时间:2023-09-28 15:44:32
序论:在您撰写风险等级评估标准时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
一、问题的提出
金融机构客户洗钱风险等级划分制度是金融机构按照客户涉嫌洗钱或恐怖融资活动的特征,通过识别、分析、判断、评估等方式,将客户划分为不同风险等级,并针对不同风险等级采取相应风控措施的制度。作为反洗钱风险为本管理理念的具体实践,金融机构客户洗钱风险等级划分对有效监测防范洗钱和恐怖融资风险具有重要作用。从微观实践层面看:金融机构客户数量众多,反洗钱资源却十分有限,不可能真正做到对所有客户实时跟踪监测,客户洗钱风险等级的划分有利于金融机构实行差异化监控,对一般交易客户常规管理,对重点可疑对象强化管理。从宏观实践层面看:反洗钱监管部门出于控制监管成本的考虑,不可能将金融机构所有客户都纳入关注视野,客户洗钱风险等级的划分有利于反洗钱监管部门研究分析洗钱高风险客户的数目总量、风险特性、结构分布和关联程度,全视角的及早发现洗钱风险苗头,提示洗钱风险,部署反洗钱调查。然而,由于受各种制度层面和执行层面主客观因素的制约,与金融机构客户洗钱风险等级划分制度重要性形成鲜明对比的是金融机构客户洗钱风险等级划分标准缺乏代表性,评估方法缺乏科学性,风控措施缺乏操作性,这直接影响到划分制度的有效性,为此尝试构建差异性的划分标准、科学化的评估方法、可操作的风控措施将成为反映金融机构客户洗钱风险等级划分制度有效性的关键因素。
二、金融机构客户洗钱风险等级划分的国际经验
无论是专门的国际反洗钱组织或是在反洗钱领域发挥重要作用的其他国际组织,无论是发达经济体或是新兴经济体均对金融机构实施以风险为基础的客户洗钱风险等级划分、评判和管理有着纲领性和具体性的要求。
(一)国际经济金融组织客户洗钱风险等级划分主要经验
金融行动特别工作组(FATF)通过的《打击洗钱、恐怖融资和扩散融资国际标准》(新40条建议)建议各国适用风险为本的方法,洗钱风险较高时确保反洗钱与反恐怖融资体系能充分化解风险,洗钱风险较低时在特定情况下可采取简化措施,金融机构应识别、评估并采取有效措施降低客户洗钱与恐怖融资风险,在高风险国家、政治公众人物、行、资金或价值转移服务、新技术、电汇、跨境交易等洗钱高风险领域采取强化的风险控制措施。沃尔夫斯堡集团(Wolfs-berg Group)提供给成员银行的《反洗钱原则:全球私人银行指南》强调了对不同风险客户区别对待的原则,并将洗钱风险划分为地域风险、客户风险和服务风险三类,提出判断洗钱风险增减的五个因素:客户交易规模、客户受反洗钱监控的程度、客户交易往来历史、客户对反洗钱规则的熟悉程度以及客户交易媒介的透明度。巴塞尔银行监管委员会(BCBS)公布的《防止为洗钱目的而非法利用银行系统的规定》要求银行必须基于风险考虑是否与客户建立关系或持续交易,对客户身份背景、所在国家、交易账户、经营行为和其他任何与风险有关的因素都应列在尽职调查范围之内,对高风险客户必须实施增强的审慎措施。
(二)主要国家和地区客户洗钱风险等级划分主要经验
美国《爱国者法案》规定判定客户洗钱风险的方法首先是业务品种,其次是客户和交易种类以及地域范围,高风险业务一般包括私人银行业务、现金存取款、行账户、贸易结算和国际汇款,高风险客户一般包括特定国家和地区的自然人、法人和金融机构、现金汇款者和兑换商、珠宝和贵金属销售商、车船飞机经销商、地产商及房屋买卖业主、进出口公司、律师和会计师。欧盟《反洗钱4号指令》指出客户尽职调查程序应建立在客户洗钱风险等级评判基础之上,判定的因素涵盖客户背景、出生及主要活动地、职业、关联账户、商业行为和其他风险因素,客户被核定为“高、中、低”三类风险等级,凡被列为洗钱高风险的客户都将受到金融机构更为频繁的跟踪监测。中国香港金融监管部门在银行、证券期货及保险行业的反洗钱指引中均要求金融机构按照风险为本的原则判定客户身份,保险业监理处的《防止洗黑钱及筹资活动指引》中详细规定保险公司判定客户风险时应充分考虑保单性质、交易频密和规模、客户来源地、社会背景及缴款方式。
三、金融机构客户洗钱风险等级划分的国内实践
国内金融机构客户洗钱风险等级划分工作任重而道远,从制度层面看虽有着立法规定,从执行层面看虽有着业内实践,但在实际中无论是制度层面还是执行层面都存在着不少的问题与不小的困境,在一定程度上严重影响着国内金融机构客户洗钱风险等级划分制度的有效性。
(一)划分标准机构各自为政,缺乏权威性、全面性和规范性
金融机构客户洗钱风险等级划分工作是立法完善、行业治理、义务主体自觉履行的系统性工作,但目前我国反洗钱法律法规对客户洗钱风险等级划分规定较为简单,不利于金融机构在实践中操作运用。同时,除证券期货业制定了本行业的客户洗钱风险等级划分工作指引外,银行和保险业尚未制定统一规范的指引,呈现出各行业法人金融机构自行制定客户洗钱风险等级划分办法的局面,划分标准机构各自为政,缺乏权威性与规范性。
(二)划分标准反映行业特有属性的少,缺乏针对性和区分度
金融机构客户洗钱风险等级划分标准除应囊括行业间共性特征的风险因素外,更应立足本行业固有特征、机构经营特点和产品服务属性,增加并考虑不同与其他行业的特殊风险因素,但实际中不同行业法人金融机构自行制定的客户洗钱风险等级划分办法雷同较大,划分标准反映行业间共性的多,行业特有属性和机构自身特点的少,缺乏应有的行业针对性与区分度。
(三)划分多采用定性评估方法,缺乏定量评估和数据实证
金融机构客户洗钱风险等级划分方法的准确性直接决定着客户洗钱风险等级评定的准确性,因此选择操作性强的客户洗钱风险等级定量方法来充分利用有限的客户信息资源,解决客户洗钱风险等级划分的人为不确定性就具有重要的意义,但现实情况是金融机构客户洗钱风险等级评估多采用定性描述和分析的方法,缺乏相应的数据实证和定量分析,判断的随意性、分析的主观性和结论的不确定性较大。
(四)划分结果风控措施原则性强,缺乏可操作的具体措施
风险为本的控制措施是金融机构客户洗钱风险等级划分工作的终点,但在实际操作中,金融机构对不同洗钱风险等级客户适用不同程度的风控措施仅做了原则性要求,针对低风险客户没有制定简化的客户尽职调查措施和异常交易快速判断机制,不能有效降低反洗钱管理成本;针对高风险客户即使制定措施也仅是善意劝告,没有实质性措施防范洗钱风险,风控措施效果大打折扣。
四、金融机构客户洗钱风险等级指标方法与风控措施探索
(一)划分标准
金融机构客户洗钱风险等级划分标准的构建应立足行业间的共性风险因素,结合各行业的特殊风险因素,考虑直接判定的例外情形,按禁止类、高风险、中风险和低风险的风险等级,分行业适度和客观地衡量客户洗钱风险程度。
表1 银行业金融机构客户洗钱风险等级划分标准
表2 证券业金融机构客户洗钱风险等级划分标准
表3 保险业金融机构客户洗钱风险等级划分标准
接判定为禁止类客户的情形:
1.被列合国安理会及反洗钱国际组织的反洗钱监控名单及类似名单的客户;
2.被列入我国的反洗钱监控名单及类似名单的客户;
3.涉嫌或已立案法律调查和反洗钱调查的客户;
4.被上海证券交易所、深圳证券交易所、中国证券登记结算公司采取监管措施的账户;
5.被保险行业核保核赔联席会议认定的骗保骗赔名单。
(二)评估方法
金融机构受内外部经营环境制约,获取客户信息成本相对较高,再加之缺乏行之有效的定量评估方法,增加了客户洗钱风险等级判断的随意性、分析的主观性和结论的不确定性。熵权法作为一种客观赋权法相对专家判断法等主观赋值法,客观性强,精确度高,在使用过程中根据指标的变异程度利用信息熵计算出各指标的熵权,并通过定义加权广义距离表征划分的差异性,得出隶属度矩阵测算出较为客观的客户洗钱风险评级结果。以保险业金融机构客户洗钱风险等级划分标准为例:
客户群由4个客户组成,C=(c1,c2,c3,c4)
风险分低、中、高3个等级,G=(g1,g2,g3)
评价指标体系由7项组成,V=(v1,v2,v3,v4,v5,v6,v7)
V1国别地域:国内一般地区,国内敏感地区,其他国家和地区,反洗钱薄弱国家和地区,分别取值0,1,2,3。
V2行业职业:国家机关、党群组织及事业单位,农业和生产运输企业,商业技术及服务行业,FATF规定的特定行业,分别取值0,1,2,3。
V3业务类型:保障型保险产品,储蓄型保险产品,投资型保险产品,分别取值0,1,2。
V4业务渠道:机构直销渠道,兼业渠道,网销电销渠道,专业渠道、个人渠道,分别取值0,1,2,3,4。
V5保费金额:20万元人民币或2万美元以下,20~50万元人民币或2~5万美元,50万元人民币或5万美元以上,分别取值0,1,2。
V6退保金额:1万元人民币或1千美元以下,1万元人民币或1千美元以上,分别取值0,1。
V7缴费年限:5年以上期缴,1~5年期缴,1年以下趸缴,分别取值0,1,2。
客户相对于风险评价指标的特征值矩阵为:
X■=■
指标体系标准矩阵为:
Ω■=■
广义距离取欧氏距离,使用MATLAB对相关矩阵规范处理得出指标权重为Wj=(0.18、0.13、0.18、0.25、0.05、0.16、0.05);客户群C对于风险等级G的隶属度矩阵U为:
低 中 高
客户1 0.332 0.320 0.348
客户2 0.362 0.302 0.336
客户3 0.296 0.398 0.306
客户4 0.237 0.396 0.367
即1为高风险客户,2为低风险客户,3和4为中风险客户。
(三)风控措施(见表4)
档案信息资产是与档案信息系统有关的所有资产,包括档案信息系统的硬件、软件、数据、人员、服务及组织形象等,是有形和无形资产的总和。脆弱性是档案信息系统自身存在的技术和管理漏洞,可能被外部威胁利用,造成安全事故;威胁是外部存在的、可能导致档案信息系统发生安全事故的潜在因素。威胁、脆弱性及档案信息资产的相互影响造成档案信息系统面临安全风险,最后计算出风险值。
档案信息安全风险评估总体方法
档案信息安全风险评估的核心问题之一是风险评估方法的选择,风险评估方法包括总体方法和具体方法。总体方法是从宏观的角度确定档案信息安全风险评估大致方法,包括:风险评价标准确定方法;风险评估中资产、威胁和脆弱性的识别方法;风险评估辅助工具使用方法及风险评估管理方法等。事实上,信息安全风险评估方法经历了一个不断发展的过程,“经历了从手动评估到工具辅助评估的阶段,目前正在由技术评估到整体评估发展,由定性评估向定性和定量相结合的方向发展,由基于知识(或经验)的评估向基于模型(或标准)的评估方法发展。”。随着信息安全技术与安全管理的不断发展,目前信息安全风险评估方法已发展到基于标准的、定性与定量相结合的、借用工具辅助评估的整体评估方法。档案信息安全风险评估总体方法应采用目前最先进方法,即采用依据合适风险评估标准、定性与定量结合、借助评估工具或软件来实现不仅进行档案信息安全技术评估,而且进行档案信息安全管理评估的整体评估方法。
1 档案信息安全风险评估标准的确定
信息安全风险评估标准主要分为国际国外标准和国家标准。国际国外标准有:《ISO/IEC 13335 信息技术 IT安全管理指南》、《ISO/IEC 17799:2005信息安全管理实施指南》、《ISO/IEC27001:2005信息安全管理体系要求》、《NIST SP 800-30信息技术系统的风险管理指南》系列标准等,这些标准在国外已得到广泛使用,而我国信息安全风险评估起步较晚,在吸取国外标准且根据我国国情的基础上于2007年制定了国家标准((GB/T 20984-2007信息安全技术信息安全风险评估规范》,并在全国范围内推广。国家发展改革委员会、公安部、国家保密局于2008年了“关于加强国家电子政务工程建设项目信息安全风险评估工作的通知(发改高技[2008]2071号)”,该文件要求国家电子政务工程建设项目(以下简称电子政务项目),应开展信息安全风险评估工作,且规定采用《GB/T 20984-2007信息安全技术信息安全风险评估规范》。档案信息系统属于电子政务系统,档案信息安全风险评估也应该采取OB/T 20984-2007标准。
2 档案信息安全风险评估需定性与定量相结合
定性分析方法是目前广泛采用的方法,需要凭借评估者的知识、经验和直觉,为风险的各个要素定级。定性分析法操作相对容易,但也可能因为分析结果过于主观性,很难完全反映安全现实情况。定量分析则对构成风险的各个要素和潜在损失水平赋予数值或货币金额,最后得出系统安全风险的量化评估结果。
定量分析方法准确,但由于信息系统风险评估是一个复杂的过程,整个信息系统又是一个庞大的系统工程,需要考虑的安全因素众多,而完全量化这些因素是不切实际的,因此完全量化评估是很难实现的。
定性与定量结合分析方法就是将风险要素的赋值和计算,根据需要分别采取定性和定量的方法,将定性分析方法和定量分析方法有机结合起来,共同完成信息安全风险评估。档案信息安全风险评估应采取定性与定量相结合的方法,在档案信息系统资产重要度、威胁分析和脆弱性分析可用定性方法,但给予赋值可采用定量方法。具体脆弱性测试软件可得出定量的数据,最后得出风险值,并判断哪些风险可接受和不可接受等。
3 档案信息安全风险评估需借用辅助评估工具
目前信息安全风险评估辅助工具的出现,改变了以往一切工作都只能手工进行的状况,这些工作包括识别重要资产、威胁和弱点发现、安全需求分析、当前安全实践分析、基于资产的风险分析和评估等。其工作量巨大,容易出现疏漏,而且有些工作如系统软硬件漏洞检测等无法用手工完成,因此目前国内外均使用相应的评估辅助工具,如漏洞检测软件和风险评估辅助软件等。档案信息安全风险评估也需借助相应的辅助工具,直接可用的是各种系统软硬件漏洞测试软件或我国依据《GB/T 20984-2007信息安全技术信息安全风险评估规范》开发的风险评估辅助软件,将来可开发专门的档案信息安全风险评估辅助工具软件。
4 档案信息安全风险评估需整体评估
信息安全风险评估不仅需进行安全技术评估,更重要的需进行安全管理等评估,我国已将信息系统等级保护作为一项安全制度,对不同等级的信息系统根据国家相关标准确定安全等级并采取该等级对应的基本安全措施,其中包括安全技术措施和安全管理措施,因此评估风险时同样需进行安全技术和安全管理的整体风险评估,档案信息安全风险评估同样如此。
档案信息安全风险评估具体方法
根据档案信息安全风险评估原理。从资产识别到风险计算,都需根据信息系统自身情况和风险评估要求选择合适的具体方法,包括:资产识别方法、威胁识别方法、脆弱性识别方法、现有措施识别法和风险计算方法等。
1 资产识别方法
档案信息资产识别是对信息资产的分类和判定其价值,因此资产识别方法包括资产分类方法和资产赋值方法。
(1)资产分类方法
在风险评估中资产分类没有严格的标准,但一般需满足:所有的资产都能找到相应的类;任何资产只能有唯一的类相对应。常用的资产分类方法有:按资产表现形式分类、按资产安全级别分类和按资产的功能分类等。
在《GB/T 20984-2007信息安全技术信息安全风险评估规范》中,对资产按其表现形式进行分类,即分为数据、软件、硬件、服务、人员及其他(主要指组织的无形资产)。这种分类方法的优点为:资产分类清晰、资产分类详细,其缺点为:资产分类与其安全属性无关、资产分类过细造成评估极其复杂,因为目前大部分风险评估
都以资产识别作为起点,一项资产面临多项威胁,—项威胁又与多项脆弱性有关,最后造成针对某一项资产的风险评估就十分复杂,缺乏实际可操作性。这种分类方法比较适合于初次风险评估单位对所有信息资产进行摸底和统计。
风险评估中资产的价值不是以资产的经济价值来衡量,所以信息资产分类应与信息资产安全要求有关,即依据信息资产对安全要求的高低进行分类,这种方法同时也满足下一环节即信息资产重要度赋值需求。任何一个档案信息资产无论是硬件、软件还是其他,其均有安全属性,在《GB/T 20984-2007信息安全技术信息安全风险评估规范》中要求:“资产价值应依据资产在保密性、完整性和可用性上的赋值等级,经过综合评定得出”。可选择每个资产在上述三个安全属性中最重要的安全属性等级作为其最后重要等级。但档案信息安全属性应该更多,除上述属性外还包括:真实性、不可否认性(抗抵赖)、可控性和可追溯性,所以可以根据档案信息的七个安全属性中最重要属性的等级作为该资产等级。
目前信息资产安全属性等级如保密性等级可分为:很高、高、中等、低、很低,因此信息资产按安全等级也可分为:很高、高、中等、低、很低,即如果此信息资产保密性等级为“中”,完整性等级为“中”,可用性等级为“低”,则取此信息资产安全等级最高的“中”级。
按信息资产安全级别分类法符合风险评估要求,因为体现了安全要求越高其资产价值越高的宗旨,在统计资产时也可按表现形式和安全等级结合的方法进行,如下表1所示。“类别”为按第一种分类方法中的类别,重要度为第二种方法中的五个等级。
但如果风险评估时按表1进行资产分类时,每个档案信息系统将具有很多资产,这样针对每一项资产进行评估的时间和精力对于评估方都难以接受。因此,在《信息安全风险评估——概念、方法和实践》一书中提出:“最好的解决办法应该是面对系统的评估”,信息资产安全等级分类的起点可以认为是系统(或子系统),这样可以在资产统计时用资产表现形式进行分类,在资产安全等级分类时按系统或子系统进行大致分类,即同一个系统或子系统中的资产的安全等级相同,这样满足了组织进行风险评估时“用最少的时间找到主要风险”的思想。
(2)资产赋值方法
由于信息资产价值与安全等级有关,因此对资产赋值应与“很高、高、中等、低、很低”相关,但这是定性的方法,结合定量方法为对应“5、4、3、2、1”五个值,同时将此值称为“资产等级重要度”。
2 威胁识别方法
(1)威胁分类方法
对档案信息系统的威胁可从表现形式、来源、动机、途径等多角度进行分类,而常用的为按来源和表现形式分类。按来源可分为:环境因素和人为因素,人为因素又分为恶意和无意两种。基于表现形式可分为:物理环境影响、软硬件故障、无作为或操作失误、管理不到位、恶意代码、越权或滥用、网络攻击、物理攻击、泄密、篡改和抵赖等。由于威胁对信息系统的破坏性极大,所以应以分类详细为宗旨,按表现形式方法分类较为合适。
(2)威胁赋值方法
威胁赋值是以威胁出现的频率为依据的,评估者应根据经验或相关统计数据进行判断,综合考虑三个方面:“以往安全事件中出现威胁频率及其频率统计,实践中检测到的威胁频率统计、近期国内外相关组织的威胁预警”。。可以对威胁出现的频率进行等级化赋值,即为:“很高、高、中等、低、很低”,相应的值为:“5、4、3、2、1”。
3 脆弱性识别方法
脆弱性的识别可以以资产为核心,针对每一项需要保护的资产,识别可能被威胁利用的弱点,同时结合已有安全控制措施,对脆弱性的严重程度进行评估。脆弱性识别时来自于信息资产的所有者、使用者,以及相关业务领域和软硬件方面的专业人员等,并对脆弱性识别途径主要有:问卷调查、工具检测、人工核查、文档查阅、渗透性测试等。
(1)脆弱性分类方法
脆弱性一般可以分为两大类:信息资产本身脆弱性和安全控制措施不足带来的脆弱性。资产本身的脆弱性可以通过测试或漏洞扫描等途径得到,属于技术脆弱性。而安全控制措施不足的脆弱性包括技术脆弱性和管理脆弱性,管理脆弱性更容易被威胁所利用,最后造成安全事故。档案信息系统脆弱性分类最好按技术脆弱性和管理脆弱性进行。技术脆弱性涉及物理层、网络层、系统层、应用层等各个层面的安全问题,管理脆弱性又可分为技术管理脆弱性和组织管理脆弱性两方面。
(2)脆弱性赋值方法
根据脆弱性对资产的暴露程度(指被威胁利用后资产的损失程度),采用等级方式可对已经分类并识别的脆弱性进行赋值。如果脆弱性被威胁利用将对资产造成完全损害,则为最高等级,共分五级:“很高、高、中等、低、很低”,相应的值为:“5、4、3、2、1”。
脆弱性值(已有控制措施仍存在的脆弱性)也可称为暴露等级,将暴露等级“5、4、3、2、1”可转化为对应的暴露系数:100%、80%、60%、40%、20%,再将“脆弱性”与“资产重要度等级”联系,计算出如果脆弱性被威胁利用后发生安全事故的影响等级。
影响等级=暴露系数×资产等级重要度
4 已有控制措施识别方法
(1)识别方法
在识别脆弱性的同时应对已经采取的安全措施进行确认,然后确定安全事件发生的容易度。容易度描述的是在采取安全控制措施后威胁利用脆弱性仍可能发生安全事故的容易情况,也就是威胁的五个等级:“很高、高、中等、低、很低”,相应的取值为:“5、4、3、2、1”,“5”为最容易发生安全事故。
同时安全事件发生的可能性与已有控制措施有关,评估人员可以根据对系统的调查分析直接给在用控制措施的有效性进行赋值,赋值等级可分为0-5级,
“0”为控制措施基本有效,“5”为控制措施基本无效。
(2)安全事件可能性赋值
安全事件发生的可能性可用以下公式计算:
发生可能性=发生容易度(即威胁赋值)+控制措施
5 风险计算方法
风险计算方法有很多种,但其必须与资产安全等级、面临威胁值、脆弱性值、暴露等级值、容易度值、已有控制措施值等有关,计算出风险评估原理图中的影响等级和发生可能性值。目前一般而言风险计算公式如下:
风险=影响等级×发生可能性
综上所述,可将信息资产、面临威胁、可利用脆弱性、暴露、容易度、控制措施、影响、可能性、风险值构成表2,最终计算出风险值。下表以某数字档案馆为例,其主要分为馆内档案管理系统和电子文件中心,评估资产以子系统作为分类和赋值为起点,并只以部分威胁、脆弱性列出并计算风险。
上表中暴露等级值体现了脆弱性,容易度体现了威胁,以表2第一行为例计算档案管理系统数据泄密的风险值,过程如下:
影响等级=暴露系数×资产等级重要度=(3/5)*5=3
可能性=容易度(威胁值)+控制措施值=3+3=6
风险=影响等级×可能性=3×6=18
【关键词】安全生产;安全生产控制指标;标准初始风险等级;分级风险动态评估;风险动态控制
随着我国经济的快速发展,企业事故总量依然很大,生产安全形势依然十分严峻。随着企业生产任务的加重,安全生产同样面临巨大挑战。企业安全管理模式经历了事故管理模式、缺陷管理模式、风险管理模式三个阶段。企业有效开展安全生产风险管理,能够促进决策的科学化、合理化,减少决策失误的风险,能为企业提供安全的经营环境,保障企业经营目标的顺利实现,促进企业经营效益的提高。探索性地恰当运用风险管理的理论与方法,已成为关注的一个热点,其对提升企业管理水平、加强安全保障、创造更好的经济社会效益具有十分重要的意义。
1安全生产风险管理
安全生产风险是指在生产过程中可能出现的与劳动作业息息相关的,不以人的意志为转移的,突然发生的,可能对员工的人身造成伤害、对设备造成损坏或对环境造成污染的因素[1]。企业在生产作业过程中面临着许多安全生产风险,这些风险可能来自日常的生产活动,也可能来自突发的环境变化,这些风险都有可能危害到员工的人身安全、设备及财产的完好,甚至会影响到企业、国家的利益。因此,安全生产风险管理成为了企业实施预防为主的重要手段之一。风险管理是以静态风险和动态风险为对象的全面风险管理[2]。而实际生产过程中,风险管理具有生命周期性,在实施过程的每一阶段,均应进行风险管理,并根据风险变化状况及时调险应对策略,实现全生命周期、全过程的动态风险管理。
2风险动态管理
目前,国内企业大多采用“自上而下”的安全监管工作模式,但在这样的模式中,企业的少数监管人员难以切实有效的管理好多数的员工,因此采用“由下至上”的风险动态评估思想,从根本上转变企业现行的被动式的“从上而下”的安全监管工作模式。在风险动态评估过程中,引入了“标准初始风险等级”概念,即假设人的行为良好和作业环境改善后的安全状态(可认为仅指设备设施的安全状态)。运用风险矩阵法评估确定最基层辨识点标准初始风险等级,在此基础上,逐级确定企业各班组、各工段、各车间,直至整个企业的标准初始风险等级。同时,将目前企业实行的“自上而下”、相对静态的安全生产控制指标量化和考核制度相结合,形成了上下联动、动静结合的分级动态评估及控管网络。通过以上所述的风险动态管理过程,各级组织管理层都能清楚掌握本级风险发生变化是由下级的某个或某几个基层辨识点风险变化造成的,为其安全监管提供最有效的基层动态监控数据;同时,也让基层作业人员清楚了解自身处于何种风险状态,强化其风险意识和认知。风险动态管理主要包括风险动态分析、风险动态评估和风险动态控制三个过程,企业进行动态风险管理的流程。
3风险动态分析
风险辨识的目的是确定危险的种类和危险的来源,是风险分析和风险评估的主要依据,更是风险管理成败的基础,如果风险辨识不全面不细致,风险管理就会留下死角,而这些风险管理上的盲点必将导致风险管理的失败。根据事故致因基本理论,企业根据人因失误的危险、设备的危险、物质的危险、环境的危险和管理的危险五个方面对企业历年事故进行事故致因因素辨识与分析,在此基础上,通过踏勘分析、滚动修改完善的形式,设计出人、机、物、环、管等五个事故致因因素的信息采集项目[3],科学制定切合企业自身特点的辨识点风险动态分析表。同时,采用风险矩阵法评估确定各辨识点的风险等级[4-5],不同企业可根据自身情况划分不同的风险等级,例如将风险等级划分为三级,即高风险、中风险、低风险。
险动态评估
4.1建立分级风险动态评估模型
由于客观情况是在不断的变化,风险的性质和情况也会随之变化[1],因此在充分认识和了解研究对象具体情况的基础上,在不同条件下,选定最佳的管理技术和方法,并在运用过程中,根据具体情况定期或不定期地进行评估,以达到预期的风险管理目标效果。按照辨识点、班组、工段、车间、企业五个级别搭建风险评估体系,即由最基层辨识点风险开始,逐级构建不同的评估模型和计算方法,推进风险管理进班组到岗位。不同企业的组织结构分级情况及生产实际情况有所不同,因此,科学且切合实际的分级风险动态评估模型建立如下:设Ri为各级风险值(i=1代表班组级,i=2代表工段级,i=3代表专业厂级,i=4代表公司级,下同),Xi为各级总辨识点中上升为中风险的辨识点数量(且仅为导致人员轻伤而非物损坏的辨识点)(Xi=Ni-Mi),Yi为各级总辨识点中上升为高风险的辨识点数量,Z剩i为各级分阶段剩余指标数Z剩i=Z0i-Z'i(其中Z0i为分阶段总指标数,Z'i为前期累积已发生指标数),Mi为各级标准初始风险等级的中风险点数量(与企业阶段性计划整改相关联),Ni为各级阶段风险状态的中风险点数量。(1)在实际运用时,应从下至上逐级求得各级风险动态值,并将已评估出的下一级的风险值作为评估上一级整体风险时的一个辨识点,例如由班组中各岗位辨识点风险值求得班组整体风险,又由工段中各班组风险值求得工段整体风险(即评估班组时辨识点为各岗位,评估工段时辨识点为各班组),以此类推,最终得出企业整体安全生产风险动态值。(2)当Xi<0,即通过相应整改,各级别中某些风险点的风险级别下降。(3)当Z'i>Z0i时,应对Z0i指标进行修正,修正后的指标为Z'oi,则:本级修正:Z0i<Z'i≤Z总i,则Z'oi=Z总i-Z'i,此修正为必须修正;上级修正:Z'i>Z总i,可向上级申请机动指标。
4.2确定各级标准初始风险等级
根据第3节中的辨识点风险动态分析表,在假设人的不安全行为处于良好状态的前提下,结合设备设施安全状态、作业环境可改善后的安全状态,确定辨识点、班组、工段、车间、企业的标准初始风险等级,以此为标准,通过建立的模型可动态监测到风险的偏离。在确定标准初始风险等级时,采用了关联及组合风险评价方法。风险等级相同:如有关联或组合的若干个风险因素的风险等级相同,则最终的风险等级为该相同的风险等级;风险等级不同:如有关联或组合的若干个风险因素的风险等级不同,则最终的风险等级取单一风险中风险等级最高的。如有必要,还应再升高一级。若按照以上两种情况确定的风险等级仍然不能完全体现出该风险整体的严重程度,仍可继续升级风险等级[6-7]。
4.3分解各级阶段性安全生产控制指标
安全生产控制指标,是对安全生产情况实行定量控制和考核的有效手段[8]。在企业的年总安全生产控制指标数的基础上,提出了本级阶段性安全生产控制指标(Z0i),即根据本级生产饱和度(如安全生产工作目标、生产任务、季节特点等),同时结合历年安全生产事故发生规律统计分析,按时间(月份或季度)分阶段分解年总安全生产控制指标的指标,如图2。通过阶段性安全生产控制指标,建立了纵向到底、横向到边的安全管理网络。在标准初始风险等级结合作业层实际情况的同时,阶段性安全生产控制指标则结合了管理层的实际情况,使最后建立的分级风险动态评估模型具有实际的指导意义。
4.4评估各级动态风险等级
在确定各级标准初始风险等级和分解各级阶段性安全生产控制指标的基础上,再次运用辨识点风险动态分析表对最基层的各风险辨识点的风险等级进行动态评估,得出各风险辨识点的动态风险等级,然后,根据4.1中的分级风险动态评估模型进行逐级的动态评估,从而得出各级的动态风险等级。
5风险动态控制
通过逐级、动态的风险评估,企业将得到不同时间段各级的风险状态:高风险、中风险、低风险。企业可根据不同的风险等级编制不同等级的风险控制实施方案。通过辨识点风险动态分析表和风险控制实施方案,企业各级管理人员不仅能够清楚风险状态及风险具体存在的地方,同时也能明确应采取的针对性措施,从而进行有效的风险动态控制,从而提高了企业各级的风险控制水平,且使各项风险控制措施得到有效落实。
6实例分析
基于某生产企业真实背景开展了安全生产风险动态管理研究。针对每个评估对象的特点,采用现场观察、询问、交谈、查阅有关记录、工作任务分析等方法,通过踏勘分析、滚动修改完善的形式,设计了人、机(物)、环、管等事故致因因素的信息采集项目,分别从如何正确选择工器具、合理选择作业方法、确定现场安全防控重点等方面提供了信息,并辨识出其生产过程中实际和潜在的危险源,共22个风险辨识点,通过一线人员工作经验和风险矩阵法,对风险发生的可能性、风险发生的后果以及风险等级进行了初步判定。结合每个风险辨识点初步判定风险状态,根据关联及组合风险评价方法,综合判定该企业的标准初始风险等级为中风险。通过统计该企业往年安全生产事故情况,分析出该企业易发生安全生产事故时段为5~8月和10~11月两个时间段。根据该企业已确定的年总安全生产控制指标情况(4个轻伤),结合该企业生产任务实际情况以及易发生安全生产事故时段,确定该企业分阶段安全生产控制指标。再次通过辨识点风险动态分析表分析,对最基层的各风险辨识点的风险等级进行动态评估。
经过为期一个月的生产运行后,该企业共有2个下降为低风险的辨识点,4个上升为中风险的辨识点,没有上升为高风险的辨识点。结合对应的分阶段安全生产控制指标,将动态风险等级和标准初始风险等级相对比,按照分级风险动态评估模型计算得出:Y=0且0<X<Z因此,该企业在该阶段的风险等级为:中风险。此时,企业应综合考虑生产任务和管理等因素,调动相关专业人员进行致因因素排查和整改,在可以采取相应措施降低风险的情况下,立即与一线工作人员协商积极、迅速展开措施使之降低或恢复初始风险状态;如不能有效降低风险,开风险控制小组会议,提出强化的管理措施,达到风险动态控制的目的。
7结论
根据风险管理基本理论,紧密结合企业实际生产及管理情况,运用定量与定性相结合的方法,最终建立了科学且具有可操作性的分级风险动态评估模型。通过风险管理全过程,企业根据自身的组织结构和各级风险等级,采取风险控制实施方案进行分级控制,提高整个企业的风险警惕敏感性,并使得安全生产目标分解,各级安全责任分明,实现了企业的整体风险控制,有效减少了企业事故发生数量,减小了企业和社会的损失。
参考文献
[1]陈少荣.安全生产风险管理与控制[M].北京:化学工业出版社,2013
[2]罗云,樊运晓,马晓春.风险分析与安全评价(第二版)[M].北京:化学工业出版社,2013
[3]孙华山.安全生产风险管理[M].北京:化学工业出版社,2012
[4]李树清,颜智,段瑜.风险矩阵法在危险有害因素分级中的应用[J].中国安全科学学报,2010,4(20):83-87
[5]党兴华,黄正超,赵巧艳.基于风险矩阵的风险投资项目风险评估[J].科技进步与对策,2006,(1):140-143
[6]何学秋,林柏泉,田水承,等.安全工程学[M].徐州:中国矿业大学出版社,2000
[7]隋鹏程,陈宝智,隋旭.安全原理[M].北京:化学工业出版社,2005
关键词:风险等级 化工工艺 等级评估 指标体系
石化企业在市场经济的发展过程中,不断的进步和壮大,所生产的化工产品种类越来越多,涉及的危险化工工艺也越来越多,所以对于石化企业危险化工工艺的危险等级进行评估与划分是确保安全生产的关键环节,建立科学的风险等级评估指标体系对于石化企业危险化工工艺势在必行。目前危险化工工艺风险等级评估指标体系并没有固定的标准,所以本文结合实际通过采用学的定性、定量方式,将等级评估过程转换为定量赋值计算过程,如遇到难以赋值和量化的指标可以采用定性描述的方法将其分类,将石化企业危险化工工艺风险等级评估指标体系建立完善,确保危险化工工艺生产安全。
一、危险化工工艺风险等级评估指标体系的设计原则
指标体系的设计原则是根据石化企业危险化工工艺的客观状况、系统性能、动态特征、稳定状态、可控制程度等进行科学的导向,建立完善的指标体系结构。
对于评估指标体系等级的划分要求能够客观的反映危险化工工艺的实际情况,等级划分要科学合理、清晰明确,各个等级都能反映出等级指标中的模式特点,所以指标体系的设计要遵循以下几个方面的标准进行设计。
1.评估指标体系等级的划分要求能够客观的反映危险化工工艺的实际情况,等级划分要科学合理、清晰明确,各个等级都能反映出等级指标中的模式特点,层次分明,突出等级特点。
2.在设计危险化工工艺风险等级指标体系结构中,要突出等级的代表性,避免各等级之间的影响和连带。
3.指标体系等级划分运用科学的定性、定量方式,将等级评估过程转换为定量赋值计算过程,如遇到难以赋值和量化的指标可以采用定性描述的方法将其分类。
4.等级评估指标体系要建立在实际可行性与可操控的前提下,对于资料的分析与处理尽可能的选择可定量获取数据的方式。
二、危险化工工艺风险等级评估指标体系的建立
危险化工工艺风险等级评估指标体系的建立是根据具体的实际情况,结合相关危险化工工艺标准规范进行从理论分析到体系建立再到体系完善的一个过程。首先,将危险化工工艺的风险程度划分为两大类别,固有危险程度和生产过程中可能发生的管理危险程度,其次对固有的危险性中的原料危险性、生产设备危险性、工艺危险性、控制危险性做出评估,再对生产过程中可能发生的危险物料的隔离、生产环境的安全性、防火安全、管理安全进行评估,最后综合所有的危险性做出科学的等级评估标准。危险化工工艺指标体系流程图如图1所示。
将危险化工工艺的风险程度的固有危险程度和生产过程中可能发生的管理危险程度分别建立表1与表2。
三、风险等级评估指标体系的合理性研究
1.通过建立危险性化工工艺风险等级评估指标体系可以根据化工工艺的工艺参数进行固有危险性划分,再根据安全生产中容易发生危险事故的管理措施进行危险评定,具有很好的可行性。
2.危险性化工工艺的固有危险性可以通过建立定量赋值计算方程,采用计算的方式进行评估,这样得到的结果更加科学与准确。生产过程中容易产生突发事故的风险定性的方式进行分类,综合化工工艺风险进行等级评估建立执行标准,将石化企业化工工艺的危险性降到最低。
四、结束语
依据石化危险化工工艺的特点所涉及的风险因素进行分析,建立风险等级评估指标体系,将其过程所涉及的理论与实际评估中的经验相结合,运用科学的方法做出正确的危险评估等级评价为实现企业安全生产和安全管理提供可靠依据。
参考文献
[1]刘茂,吴宗之.应急救援概论—应急救援系统及计划[M].北京:化学工业出版社,2004.
关键词:桥梁施工,安全评估,措施
中图分类号:TU997文献标识码: A
Abstract:Security risks exist in the construction of highway bridge has been the focus of supervision industry security. Establish safety risk assessment system in the construction phase, the construction safety of qualitative or quantitative risk estimate, can enhance security risk awareness, keep a major workplace accidents. This article to illustrate the importance of assessment on the construction of actual case, provide a reference for similar projects.
Key words:bridge construction, safety assessment, measures
1.概述
1.1施工安全风险评估简介
1.1.1评估的重要性
公路桥梁和隧道工程施工环境条件复杂,施工组织实施困难,作业安全风险高居不下,一直以来是行业安全监管的重点环节。在施工阶段建立安全风险评估制度,通过定性或定量的施工安全风险估测,能够增强安全风险防范意识,改进施工措施,规范预案预警预控管理,有效降低施工风险,严防重特大事故发生。
施工安全风险评估是公路桥梁和隧道工程设计风险评估在实施阶段的深化和落实,根据项目施工组织设计内容,寻找、辨识和评价该工程施工过程中可能存在的风险源的种类和程度,提出合理可行的安全对策及建议。其基本目的是贯彻“安全第一、预防为主、综合治理”的方针,为公路桥梁和隧道工程施工阶段的安全管理提供科学依据,确保建设项目施工期间实现安全生产,使事故和危害引起的损失最少。
1.1.2评估原则
本次评估以国家现行的有关安全生产的法律、法规及技术标准为依据,以《铜南宣高速公路复工阶段缺陷修复及变更设计两阶段施工图设计》、《各合同段项目施工组织设计》为基础,用科学的评估方法和规范的评估程序,遵循《公路桥梁和隧道工程施工安全风险评估指南(试行)》有关要求[1],坚持政策性、科学性、公正性、针对性等原则,以严肃的科学态度开展该工程的施工安全风险评估工作。
1.1.3评估内容
公路桥梁和隧道工程施工安全风险评估包括总体风险评估和专项风险评估两项内容。
总体风险评估是在桥梁和隧道工程开工前,根据桥梁或隧道工程的地质环境条件、建设规模、结构特点等孕险环境与致险因子,估测桥梁或隧道工程施工期间的整体安全风险大小,确定静态条件下的安全风险等级。
专项风险评估是当桥梁或隧道工程总体风险评估等级达到Ⅲ级(高度风险)及以上时,将其中高风险的施工作业活动(或施工区段)作为评估对象,按照施工组织设计所确定的施工工法,分解施工作业程序,结合工序(单位)作业特点、环境条件、施工组织等致险因子及类似工程事故情况,进行风险源普查,并针对其中重大风险源进行量化评估,提出相应的风险控制措施。
2 评估过程和评估方法
2.1 风险评估过程
2.1.1风险评估总体要求
根据相关规定,风险评估过程一般包括以下几个步骤:
1)准备阶段
(1)成立专项评估小组,明确职责分工,其中小组负责人应当具有5年以上工程管理经验;
(2)明确评估对象和范围,收集国内外相关法律和标准,了解同类工程的事故情况;
(3)现场查勘评估对象的地理、水文、气象条件,收集工程建设有关资料。
2)开展总体风险评估
根据设计阶段风险评估结果(若有),以及类似结构工程安全事故情况,用定性和定量相结合的方法初步分析本项目孕险环境与致险因子,估测施工中发生重大事故的可能性,确定项目总体风险等级。
3)确定专项风险评估范围
总体风险评估等级达到Ⅲ级(高度风险)及以上的桥梁或隧道工程,应进行专项风险评估。其他风险等级的桥梁或隧道工程可视情况开展专项风险评估。
4)开展专项风险评估
(1)按照施工组织设计所确定的施工工法,分解施工作业程序;
(2)选择合适的评估方法,结合工序(单位)作业特点、环境条件、施工组织等致险因子,辨识施工作业活动中典型事故类型,建立风险源普查清单;
(3)对风险源进行风险分析和估测,确定重大风险源及其风险等级。
5)确定风险控制措施
根据风险接受准则的相关规定,明确重大风险源的监测、监控、预警措施及应急预案[2]。
2.2风险评估方法
2.2.1 桥梁施工总体风险评估方法
按照《公路桥梁和隧道工程施工安全风险评估制度与指南解析》推荐的桥梁施工总体风险评估方法,桥梁工程施工安全风险总体评估主要考虑桥梁建设规模、地质条件、气候环境条件、地形地貌、桥位特征及施工工艺成熟度等评估指标[3]。
桥梁工程施工安全总体风险大小计算公式为:R=A1+A2+A3+A4+A5+A6,其中,
A1指桥梁建设规模所赋分值;
A2指工程所处地质条件所赋分值;
A3指工程所处气候环境条件所赋分值;
A4指工程所处地形地貌所赋分值;
A5指桥位特征所赋分值;
A6指施工工艺成熟度所赋分值。
评估指标体系中各指标所赋分值应结合工程实际,综合考虑各种因素的影响程度而定,数值应取整数。评估指标也可以根据工程实际进行相应的增加或删减,同时风险分级标准也须进行相应调整[4]。计算得到总体风险值R后,对照下表确定桥梁工程施工安全总体风险等级。
表2-2-2 桥梁工程施工安全总体风险分级标准
风险等级 计算分值R
等级Ⅳ(极高风险〕 14分及以上
等级Ⅲ(高度风险) 8-13分
等级Ⅱ(中度风险) 5-8分
等级Ⅰ(低度风险) 0-4分
对总体风险等级在III级(高度风险)及以上的桥梁工程,纳入专项风险评估范围。评估小组应根据总体风险评估情况,提出专项风险评估中需要重点评估的风险源。其他风险等级的桥梁工程,视情况确定是否开展专项风险评估。
3.安全评估案例
3.1某桥梁工程概况
(1)交通运输情况
本线所经地区地表水系属长江水系,地表和地下水丰富。根据区域水文地质资料及沿线部分工点的水质分析资料可知,地下水对混凝土无腐蚀性。本线路靠近国道,施工机械、物资等均可由国道引入施工现场,交通方便。公路自然区划为属Ⅳ3、Ⅳ5区长江中游平原中湿区、江南丘陵多湿区。
(2)地形、地质条件
项目沿线为沿江丘陵平原区,由一级阶地、二级阶地两个个微地貌形态组成。本标段无不良地质情况。区域地层区划属扬子地层分区,工程沿线出露的地层为下古生界、上古生界、中生界及新生界地层,缺失前志留系地层,岩浆活动强烈,分布广泛,主要为燕山晚期形成,主要岩体有:高岭刘岩体。本项目内的褶皱形成于印支期,燕山期,喜山早期凹陷盆地也较发育。褶皱轴向为北东向,背斜则相对紧密,向斜及坳陷盆地多开阔。
(3)气候
本项目属于亚热带温润季风气候区,气候特征是:气候温暖湿润,四季分明,雨量充沛集中,光照充足。年平均气温15.7-16.0℃,年极端最高气温41.7℃,年极端最低气温-16.7℃。多年平均降水量1280-1370,降雨年季、年内分配不均,年最小降水量760.8,年最大降水量2100,一日最大降水量为249.9。
(4)地震
根据多年地震资料记载,评估区内未发生破坏性地震。评估区主要受中强地震影响所致。评估区地震活动的强度、频度相对比较低,属于弱发震区。根据《中国地震动参数区划图》(GB18306-2001),本区属地震动反应谱特征周期为0.35s,地震动峰加速度分区为0.05g(地震烈度Ⅵ度区),桥隧构造物按Ⅶ度设防。
3.2该桥梁总体风险评估
表3-2-1桥梁总体风险评价情况[5]
评估指标 分类标准 标准分值 在建工程实际情况 评估
分值
建设规模(A1) 单孔跨径LK (总长L)超过或达到国内外同类桥型最大单孔跨径LK(总长L) 6-8 桥梁全长336米,单孔跨径30米。 1
LK<150米或L>1000米 3-5
100米≤L≤1000米或40米≤LK≤150米 1-2
L<100米或LK<40米 0-1
地质条件(A2) 不良地质灾害多发区域(包括岩溶、滑坡、泥石流、空区、强震区、雪崩区、水库坍岸区等) 4-6 桥址区没有对路线有直接影响崩塌、滑坡、泥石流及断裂构造等不良地质现象,区内总体工程地质条件较好,基本不影响施工安全因素。 1
存在不良地质灾害,但不频发或存在特殊性岩土,影响施工安全及进度 1-3
地质条件较好,基本不影响施工安全因素 0-1
气候环境条件(A3) 极端气候事件多发区域〔洪水、强风、雨雪、台风等) 4-6 I类环境,属于温带季风气候 1
气候环境条件一般,可能影响施工安全,但不显著 2-3
气候条件良好,基本不影响施工安全 0-1
地形地貌条件(A4) 山岭区 峡谷、山间盆地、山口等险要区域 4-6 平原微丘区 1
一般区域 0-3
平原区 0-1
桥位特征(A5) 跨江、河、海湾 通航等级1级-3级 4-6 跨河,无通航要求 1
通航等级4级-6级 2-3
通航等级7级及等外 0-1
陆地 跨线桥〔公路、铁路等)及其他特殊桥 3-6
施工工艺成熟度(A6) 新技术、新工艺,新设备国内首次应用 2-3 施工工艺十分成熟,国内有相关应用,本项目的技术人员大部分都参与过类似桥梁的施工。 0
施工工艺较成熟,国内有相关应用 0-1
根据桥梁工程安全总体风险大小计算公式计算风险值R:
R=A1+A2+A3+A4+A5+A6=5
根据桥梁工程施工安全总体风险分级标准,该大桥为等级为Ⅱ级,属中度风险。不需要进行专项风险评估[6]。
4.结语
通过对该桥梁建设资料进行梳理的基础上,根据同类或相似工程建设过程中发生的若干安全事故特点,辨识该桥梁施工过程中各项作业活动、作业环境、施工设备、危险物品等所潜在的风险,并对其进行定性、定量分析,明确各类危险源的种类及危害程度,进而从安全技术和组织管理等方面提出可行的安全对策和实施措施,提高工程项目施工期间的安全度,实现安全生产。
参考文献:
1.张磊.成安渝高速公路龙泉山二号隧道安全风险评估分析.[J].《路基工程》,2013年.O3期:142~147
2.董路钰.复杂地质条件下轨道交通隧道施工风险评估研究.[D].2012年.重庆大学
3.郭东尘钢--混结合连续梁桥施工阶段风险评估研究.[D].2012年.北京交通大学
4.《建筑工程安全生产管理条例》.[S].(中华人民共和国国务院令【2003】第393号)
关键词隧道风险评估
中图分类号: U45文献标识码: A
1前言
近些年来,随着我国公路建设的快速发展,隧道施工作业的安全风险、安全事故增多,为减少重特大生产安全事故发生,有效控制施工风险,降低人员伤亡和经济损失,从隧道工程的地址环境条件、建设规模、结构特点等孕险环境与致险因子入手,对隧道施工安全的风险评价的程序和方法进行探索性研究,达到隧道施工安全风险评价超前策划、积极应对控制的目的。
2 评价流程
2.1编制依据
按照根据交通部文件《公路桥梁和隧道工程施工安全风险评估指南(试行)》有关要求,结合国道324改线工程建设实际情况以及相关的国家和行业标准、规范及规定。
2.2隧道概况
2.2.1、地理位置及工程范围
寨仔山隧道为分离式双线隧道,隧道全长1875m(左线1852m),属长隧道,隧道最大埋深约为194m,单洞建筑限界:净高5.0m,隧道净宽10.25m,紧急停车带单洞建筑限界:净高5.0m,隧道净宽13.0m。隧道进洞口位于R=12000m的竖曲线上,隧道左右线洞内纵坡均为-0.8%的单向坡。
2.2.2、地形地貌概况
隧道区地貌属构造、剥蚀形成的低山,隧道穿越北西走向的低山区,地表起伏较大,山体植被较发育,部分地段见有基岩出露。
2.2.3、地质情况
隧道区范围内地层岩性为素填土、填石、粉质粘土、残积砂质粘性土、全风化、散体状强风化、碎裂状强风化花岗岩,下伏基岩为燕山早期第三次侵入花岗岩。
地下水主要为基岩裂隙水,赋存于基岩裂隙、节理中,水量较贫乏,富水性不均。主要接受大气降水补给,以泉形式向地势低洼及沟谷处迳流排泄。本隧道区地表水为大气降水,雨季时,水量丰富,对隧道施工和营运无影响,地下水主要赋存于基岩裂隙中,主要接受大气降水的补给,基岩透水性弱,对隧道影响较小,隧道施工范围地下水稳定水位埋深6.90~12.50m。
2.2.4、总体施工方案
本隧道以Ⅲ、Ⅳ级围岩为主,隧道正洞除洞口Ⅴ级围岩浅埋、扁压段采用三台阶七步法开挖外,其他均采用台阶法或全断面法开挖施工,按锚喷构筑法施工,采用光面爆破。
开挖前进行超前地质预测预报,隧道施工过程中加强监控量测,以掌握围岩动态和支护工作状态,及时调整隧道的施工和支护方案,保障围岩稳定和施工安全。全隧除洞口段采用斜切或斜切延伸衬砌外,其余段落均采用复合式衬砌。各工作面施工均采用无轨运输,仰拱全幅超前拱墙施工,整体式液压模板台车衬砌,压入式通风。
3、风险评估程序和风险评估方法
3.1、风险评估程序
(1)对施工阶段的初始风险进行评价,分别确定各风险因素对安全风险发生的概率和损失。分析各风险因素的影响程度,主要确定风险因素影响对施工安全的影响。
(2)提出各风险因素的等级及残留风险等级,综合确定寨仔山隧道隧道风险等级。
(3)根据评价结果制定相应的风险对策专项施工方案并确定监控责任。
(4)上级单位对风险评估报告进行审定,并针对高度风险等级,组织专家组评审,形成隧道安全风险评审意见。
(5)国道324改线工程项目经理部各负其责,做好隧道风险过程管理。
施工阶段风险评估流程图
满足直至整个隧道完工
3.2、风险评估方法
以专家调查法为主线,综合运用风险层次分析法、矩阵法、核对表法。
3.3、风险分级及接受标准
(1)事故发生概率等级标准
在综合考虑了地形地质条件、原勘测、设计有关资料后,将各种风险因素导致相应事故发生的的概率及后果分别用1~5五个数值来表示,其中,概率等级 “1”~“5”分别代表“很不可能”、“不可能”、“偶然”、“可能”、“很可能”,
(3)风险等级标准
后果等级“1”~“5”分别代表“轻微的”、“较大的”、“严重的”、“很严重的”、“灾难性的”;并定义概率及后果的估值的乘积为风险指数,依据《铁路隧道风险评估与管理暂行规定》风险等级标准将风险指数分为“极高(Ⅰ级)、高度(Ⅱ级)、中度(Ⅲ级)、低度(Ⅳ级)”四个等级。其事故发生概率、后果等级与风险等级(指数)关系如表5所示:
风险等级关系 表5
(4)风险接受准则
公路隧道风险接受准则与采取的风险处理措施如表6。
风险接受准则表6
4、风险评估内容
4.1、总体风险评估内容
隧道工程施工安全总体风险评估主要考虑隧道地质条件、建设规模、气候与地形条件等评估指标,评估的分类、赋值标准可参见隧道工程总体风险评估指标体系表7。
根据本标段寨仔山隧道的实际情况如下:
围岩情况:Ⅴ、Ⅵ级围岩长度占全隧道长的20%
隧道施工区域不会出现瓦斯
有部分可能发生涌水突泥的地质
开挖断面:中断面(单洞双车道隧道)
隧道全长:左洞长1852m,右洞长1875m,累计单洞长3727m
洞口形式:水平洞
洞口特征:隧道进口施工困难
可以确定出寨仔山隧道工程施工安全总体风险大小为:R=G(A+L+S+C)=(1+0+0)(2+3+1+2)=8
属于等级Ⅱ(中度风险)。
4.2、总体风险评估结论
寨仔山隧道工程施工安全总体风险大小为:8分,风险等级属于:等级Ⅱ(中度风险)。 虽然总体风险评估为Ⅱ,但根据作业风险特点以及类似工程事故情况。需进行专项风险评估。
5、专项风险评估基本程序
5.1寨仔山隧道钻爆法施工作业程序分解及危险源普查和辨识
风险源辨识是风险评估的基础,包括3个步骤:工程资料的收集整理、施工作业程序分解、施工作业可能发生的安全事故辨识,从人、机、料、法、环等方面对可能导致事故的致险因子进行分析,制定风险源风险分析表。
5.2重大风险辨识
根据《公路隧道工程施工安全风险评估指南》,施工阶段风险评估应在施工图阶段风险评估的基础上,结合实施性施工组织设计对寨仔山隧道进行评估,主要侧重于施工安全,重点对塌方、涌水突泥、洞口塌方、瓦斯爆炸等典型风险进行评估。
根据本标段寨仔山山隧道工程施工区段坍塌事故可能性实际情况如下:
1)围岩级别A:Ⅳ、Ⅴ级
2)断层破碎情况B:存在宽度20m以下小规模断层破碎带
3)渗水状态C:干—滴渗
4)地质符合性D:工程地质条件与设计文件基本一致
5)施工方法E:施工方法基本适合水文地质条件的要求
6)施工步距F:a,Ⅴ、Ⅵ级围岩衬砌到掌子面距离在70m以下或全断面开挖衬砌到掌子面距离在120m以下。b、一次性仰拱开挖长度在8m以下
折减系数Γ为:1.
可以确定出寨仔山隧道工程施工区段坍塌事故可能性为:P=1*(0.9*4+1+1+1+2)=9。等级为3,可能发生坍塌事故。
根据本标段寨仔山隧道工程施工区段瓦斯爆炸事故可能性实际情况如下:
瓦斯含量A:无瓦斯
洞内通风B:洞内掌子面最小风速达标
机械设备防爆情况C:采用防爆设备
瓦斯监测体系D:洞内瓦斯监测体系完备
折减系数Γ为:1.
可以确定出寨仔山隧道工程施工区段瓦斯爆炸事故可能性为:
P=1*0*(1+2+1)=0,等级为0,不存在瓦斯爆炸的可能性。
根据本标段寨仔山隧道工程施工区段涌水突泥事故可能性实际情况如下:
岩溶发育程度A:岩溶不发育,有岩溶裂隙、小溶洞发育
断层破碎带B:施工区段不存在断层破碎带或较大裂隙
周围水体情况C:隧道周围不存在补给性水体
折减系数Γ为:1.
可以确定出寨仔山隧道工程施工区段涌水突泥事故可能性为:
P=1*1*(1+0)=1,等级为1 不可能发生涌水突泥事故。
6、对策措施及建议
6.1、 风险对策措施
按照评估的结果,寨仔山隧道涌水突泥分值为1,瓦斯爆炸分值为0,均为不可能发生的风险,属于可忽略的风险范围,此类风险较小,不需采取风险处理措施和监测。坍塌分值为9,风险等级为3,可能发生坍塌事故,属于高度(Ⅲ级)的风险类别为不期望风险,此类风险较大,必须采取风险处理措施降低风险并加强监测,且满足降低风险的成本不高于风险发生后的损失。
6.2、隧道易坍塌对策措施
(1)加强超前地质预报工作。对开挖面前方地层进行探测预报,判明地层和含水情况,为超前支护和止水提供依据,及时修改或加强超前支护和支护参数。尤其是施工开挖接近设计探明的富水带时,要认真及时地分析和观察开挖工作面岩性变化,遇有探孔突水、突泥、渗水增大和整体性变差等现象,及时调整施工方法。
(2)加强施工监控量测,实行信息化施工。对地表沉降、拱顶下沉、围岩收敛进行量测,及时对数据进行整理分析,及时反馈于设计和施工,及时优化设计参数和施工方法。当量测数据表明围岩收敛变形接近控制标准的警戒值时,尽快采取加强措施进行加固,抑制变形,防止因变形突变引起坍塌。
(3)据不同地质情况和开挖方式,采用超前小导管预注浆加固地层的超前支护措施,注浆选材视不同岩层和地下水情况分别采用水泥浆、水泥—水玻璃双液浆,通过注浆加固周边围岩,提高其自承能力,减少围岩松弛变形。
(4)对不同围岩,分别采取上部弧形导坑预留核心土法、短台阶法、全断面法等开挖方法。上部预留核心土法分步开挖时,支护要及时闭合成环,每一环支护均施作锁脚锚杆,加强支护,防止拱脚下沉和内移,引起过大变形,导致拱部岩层坍塌。
(5)严格控制开挖工序,尤其是一次开挖进尺,杜绝各种违章施工。控制爆破装药量,减小对软弱破碎围岩的扰动。
(6)保证施工质量。超前预注浆固结止水、钢架制作、支护和衬砌混凝土质量必须符合设计及规范要求。
(7)施工期间,洞口应常备一定数量的抢险材料,如方木、型钢钢架等,以备急用。
6.3、洞口危石地段对策措施
洞口段施工遵循先防护后开挖的原则。施工过程中加强对边仰坡的监测,在异常时立即停止施工,对坡面危石进一步处理。施工顺序:清除坡面危石加固坡面评估加固措施防护施工。
7、 风险评估结论
经风险评估,寨仔山隧道的塌方、洞口失稳等属于高度风险(Ⅲ级)。为确保安全风险得到有效控制和管理,按照本次评估的风险对策措施并制订专项安全施工方案进行重点管理和控制。
结束语:由于隧道施工过程中人的因素、物的状态以及施工管理缺陷等等因素不断地改变,所以施工安全风险风险评估需要动态管理,根据实际情况持续改进。才能达到预防为主的目的。
参考资料
《公路桥梁和隧道工程施工安全风险评估指南(试行)》
[关键词] 胸外科手术;风险评估;Thoracoscore;死亡率
[中图分类号] R655 [文献标识码] A [文章编号] 1674-4721(2013)08(a)-0055-03
胸科手术中围术期的风险评估是对每个危险因素进行量化评估并得出具体的预测值,以更准确地预测手术的风险及预后,有利于指导手术的开展,降低并发症的发生率和死亡率[1]。选取本院2000年1月~2006年12月收治的348例胸外科手术患者进行临床研究,现报道如下。
1 资料与方法
1.1 一般资料
选取2000年1月~2006年12月348例胸外科手术(食管手术除外)患者作为研究对象,其中,男性213例,女性135例。年龄32~72岁,平均51.5岁。
1.2 测评工具标准
依据美国麻醉学家协会分级标准,ASA评分包括6个等级。Ⅰ级:正常健康,局部可有病患,但并无系统性疾病;Ⅱ级:有轻度或中度系统性疾病;Ⅲ级:有严重系统性疾病,日常活动受限,但未丧失社会能力;Ⅳ级:有严重系统性疾病,已丧失社会能力,并威胁到生命安全;Ⅴ级:危重病患者,生命难以维持。如系急诊手术,在评定上述某级前标注“急”或“E”。
采用胸外科手术数字化风险评估系统(Thoracoscore中文版)严格根据美国麻醉学家协会分级标准进行评分。在胸外科手术数字化风险评估系统以≤第2等级和≥第3等级进行划分,相对应的计分0、0.6057。
WHO行为状况包括5个等级:①正常活动;②有症状,但还是几乎能完全正常活动;③部分时间需卧床,但卧床时间少于正常日间活动时间的50%;④需要卧床的时间多于正常日间活动时间的50%;⑤需长期卧床。在胸外科手术数字化风险评估系统中以≤第2等级和≥第3等级进行划分,相对应的计分0、0.689[2]。
英国医学研究会呼吸困难评分包括6个等级:①无呼吸困难;②轻微程度呼吸困难(在平地快步走或爬小高地时会有气促);③中等程度呼吸困难(由于气促,在平地步行速度慢于相同年龄的人);④中等严重程度呼吸困难(由于气促,在平地按自身步伐走必须停下来);⑤严重呼吸困难(在平地上走100码或几分钟就必须停下来);⑥非常严重呼吸困难(严重气促而无法外出或无法穿脱)。在胸外科手术数字化风险评估系统中以≤第2等级和≥第3等级进行划分,相对应的计分0、0.9075。
合并的其他疾病状态胸外科手术数字化风险评估系统附加说明列出10种疾病:①吸烟成瘾;②癌症病史;③慢性阻塞性肺疾病(COPD);④主动脉高压;⑤心脏病;⑥糖尿病;⑦外周血管疾病;⑧肥胖;⑨酒精中毒;⑩高血糖症。按合并疾病个数进行划分,0个为0、≤2个为1、≥3个为2,相对应的计分为0、0.7447、0.9065[3]。
1.3 手术方式
前瞻性研究选择2007年9月~2008年3月汕头市中心医院所开展的胸外科手术病例,收集患者相关病情资料。所有患者在知情同意的情况下进行相关治疗,对纳入研究的患者进行评估分组,依据患者组别、合并疾病及心肺功能情况进行术前准备和内科治疗。如针对患者心肺功能情况进行强心、利尿、应用心血管药物等治疗,进行抗炎、祛痰治疗;提高患者心肺功能储备,降低ASA分级、行为状况、呼吸困难等因素的分值;同时治疗合并疾病,要求患者戒烟戒酒等。入院后每天对患者进行一次评估,调整加强术前准备和内科治疗至术前,依据患者情况选择合适的手术时机、手术方式;术后随访30 d或至其出院,了解并发症、死亡率等疾病转归情况。据统计,42例患女性患者的ASA等级为Ⅱ级,行为状态为2,病理为恶性,择期行左上肺叶切除治疗;70例男性患者的ASA等级为Ⅱ级,行为状态为2,病理为恶性,择期行右下肺叶切除治疗;40例男性患者的ASA等级为Ⅱ级,行为状态为2,病理为恶性,择期行左上肺叶切除治疗;69例男性患者的ASA等级为Ⅱ级,行为状态为3,病理为良性,择期行左上肺叶切除治疗;48例女性患者的ASA等级为Ⅲ级,病理为良性,择期左上肺叶切除治疗;39例男性患者的ASA等级为Ⅱ级,行为状态为3,病理为恶性,择期行右上肺叶切除治疗;40例女性患者的ASA等级为Ⅲ级,行为状态为3,病理为良性,择期行肺大疱切除治疗[4]。
1.4 数据处理和统计学方法
按胸外科手术数字化风险评估系统胸科手术评分系统提供的计算公式计算每个个体的预期死亡率(predictive death rate,PDR)。计算公式为:预期死亡率(PDR)=odds/(1+odds),odds=exp(-7.3737+年龄得分+性别得分+ASA得分+行为状况得分+呼吸困难得分+手术时机得分+手术方式得分+病理结果得分+合并疾病得分)。
按PDR进行分组:低风险组(PDR ≤1%)、轻度风险组(1%
2 结果
2.1 回顾性研究结果分析
本组纳入研究标准的病例为348例,根据胸科手术评分系统计算得出不同风险组情况。各风险组人数及预期死亡率和实际死亡率见表1。各风险组人数占总人数比例见图1。采用ROC曲线对胸外科手术数字化风险评估系统预测死亡率的准确性进行评价(表1、图2)。不同风险组患者变量得分情况见表2。
由表1可知,以胸外科手术数字化风险评估系统进行预测的死亡率与实际死亡率的差异无统计意义。由表1和图2可见,胸外科手术数字化风险评估系统预测死亡率的ROC 曲线下面积即C指数为0.857(P
2.2 前瞻性研究结果分析
前瞻性研究的10个病例,入院时Thoracoscore评分有6例为低风险组、3例为轻度风险组、1例为中度风险组。入院后每天进行一次评估,调整加强术前准备和相应的内科治疗,依据患者情况选择合适的手术时机、手术方式。至手术前3例轻度风险组降低为低风险组、1例中度风险组降低为轻度风险组,手术过程顺利,术后随访至其出院,未见严重并发症。
3 讨论
本研究的样本数较少,除了受研究范围小的限制外,数据缺失也是其中一个原因,因为只要有一个变量无记录,该病例就必须剔除[6-7]。胸外科手术数字化风险评估系统并没有具体说明能否评估中期或远期的死亡率,但是本研究仅用其评估术后30 d内死亡率,虽然有文献[5]用该系统评估中期死亡率,但是笔者认为评估30 d以上的死亡率要特别谨慎,因为会出现较多人为的不可预料的干扰因素。
尽管胸外科手术数字化风险评估系统的应用初步显示其对死亡率的预测具有良好的能力,同时也可应用于前瞻性研究,符合我国胸科手术治疗状况,但是由于国内外手术水平、治疗水平、疾病分布情况等方面的差异,有可能导致手术危险因素的不同或危险因素权重的不同,另外由于本研究样本数较少,资料收集集中在一个单位,存在偏倚,所以需要进行多中心的研究,提高样本量,通过大量临床实际工作来进一步证实其在临床应用的价值,调整危险因素得分,开发研制适用于我国人群的胸科手术评估系统[9]。
[参考文献]
[1] 张延龄,项建斌. 外科手术的风险预测与临床评价[J].临床外科杂志,2006,14(9):540-541.
[2] Falcoz PE,Conti M,Brouchet L. The Thoracic Surgery Scoring System (Thoracoscore):Risk model for in-hospital death in 15,183 patients requiring thoracic surgery[J]. J Thorac Cardiovasc Surg,2007,133(2):325-332.
[3] 方积乾.医学统计学与电脑实验[M].上海:上海科学技术出版社,2001:115-117.
[4] Chamogeorgakis TP,Connery CP,Bhora F,et al. Thoracoscore predicts midterm mortality in patients undergoing thoracic surgery[J]. J Thorac Cardiovasc Surg,2007,134(4):883-887.
[5] Kristi LP,William MD,Nancy AP,et al. A report of two hundred twenty cases of regional anesthesia in pediatric cardiac surgery[J].Anesth Analg,2000,90(24):1014-1019.
[6] James MS,Francis X. Neuraxial blockade for pediatric cardiac surgery: lessons yet to be learned[J]. Anesth Analg,2000,90(5):1011-1013.
[7] Pastor MC,Sanchez MJ,Casas MA,et al. Thoracic epidural analgsia in coronary artery bypass graft surgery:seven years′ experience[J].J Cardiothorac Vasc Anesth,2003,17(2):154-159.
[8] Glenn PG. Epidural analgesia and coronary artery bypass grafting: the controversy continues[J].J Cardiothac Vasc Anesth,2003,17(24):151-153.