过程中注意对学生因材施教和个性化教学。例如,通过组织学生进行读书报告的形式,鼓励学生从多方面、多角度考虑问题,多提新颖思想,有意识地鼓励优秀学生探讨比较深层的内容,并辅导优秀学生将其成果以科技论文和发表文章的形式转化为成果。又如,在教学设计和实验设计中,注意要求学习有余力和兴趣的学生选作部分探索性、创新性的功课和实验(选学内容,如模糊控制器的设计、进化控制等),从而引导学生发挥个性优势,达到因材施教的目的。同时注意分析学习较差的学生的具体困难,进行有针对性的指导。

(5)多媒体与网络教学的使用

本课程在PPT演示文稿和网络课程上,采用了大量的多媒体表现形式,如视频、动画、声音和图像等。目的在于使得人工智能抽象的知识形象化,便于学生理解。例如,课内让学生在线观看涂晓媛博士的计算机动画“人工鱼”的录像片段、人工生命Floy中生命智能体在环境中不断的适应进化构成演示等,有助于加深学生对所学知识的理解,促进教学水平的提高,激发了学生对课程的兴趣,使学生创新意识得到增强。此外,随教材附赠的教学光盘和开发的网络课程(http://)提供了学生课外自学用的高质量的电子课件、完整的教学视频录像、丰富的实验和案例资料等,以更好地调动学生的学习兴趣和主动性。

(7)理论与实践结合

在教学内容安排上,注意理论联系实际,适时布置一些人工智能实验给学生进行课外练习。设计的课外实验包括产生式系统实验,归结反演实验,主观Bayes推理网络实验,A搜索实验,以及基于Maltab工具箱的模糊控制位置跟踪系统、两车追赶模糊控制系统、神经网络模式识别仿真、遗传算法优化计算等实验。通过实践和参与,保持学习兴趣,有助于学生对人工智能基本概念和难点的理解,掌握基本方法和技术,为从事智能系统应用开发打下基础,从而达到教学目的。例如,我们组织学生参观我们的研究生综合自动化实验室,观看机器人臂取物、倒立摆控制、语音识别软件、指纹识别软件、智能调度软件等演示,密切理论与实际的关系。

我们在教学改革实践中探索的这些教学方法,有利于充分激励学生的学习积极性和主动性,有利于鼓励学生发挥独立思考和创新思维,有利于多方位培养学生学习发现问题、分析问题和解决问题的能力。

5 运用多样化的教学手段和考核方式

5.1 多样化的教学手段

采用现代信息技术进行教学,构筑“人工智能导论”课程的现代教学模式,是本课程的主要特点之一。教学过程中采用了多媒体教学课件和网络课程相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等,进行教学。采用的方法包括:

(1)抽象知识内容的多媒体表示

通过动画和视频来演示抽象的概念、算法和过程,包括机器人轨迹跟踪、机器人臂取物、足球机器人比赛、倒立摆控制、“人工鱼”等录像片段,以及智能调度软件、语音识别系统、指纹识别系统、动物识别系统等软件演示。

(2)通过PPT撰写教案

精心编制PPT,组织好课件内容,做到图文并茂,提纲挈领,便于学生理解,便于教师讲授。

(3)开发与应用网络课程

“人工智能导论”网络课程较好的实现了交互性、在一定程度上实现了学习过程的情景化。在交互性方面,通过网络课程的课堂练习和章节练习,评价学生的学习情况,并给学生提出学习建议。在情景化方面,采用了在线答疑形式,使得学习过程丰富有趣。

(4)先进实验系统的观摩与演示

利用我们的研究成果等有利条件,有针对性地对学生进行成果演示(包括智能调度软件、语音识别系统、指纹识别系统、动物识别系统等软件),使学生知道学了有用,而且很有用,很有趣,很有意义,从而进一步诱导学生的学习兴趣,巩固了课堂所学知识,提高了教学质量。

教学效果通过上述先进的现代信息技术的应用,不仅极大地提高了学生的学习兴趣和主动性,而且也取得很好的实际教学效果,提高教学质量。

5.2 作业、考试等教改举措

(1)改革作业方式与方法

改变过去那种单纯的书面习题作业,发展成为必须交给教师评阅的书面家庭作业、不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中上交作业通过网络进行,教师批阅后的作业也通过网络返回给学生,实现了作业呈交和返回的网络化。

(2)改革考试方式与方法

如何对本课程的考试方式进行改革一直是我们探索的问题。我们综合考虑课堂出勤情况(10%)、平时正式作业成绩(20%)和期末课程考试(70%),进行综合评分。期末考试有时采用综合试题考试,出几个大题目让学生选择其中几个进行开卷笔试,当面交卷后评分;有时采用课外开卷论文结合或口试面试。最近,我们还对部分学生结合实验或实际问题提问等进行考核。我们正进一步改革、试验和探索,使考试成为衡量与培养创新能力,促进学生学习主动性和提高课程教学质量的重要环节。

第5篇

Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.

P键词: 人工智能;创新;本科

Key words: artificial intelligence;innovation;undergraduate

中图分类号:G642 文献标识码:A 文章编号:1006-4311(2017)22-0230-02

0 引言

人工智能是计算机科学的一个分支,是当前科学技术中正在迅速发展、新思想、新观点、新理论、新技术不断涌现的一个学科,其属于一门边缘学科,同时也是多个学科交叉而成的一门学科,包括语言学、哲学、心理学、神经生理学、系统论、信息论、控制论、计算机科学、数学等[1]。当前人工智能已经是很多高校计算机相关专业的必修课程,它是计算机科学与技术学科类各专业重要的基础课程,其教学内容主要包括自然语言理解、计算智能技术、问题求解和搜索算法、知识表示和推理机制、专家系统和机器学习等,国内外很多大学都意识到了其重要性,纷纷对其展开了教学和研究。人工智能课程包含多个学科,具有内容抽象、理论性强、知识点多等特点,且算法复杂,但是多数高校采用的教学方式仍是传统的课堂教学方式,即“教师讲、学生听”的教学模式,这种信息单向传输教学模式以教师为主体,学生只是在被动的接收知识;存在过分重视理论教学,忽视实践活动教学的问题,导致教育内容无法和社会接轨;人工智能教材理论性过强,学生在学习过程中常常感到枯燥乏味,进而对学习该课程失去热情[2],久而久之,不仅人工智能课程的教学质量和效果无法达到预期,甚至学生还会产生厌学心理。针对人工智能课程中现有的各项问题,本文作者结合自身丰富人工智能教学实践经验,参考人工智能课程特点和教学目标,从多个方面探讨和总结了人工智能,包括教学内容、教材选择、教学方法和考核形式等。

1 教学内容优化与更新

人工智能是一门崭新的学科。开设本课程首先是确定教学内容。通常来讲,人工智能学科的内容包括两个部分,具体:一是知识表示和推理;二是人工智能的应用。前者是人工智能的重要基础,后者主要介绍了几种人工智能应用系统,包括自动规划和机器视觉、机器学习、专家系统等。另外,课程内容中还包括了一些人工智能应用的实例,将实践和理论紧密结合起来[3]。

随着时代的发展和科技的进步,人工智能学科也取得了较大发展。基于此,人工智能学科也应该与时俱进,更新人工智能教学大纲,进一步完善其教学内容。修订后的人工智能教学大纲将人工智能分成两个部分,即基础部分和扩展应用部分。前者包括计算智能、搜索原理、知识表示等,后者包括智能机器人、智能控制、多智能体、自然语言理解、自动规划、机器学习、知识工程等。

教学内容的选择和确定应综合考虑多项因素,不仅要重视基础知识,也应注意推陈出新,随着科技的进步做到与时俱进,同时教学内容应符合现实的需求,能够与社会接轨,将理论和实践紧密结合起来,只有这样人工智能课程的教学质量和效果才能事半功倍。

2 教学策略及教学方法的改革创新

由于人工智能课程具有算法复杂、内容抽象、理论性强、 知识点多的特点,传统的教学模式已经无法满足人工智能课程的需求,教师应探索更加有效的教学模式和方法,确保人工智能课程能够取得良好的教学质量和教学效果。具体的改革和创新人工智能课程的手段和方法主要包括以下几个方面:

2.1 激发学生的学习兴趣 无论是经验还是常识都在告诉我们每个人最好的老师就是兴趣,学生只有对某门学科存在兴趣,才会更加主动积极的学习该门课程,从而获得良好的教学效果。比如,作者在课程的一开始先播放了一段著名导演斯蒂文・斯皮尔伯格的《Artificial Intelligence》的相关片段,由这个电影学生知道了世上存在人工智能的机器人,学生们随着电影情节的发展而深深感动,与此同时教师让学生思考和谈论人工智能是什么?研究人工智能的意义在哪里?实践发现,在课堂中加入电影因素,能够大大提升学生们的注意力,让学生更加专注在教学任务中,有效提高了学生探索人工智能的积极性和主动性。此外,在教学中还可以用动画、视频、图片等手段将反映人工智能最新研究和应用的成果展示出来,让学生更直观的感受人工智能的奥妙,从而投入更多热情学习人工智能课程。

2.2 面向问题的案例教学法 案例教学法是一种以案例为基础、以能力培养为核心的一种教学方法[11]。针对学校学生特点,我们采取了以下几种教学形式实施案例教学。①讲解式案例教学:这种案例通过教师的讲解,帮助学生理解抽象的理论知识点。案例的呈现有两种基本形式:一是“案例―理论”,即先给出教学案例,然后再讲解理论知识;二是“理论―案例”,即教师先讲解理论知识,再给出教学案例;通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。②讨论式案例教学:在课程初期将学生分成若干学习小组,每小组3~4人;教师将提前设计好的一题多解的教学案例以及收集的相关资料分配给每个小组,要求学生在课余时间通过自学和组内讨论的方式给出问题的不同解决方案。③辩论式案例教学:在课程后期,采取专题辩论的方式对综合应用案例进行讨论,能有效地启发学生全方位地思考和探索问题的解决方法,加深学生对人工智能的理解。

2.3 个性化学习与因材施教 在开展课程教育过程中应注意对学生进行个性化教学,结合学生特点因材施教。比如,在日常教学中多观察学生情况,鼓励那些应对教学任务后仍存在余力的W生深入探索较深层次的课程及相关知识,同时友善面对学习较差的学生,分析其学习过程中面对的困难,有的放矢地采取应对措施,帮助其不断进步;在教学过程中让学生以读书报告的形式多多思考,鼓励学生发散性思考问题,鼓励优秀学生进行深一步的探讨,并且教师应帮助具有新颖思想或论点的学生将其智慧以科技论文和发表文章的形式转化为成果。

2.4 注重综合能力培养 在研究型教学中任务驱动是一种常用的教学方法,其中心导向是任务,学生在完成任务的同时也在吸收和掌握知识。通常来讲,该教学方法的步骤是:教师提出任务师生共同分析以得出完成任务的方法和步骤适当讲解或自学、协作学习完成任务交流和总结。”[3]该教学模式不仅有利于培养学生的创新能力和创新意识,还能够培养学生解决实际问题的能力,提高其综合实力。不仅如此,由于该教学模式通常是以小组协作的方式进行,教师给出研究范围,学生自愿结组并选择具体的题目,经过分析和讨论后以程序设计或者论文的形式协作完成研究。由此可知,学生是在以团队的力量解决问题,这十分考验学生的团队协作能力,对于学生团队合作精神的培养至关重要,且在完成任务的过程中学生需要查阅大量的资料,久而久之学生收集资料和创新能力势必会得到提升。

2.5 采用启发式教学 人工智能的很多问题都较为抽象,对学生理解力的要求较高,因此,在实际的教学过程中教师应有意识的就课程内容提出相关问题,让学生自己独立思考,鼓励学生提出自己的想法和解决方案。然后回归到课程上,对比分析教材上的解决方案和学生自己的解决方案,如此不仅培养了学生独立思考的能力,也增加了学生参与教学活动的意识,提高了学生的学习热情。比如,在讲到较为抽象的“遗传算法”时,先提出一个问题,即“遗传算法如何用于优化计算?”,然后从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用,之后举例分析,启发学生思考“遗传”、“变异”和“选择”的实现,最后师生一起导出遗传算法用于优化计算的基本步骤。如此既完成了教授遗传算法的目的,也锻炼了学生逻辑思维的能力,教学效果良好[4]。

3 作业和考核方式的改革创新

过去的课程作业都是单一书面习题作业,发展至今,课程作业形式已经发生了变化,更加丰富多样,包括必须交给教师评阅的书面家庭作业和不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中通过网络就可以完成上交作业,并且教师批阅作业后也可以通过网络返回给学生,实现了网络化。课程的考核方式较之以前也发生了较大变化,加强了平时思维能力的考核,更加注重学生实验能力和动手能力的培养,不再是绝对的一次考试定成绩,而是在总评成绩中加入30%的平时成绩,如此不仅减轻了学生的期末负担,也迫使学生更加重视平时的学习思考,有利于课程教学质量的提升。

4 结束语

本文是以提高教学质量为目标,结合教学实践,从教学体系、教学内容、教学方法、考核方式等方面对本科人工智能课程的教学改革进行了探讨,总结了该课程在教学和实践方面的一些教改举措。这些举措符合二十一世纪高校教学的要求,可以支持教师提高教学手段现代化的水平,同时更贴合学生的学习需求。作为该课程的授课教师应始终保持对教学内容的不断更新、教学方法的多样化,才能激发学生的学习兴趣,培养他们的思维创新和技术创新的能力,最终提高本课程的教学质量。从学生的反馈来看,作者所总结的教学实践具有明显的教学效果。但仍有许多方面做得不够,今后将继续在教学过程中不断总结成功的经验,吸取失败的教训。

参考文献:

[1]蔡自兴.人工智能及其应用[M].三版.北京:清华大学出版社,2007.

[2]谢榕,李霞.人工智能课程教学案例库建设及案例教学实践[J].计算机教育,2014(19):92-97.

[3]蔡自兴,肖晓明,蒙祖强.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004(1):28-29.

第6篇

关键词:人工智能;案例教学;应用

1引言

作为计算机科学技术的全新领域即人工智能,其正在迅速成长与成熟、新方法、新理念、新技术并且不断壮大,同样也包含着计算机网络、数学、信息论各类学科的交叉和边缘学科。人工智能包含的主要内容有知识表示和推理机制、问题求解和搜索算法,自然语言理解、专家系统和机器学习等;也作为计算机科学各专业重要的基础课程,国内外各高校都非常重视,都将人工智能作为计算机专业的必修课程。人工智能包含的学科多,知识点杂、理论性强、内容抽象,算法难度高复杂,在此情况下各高校采用传统的“教师讲、学生听”单一教学模式,学生处于被动学习地位;课堂教学与实际操作、理论与现实应用相脱节;加上理论知识强,案例缺乏,容易使学生感觉空洞;学生易产生厌学情绪,也达不到锻炼其分析问题、解决问题的思维能力和实践动手能力。如何让学生高效的学习一直是教师研究的课题,在大数据和网络信息时代的大背景下,“互联网+”已经广泛应用和存在于生活、工作各个方面,其在教育教学中表现出的创新性、互动性尤为突出,并极具优势。

2基于案例的教学研究

此方法开始于上世纪20年代左右,最早是由美国哈佛商学院所提倡的,基于当时特殊的商业管理真是背景和特殊事件,能够有效的发展和培养学生主动性、积极性和应用能力,开展案例教学后,学生实际解决问题能力有了很大的提高。但此教学研究方法知道到上世纪80年代后期,才引起教师的重视。1986年由美国研究小组提出《准备就绪的国家:二十一世纪的教师》书中,强烈推荐此方法在实际教学的重要性,并说明今后在教学过程中将其作为一种重要的教学方法应用于各类课程中去。

3基于人工智能的案例教学研究及应用

3.1案例精选

此方法第一步是案例选取,案例的好坏是决定案例教学效果关键因素。案例的选取需要满足以下要求:(1)符合现在的教学目标,明确学生需要掌握的知识点、重难点等,能够运用所学的理论知识应用到实际中,以此提高学生分析、解决问题的能力;(2)案例要有代表性、趣味性,由于人工智能课程内容多、抽象,需要将枯燥乏味的知识点转化为趣味生动的案例,有利于吸引学生注意力,激发学习兴趣和主动性;例如,讲到“知识表示”这部分内容中引入“机器人搬积木”、“野人修道士渡河”案例;(3)采用互动的形式,此为人工智能的案例教学研究重要特征,同时也是教学目标得以充分展现的必要条件。能够调动大家的积极性,学生和学生之间、学生与教师之间的互动,调动学生的主观能动性。

3.2案例的执行

(1)讲授法。基于教学内容具体知识点设计案例;通过教师讲解,帮助学生理解抽象的理论知识。案例的呈现有两种基本形式:一是“案例—理论”,即先给出教学案例,后讲解理论知识;二是“理论—案例”,即教师先讲解知识,再给出教学案例;案例的呈现方式不同,会直接影响案例的功能,也会影响到学生的学习情绪、学习效果。为了使案例能更好地为教学服务,教师讲解案例之前应从创设案例情境开始,通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。(2)互相讨论法。大学生课余时间充沛,鉴于此,将班级学生分为若干小组,教师将事先准备好的案例分配给各组,学生采用组内互动讨论的形式,设计出此案例的各种解决方法。课堂上,将本小组的解决方法用课件展现给其他小组。讲解完成后,学生开始互相讨论,对比各自的方法,然后由老师进行分析、对比和总结。以此来增强学生对学科知识点、应用能力的掌握。(3)相互辩证法。课后,采用相互辩证的方法,组织大家相互辩论。选择一些综合应用比较强的案例。与简单的案例相比,综合应用案例能更加高效地启发学生全方位地思考和探索问题的解决方法。相互辩证法是一种探索新型的教学形式,学生的自主性强,能够在辩论中充分表达自己的观点,充分运用所学的理论知识来维护自己的观点,还可以促使学生查阅大量资料,拓展知识面。

4结语

通过以上论述,人工智能技术开始应用于教学,与教学现代化有着密切的联系。其发展必将对现代教育起巨大推动作用。在教学,可以基于人工智能技术建立人类推理模型学习工具等诸多的运用,展示出越来越好的实用性。

参考文献:

[1]邹蕾,张先锋.人工智能及其发展应用[J].信息网络安全,2012(02).

[2]陈柯蒙,张宁.人工智能的发展探析[J].新西部(理论版),2012(05).

[3]陈浩磊,邹湘军,陈燕,等.虚拟现实技术的最新发展与展望[J].中国科技论文在线,2011(01).

第7篇

其实我对辩论本身没什么兴趣,也不是要“晒勤奋”,更是对懒人生活充满了无限向往,提到懒惰和人类之光,只是想说说人工智能世界里的智慧和能力。

对于大多数人而言,人工智能其实是个很老的、很宽泛的同时又很虚幻的概念。之所以有这样的印象,恰恰是因为人们接触到的大部分人工智能系统的应用范围非常狭窄,按照预设程序,执行特定任务,场景学习能力弱小,更谈不上交互和情感层面的高级需求。

即便像“微软小冰”那样一个在诞生之初就做好了“情感计算框架”的聊天机器人,除了陪聊之外,也很难让人觉得“实在”、“有用”;即便现在的超级计算机、各种芯片处理器的运算速度和处理能力已经提升到了一个令人恐怖的程度,但也仍然在创造性的维度上举步维艰。

所以,当前的人工智能,能力有余,智慧不足。

云和大数据时代的到来,正在将人工智能领域推向一个全新的世界。一些人想到了利用基于互联网的云平台和相关智能技术来跨界整合,赋予“机器人人”更大的知识库和更强的学习能力(比如“健康大白”);一些人则借力诸多商业化的大数据分析平台(比如英特尔的TAP,IBM的Watson等)以及超级计算机来获取一直有着较高门槛的机器学习、深度学习领域的准入资格;

而另一些人甚至把目光聚焦在了人工智能的底层算法上。“阿尔法狗”的幕后操盘手,被谷歌收购的英国人工智能公司DeepMind就在这么干。该公司创始人Demis Hassabis希望构建一套能像生物系统一样学习的、灵活的、自适应的算法,这被称为通用人工智能(AGI,即Artificial General Intelligence),能自动将非结构化信息转换为可使用知识。

“气候建模,复杂疾病分析――开始想象下一步可能解决什么,这让人非常兴奋。”Demis Hassabis认为,未来超级智能机器将与人类专家合作解决一切问题。