欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

欧姆定律的内容范文

时间:2023-09-22 15:32:04

序论:在您撰写欧姆定律的内容时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

欧姆定律的内容

第1篇

1.地位和作用

欧姆定律及其应用》这一节在学生学习了电流表、电压表、滑动变阻器的使用方法及电流与电压、电阻的关系之后才编排的。通过这一节的学习,要求学生初步掌握和运用欧姆定律解决实际电学问题的思路和方法,了解运用“控制变量法”研究物理问题的实验方法,为进一步学习电学内容打下一定的基础。

2.教学目标

(1)知识目标

理解掌握欧姆定律及其表达式,能用欧姆定律进行简单计算;根据欧姆定律得出串并联电路中电阻的关系;通过计算,学会解答电学计算题的一般方法,培养学生的逻辑思维能力。

(2)技能目标

学习用“控制变量法”研究问题的方法,培养学生运用欧姆定律解决问题的能力。

(3)情感目标

通过介绍欧姆的生平,培养学生严谨细致的科学态度和探索精神,学习科学家献身科学、勇于探索真理的精神。通过欧姆定律的运用,帮助学生树立物理知识普遍联系的观点以及科学知识在实际中的价值意识。

3.重点和难点

重点:理解欧姆定律的内容及其表达式和变换式的意义,并且能运用欧姆定律进行简单的电学计算。

难点:运用欧姆定律探究串、并联电路中电阻的关系。

二、说学生

1.学生学情分析

在学习这节之前学生已经了解了电流、电压、电阻的概念,并且还初步学会了电压表、电流表、滑动变阻器的使用,具备了学习欧姆定律基础知识的基本技能。但对电流与电压、电阻之间的联系的认识是肤浅的、不完整的,没有上升到理性认识,需要具体的形象来支持。所以在本节学习中应结合实验法和定量、定性分析法。

2.知识基础

要想学好本节,需要学生应具备的知识有:电流、电压、电阻的概念,电流表、电压表、滑动变阻器使用方法,电流与电压、电阻的关系。

三、说教法

结合学生情况和本节特点本人采取以下几个教法:采用归纳总结法、采用控制变量法、采用定性分析法和定量分析法。

四、说教学过程

1.课题导入(采用复习设置疑问的方式,时间3分钟)

复习:电流是如何形成的?导体的电阻对电流有什么作用?

设疑思考:电压、电阻和电流这三个量之间有什么样的关系呢?通过简单的回顾、分析,使学生很快回忆起这三个量的有关概念,通过猜想使学生对这三个量的关系研究产生了兴趣,达到引入新课的目的。

2.展开探究活动,自主总结结论(时间37分钟)

根据上节探究数据的基础,让学生自主总结出两个结论:导体的电阻一定时,通过导体的电流与导体两端的电压成正比;导体两端的电压一定时,通过导体的电流与导体的电阻成反比。

为了进一步得出欧姆定律的内容,可采用以下几点做法:各小组在教师指导下,对实验数据进行数学处理,理解数学上“成正比关系”“成反比关系”的意思,从而引入欧姆定律的内容;让学生思考用一个什么样的式子可以将这两个结论所包含的意思表示出来,从而引入欧姆定律的表达式。

3.说明事项

在欧姆定律中有两处用到“这段导体”,其意思是电流、电压、电阻应就同一导体而言,即同一性和同时性。

向学生介绍欧姆的生平,以达成教学目标中的情感目标。学习科学家献身科学、勇于探索真理的精神,激发学生的学习积极性。

欧姆定律应用之一:通过课本第26页例题和第29页习题2和习题3,让学生自己先试做,然后教师再加以点评和补充,使学生理解掌握欧姆定律表达式及变形式的应用,达成教学目标的知识目标,充分体现了课堂上学生的自主地位。

应用欧姆定律解题时应注意以下几点问题:

(1)同一性

即公式中的U、I,必须针对同一段导体而言,不许张冠李戴。

(2)统一性

即公式中的U、I、R的单位要求统一(都用国际主单位)。

(3)同时性

即公式中的U、I,必须是同一时刻的数值。

(4)规范性

解题时一定要注意解题的规范性(即按照已知、求、解、答四个步骤解题)。

欧姆定律应用之二:探究串并联电路中电阻的关系。

(1)实验分析

在演示实验之前,要鼓励学生进行各种大胆的猜想,当学生的猜想与实验结果相同时,他会在实验中体验到快乐与兴奋,有利于激发学生的学习兴趣。

①演示实验

将两个电阻串联起来,让学生观察灯泡的亮度情况(变暗了),并说出原因(电路中的电流变小了,说明总电阻变大了)。

得出结论:串联电阻的总电阻比任何一个分电阻的阻值都大。

②演示实验

将两个电阻并联起来,同样让学生观察灯泡的亮度情况(变亮了),并说出原因(路中的电流变大了,说明总电阻变小了)。

得出结论:并联电阻的总电阻比任何一个分电阻的阻值都小。

(2)定性分析

(提出问题)为什么串联后总电阻会变大?并联后总电阻会变小?

得出结论:电阻串联相当于导体的长度变长了,所以串联电阻的个数越多总电阻就越大;电阻并联相当于导体的横截面积变粗了,所以并联电阻的个数越多总电阻就越小。

(3)定量分析

利用欧姆定律公式以及前面学过的串并联电路中电流和电压的特点推导串并联电路中总电阻的关系得出结论:(1)电阻串联后的总电阻R串=R1+R2+…+Rn;(2)电阻并联后的总电阻=+…+。

4.小结(4分钟)

(1)理解掌握欧姆定律的内容及其表达式

(2)运用欧姆定律解决有关电学的计算题以及探究串、并联电路中电阻的关系

5.布置作业(1分钟)

本节作业的布置主要是针对欧姆定律表达式及其变形公式的运用,并结合前面学习过的串并联电路中电流、电压的特点的一些常见题型加以知识的巩固。

作业:《课堂点睛》17页至18页的习题。

五、说板书设计

欧姆定律的内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。

欧姆定律的表达式:I

电阻的串联:R串=R1+R2+…+Rn

第2篇

【关键词】物理;欧姆定律;问题;解题思路

欧姆定律是高中物理电学部分的核心内容,也是高考的重难点内容,同时欧姆定律掌握的好坏会直接影响我们的考试成绩,因此要多用时间将这块知识进行巩固,以取得更高的分数。

1在欧姆定律的学习中常遇到的问题

1.1欧姆定律的使用范围问题

在电路的实验过程中,我会出现忽略导线,电子元件与电源自身的电阻,将整个电路视为纯电阻电路的问题。而欧姆定律通常只适用于导电金属和导电液体,对于气体、半导体、超导体等特殊电路元器件不适用,但我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,本人为了弄清这里的问题,向老师进行了请教并查阅了相关资料,许多资料上说欧姆定律的应用有“同时性”与“欧姆定律不适用于非线性元件,但对于各状态下是适合的”。但我自身总觉得这样的解释难以接受,有牵强之意,即个人理解为既然各个状态下都是适合的,那就是适合整个过程。

1.2线性元件的存在问题

通过物理学习我们会发现材料的电阻率ρ会随其它因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。而在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

1.3电流,电压与电阻使用的问题

电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念,也是我最容易混淆的内容。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,而电流、电压、电阻的概念是基本的电学测量仪器,另外,欧姆定律只是用来研究电路内部系统,不包括电源内部的电阻、电流等,在学习欧姆定律的过程中,电流表、电压表、导线等电子元器件的影响常常是不考虑在内的,而对于欧姆定律的公式I=UR,I、U、R这三个物理量,则要求必须是在同一电路系统中,且是同一时刻的数值。

2欧姆定律学习中需要掌握的内容

本人在基于电学的基础之上,通过对欧姆定律的解题方式进行分析,个人认为我们需掌握以下内容:了解产生电流的条件;理解电流的概念和定义式I=q/t,并能进行相关的计算;熟练掌握欧姆定律的表达式I=U/R,明确欧姆定律的适用条件范围,并能用欧姆定律解决相关的电路问题;知道什么是导体的伏安特性,什么是线性元件与非线性元件;知道电阻的定义和定义式R=U/I;能综合运用欧姆定律分析、计算实际问题;需要进行实验、设计实验,能根据实验分析、计算、统计物理规律,并能运用公式法和图像法相结合的方法解决问题。

3欧姆定律的解题思路及技巧

3.1加深对欧姆定律内容的理解

在欧姆定律例题分析中,我们比较常见的问题是多个变量的问题,以我自身为例,由于物理理解水平有限,且电压、电流、电阻的概念比较抽象,所以学习难度较大,但我通过相关教学短片的学习,将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”的方式,明白了电阻是导体自身的特有属性,其大小是受温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,并且明白了电阻不会随着电流或者电压的大小改变而改变。同时我们每一个人都知道对于不同的习题,解决步骤都是不相同的,虽同一问题会有不同的解题方法,但总是离不开欧姆定律这个框架。因此对于一些与电学有关的知识,我一般会利用欧姆定律解决电生磁现象与电功率计算问题。例如:某人做验时把两盏电灯串联起来,灯丝电阻分别为R1=30Ω,R2=24Ω,电流表的读数为0.2A,那么加在R1和R2两端的电压各是多少?我可以根据两灯串联这一关建条件,与U=IR得出:U1=IR1=0.2A×30Ω=6V,U2=IR2=0.2A×24Ω=4.8V,故R1和R2两端电压分别为6V、4.8V的结论。

3.2利用电路图进行进行计算

在解有关欧姆定律的题时,以前直接把不同导体上的电流、电压和电阻代入表达式I=U/R及导出式U=IR和R=U/I进行计算,并把同一导体不同时刻、不同情况下的电流、电压和电阻都代入欧姆定律的表达式及导出式进行计算,因此经常混淆,不便于分析问题。通过后期老师给予我的建议,在解题前我都会先根据题意画出电路图,并在图上标明已知量、数值和未知量的符号,明确需分析的是哪一部分电路,这部分电路的连接方式是串联还是并联,以抓住电流、电压、电阻在串联、并联电路中的特征进行解题。同时,我还会注意开关通断引起电路结构的变化情况,并且回给“同一段电路”同一时刻的I、U、R加上同一种脚标,其中需注意单位的统一与电流表、电压表在电路中的连接情况,以及滑动变阻器滑片移动时电流、电压、电阻的变化情况。

3.3利用电阻进行知识拓展

本着从易到难的原则,我们可从一个电阻的问题进行计算,再扩展到两个电阻、三个电阻,逐渐拓宽我们的思路,让自己找到学习的目标以及方法。比如遇到当定值电阻接在电源两端后电压由U1变为U2,电路中的电流由I1增大到I2,这个定值电阻是多少的问题时,我们可利用欧姆定律的概念ΔU=ΔI・R得到电阻的值,而当难度增加由一个电阻变为两个电阻时,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为ΔI,在这样的问题上可将变化的问题转化为固定的关系之间的数值,就可简化许多变量问题的计算。当变量变为三个电阻时难度会进一步的增大,我起初认为这是一项不可能完成的任务,所以放弃了这类题,而在经过询问成绩优秀的同学时,才知道可将三个电阻尽量化为两个电阻,通过电压表与电流表的位置将电阻进行合并,以此简化题目。

4总结

简言之,欧姆定律是物理教材中最为重要的电学定律之一,是电学内容的重要知识,也是我们学习电磁学最基础的知识。当然,对于欧姆定律的学习与解题方法,自然不止以上所述方法,因而在具体的学习中,我们要立足于自身实际学习情况来进行方法的选取,突破重难点知识,以找到更好的解题思路。

参考文献:

[1]高飞.欧姆定律在串并联电路中的应用技巧[J].才智,2009(27)

第3篇

一、欧姆定律发现历程溯源

2.相同之处

欧姆定律适用于线性元件,如金属等,不适用于非线性元件,如气态导体等。

三、三点质疑

1.线性元件存在吗

材料的电阻率ρ会随其他因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

2.对所有非线性元件欧姆定律都不适合吗

在上述所有表述中都有欧姆定律适用于金属导体之说,又有欧姆定律适用的元件是线性元件之说,也就是说金属是线性材料,而我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,为了避免这种自相矛盾,许多资料上又说欧姆定律的应用有“同时性”,或者说“欧姆定律不适用于非线性元件,但对于各状态下是适合的”,笔者总觉得这样的解释难以让学生接受,有牵强之意,给教师的教造成难度,既然各个状态下都是适合的,那就是整个过程适合呀。

3.对欧姆定律适合的元件I与R一定成反比吗

I与R成反比必须有“导体两端的电压U相同”这一前提,在这一前提条件下改变导体的电阻R,那么通过导体的电流就会发生变化,因而导体的工作点就发生了变化,其制作材料的电阻率 ρ就随之变化,因此导致电阻又会发生进一步的变化,这样又会导致电流产生进一步的变化,所以实践中多数情况下I与R就不会成严格的反比关系,甚至相差很大。

四、两条教学对策

1.欧姆定律的表述需要改进

其实早就有一些老师对欧姆定律的表述进行过深入的分析,并结合他们自身长期的教学经验,已经提出了欧姆定律的表述的后半部分“I与R成反比”是多余的,应该删除,笔者也赞成这种做法,因为这种说法本身就是不准确的,这也是在上述三种大学普通物理教材中都没有出现这个说法的原因。

通过对欧姆定律发现历程的溯源,可知欧姆当时发现这一电路定律时也没有提出“反比”这一函数关系,只是定量地给出了一个等式,因此,笔者认为欧姆定律的现代表述有必要改进,既要传承欧姆当时的公式,也要符合实际情况,所以笔者认为欧姆定律应该表述为:通过导体的电流强度等于导体两端的电压与导体此时的电阻之比。

那么,为什么连“I与U成正比”也省去呢?当R一定时,I与U成正比是显然的,但如果在欧姆定律的表述中一旦出现“I与U成正比”的说法,学生就会很自然地想到“I与R成反比”,而这种说法是不对的,所以表述中最好不要出现“I与U成正比”和“I与R成反比”这两种说法。

2.线性还是非线性元件的区分不能以材料种类为判断标准

同样是金属材料,钨丝的伏安特性是非线性的,而一些合金材料导体的伏安特性却是非常接近理论线性,如标准电阻。所以我们在区分线性元件还是非线性元件时,不能以导体的材料种类作为判断的标准,而只能通过实验测定,得到I-U图象,以此来作为判断依据。

第4篇

本节内容前承电路、电压、电阻及电流表、电压表的使用,是前面电学知识的聚焦;后启电功、电功率,并为高中阶段学习闭合电路的欧姆定律、电磁感应定律、交流电等内容做了铺垫。甚至于对学生将来参加生产劳动也有指导作用,即使在电工技术电子专业等学习中,欧姆定律同样是必不可少的基础知识,其研究方法──控制变量法是学习关于电阻大小影响因素的研究方法的延续,是物理问题研究思想的再次体现。

二、学习任务分析

本节重点是欧姆定律的内容和公式。通过实验探究,归纳总结出欧姆定律,让学生领悟科学探究的方法,体验科学探究的乐趣,形成尊重事实、探究真理的科学态度,培养学生分析解决问题的能力;理解欧姆定律中电流I、电压U、电阻R的同一性是本节难点,在探究过程中通过适时引导、恰当点拨,利用实物电路使学生达到理解欧姆定律的目的。

三、学习者分析

学习了电路基础知识,学生产生了浓厚的兴趣,多数学生能正确连接电路元件,正确使用电流表、电压表和滑动变阻器,对于控制变量的研究方法也有所了解。学生有较强的好奇心和求知欲,他们渴望自己动手进行科学探究,体验成功的乐趣,但对于U、I、R三者关系知之甚少,规律性知识的概括往往以偏概全。他们的思维方式逐步由形象思维向抽象思维过渡,教学中让学生自主设计研究问题的方案,是发展学生思维的有效途径。

四、教学目标

⑴知识与技能

会用实验的方法探究电流与电压、电阻的关系;

理解欧姆定律的内容、公式;

培养学生的观察、实验能力和分析概括能力。

⑵过程与方法

通过实验探究学习研究物理问题常用的方法──控制变量法。

⑶情感、态度与价值观

通过探究过程,激发学生的学习兴趣。培养学生实事求是的科学态度;认真谨慎的学习习惯。

重点:欧姆定律的内容和公式;

通过实验使学生知道导体中电流与电压、电阻的关系。

难点:理解欧姆定律的内容;

弄清变形公式的含义。

五、教法设计

依据本节课的知识特点、教学目标和学生实际,确定本节主要采用实验探究法。把学生视为学习的主人,教师当好学习的组织者和引导者。探究式学习可以激活学生已有的知识,在探究新问题时使知识活化、重组,形成知识结构并向能力转化;让学生体会科学发现的全过程,从中感悟科学思想和科学方法。

六、教学准备

第5篇

关键词:初中;物理;欧姆定律;教学问题

中图分类号:G633.7 文献标志码:A 文章编号:1008-3561(2015)09-0056-01

一、在实验探究中让学生学习欧姆定律

欧姆定律是电学重要内容之一,也是中考重点考查内容,所以能否教好欧姆定律关系到之后对中考的重点知识复习,更有可能影响学生对于物理学的热情。在实验探究的过程之中以学生为主,教师起引导作用,让学生通过观察电压表、电流表、滑动变阻器的微量变化发现问题、提出问题,他们对于自己发现的问题会比老师直接教导的印象深刻,从而达到了教学目的。

二、在欧姆定律的学习中最经常遇到的问题

在实际的教学之中,教师要把电路的认识与画电路图、连接电路作为主要的教学任务,开阔学生的思维,加强对电路的认识。物理是一门比较枯燥的课程,只有激发学生的热情,才能更好地完成授课。电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,这部分则比较重要,需要重点讲解。电流、电压、电阻的概念是基本的电学测量仪器,明确这些仪器的使用与操作,是非常重要的,关系到后期实验的正确性与对知识的理解。以上基础知识的理解与运用又是进一步学习欧姆定律的基础。

三、欧姆定律的主要内容是电流、电压、电阻的关系

这部分知识是在实验的基础上概括、归纳出了电路中电压、电流、电阻三者相互关联的关系。教师在实验中要让学生理解电流随电压和电阻的变化而变化,对于多个变量问题的研究是采用固定一个量不变,研究其余两个量的变化的处理方法,从而让学生学会物理学中常用这种方法。欧姆定律在初中只讲部分电路的欧姆定律,是电学中的基本定律,是进一步学习电学知识分析和进行电路计算的基础,是初中电学的重点知识。

欧姆定律是初中物理学电学的重点、也是难点,想要研究欧姆定律必须要建立电流、电压、电阻的关系,并在实验的基础上得出欧姆定律,做好演示实验,归纳、分析、概括实验结果,使学生正确理解欧姆定律的基础。所以,使用电流表、电压表、滑动变阻器是这部分知识中的重点实验的基础。

电流、电压、电阻的概念是学生学习的难点,由于初中学生水平有限,对电流、电压的概念要求较低,并没有下准确的定义。因此,电阻的概念就成了学生理解的难点。教师要多举例子帮助学生理解电阻是导体本身的属性,决定于导体的材料、长度、横截面和温度,它用两端的电压和通过的电流的比值来表示是为了测量的方便,与外加电压、电流无关。同时,教师一定要纠正一些学生经常出现的电阻随电压、电流的变化而变化的错误概念,也就是对欧姆定律的错误理解。欧姆定律在学生头脑的建立过程是十分重要的,认真做好演示实验,用实验来探索一个量随两个量变化的定量关系是第一次。首先要向学生交代清楚实验的研究方法,本实验彩用控制变量法来研究,即“固定电阻不变,研究电流跟电压的关系;固定电压不变,研究电流跟电阻的关系”。在连接如图(图略)所示的实验电路时,要将具体接法演示给学生看。可以先从电源正极开始,按电流方向依次为电池、开关S、滑动变阻器R′、定值电阻R、电流表串联起来组成一个闭合回路,最后将电压表并联在定值电阻R两端。同时提醒学生注意电流必须从电流表和电压表的正接线柱流进电表,负接线柱流出电表及量程选择,电流表与R串联,其示数等于通过R的电流。电压表与R并联其数等于R两端的电压。

运用欧姆定律可以推导串联电路中的总电阻跟各串联电阻之间的关系及电压分配跟导体电阻的关系,具体推导如下:

在串联电路中:I=I1=I2;U=U1+U2;由欧姆定律公式I=U/R,可得U=IR;U1=I1R1;U2=I2R2将这些式子代入上式得:IR=I1R1+I2R2即R=R1+R2;也就是说串联电路的总电阻等于各串联导体的电阻之和。

在串联电路中:I=I1=I2;由欧姆定律公式I=U/R,可得:I1=U1/R1;I2=U2/R2;将这些式子代入上式得:U1/R2=U2/R2 变换一下形式得:U1/U2=R1/R2;即串联电路中,电压分配跟导体电阻成正比。

四、结束语

通过对物理教学内容的分析、思维方法、能力训练的具体研究,对教学内容进行归纳总结,可以使初中物理教师掌握欧姆定律的基本理论方法,更好地驾驶物理教材,提高物理教学质量,把重点真正落实在教学过程中,帮助学生提高实验操作能力、归纳概括能力、演绎推理能力、逻辑推理能力、抽象思维能力及灵活运用知识解决问题的能力,让学生学会控制变量法研究多个变量的问题,学会用等效法分析复杂电路。因此,教师要注重培养学生实事求是的科学态度,从而有效培养学生的物理素质。

参考文献:

第6篇

1.教材的地位和作用

“欧姆定律”是在学生学习了电流、电压、电阻等概念以及使用电压表、电流表、滑动变阻器之后的内容,这样的安排既符合学生由易到难、由简到繁的认知规律,又保持了知识的结构性、系统性。通过学习“欧姆定律”,主要使学生掌握在同一电路中电学三个基本物理量之间的关系,初步掌握运用欧姆定律解决简单电学问题的思路和方法,同时也为下一步学习“电功率”以及“焦耳定律”等其他电学知识与电路分析和计算打下基础,起到了承上启下的作用。

2.教学目标

(1)知识与技能

通过实验探究电流跟电压、电阻的定量关系,分析归纳得到欧姆定律。理解欧姆定律,能运用欧姆定律分析解决简单的电路问题。

(2)过程与方法

运用“控制变量法”探究电流跟电压、电阻的关系,归纳得出欧姆定律。

(3)情感态度与价值观

通过对欧姆定律的认识,体会物理规律的客观性和普遍性,增强对科学和科学探究的兴趣。

3.教学的重难点

重点:理解欧姆定律,能运用欧姆定律分析解决简单的电路问题。

难点:对欧姆定律的理解和应用。

二、说教法

这节课可综合应用目标导学、讲授和讨论等多种形式的教学方法,提高课堂效率,培养学生学习物理的兴趣,激发学生的求知欲望。充分体现以教师为主导,以学生为主体的原则。

三、说学法

在物理教学中,应该对学生进行学法指导,应重视学情,突出自主学习,锻炼实验操作能力。在本节课的教学中,通过阅读例题,让学生在阅读过程中进行分析、推理,培养学生的自学能力与分析推理能力。

四、说教学设计

在教学中公式的推导是建立在学生体验的基础上的,先由学生解题而后再去总结、引导,学生通过自主解决实际问题获得感性认识。教师该讲的还是要讲,该放手的就尽管让学生去完成,即便会有一些问题,也可以让学生去发现问题的源头出在哪里,让学生对问题进行分析和讨论,这样既加深学生对欧姆定律的理

第7篇

关键词:欧姆定律;适用范围;微观机理;导电材料;能量转化

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0039-2

人教版《普通高中课程标准实验教科书物理选修3-1》《欧姆定律》一节内容围绕电阻的定义式、欧姆定律和伏安特性曲线三部分展开,图1为教材的两段文字,意思是当金属导体的电阻不变时,伏安特性曲线是一条直线,叫做线性元件,满足欧姆定律;“这些情况”的电流与电压不成正比,是非线性元件,欧姆定律不适用[1]。随后,教材举例小灯泡和二极管的伏安特性曲线,指出两个元件都是非线性元件。在遇到欧姆定律时,不论是年轻教师还是学生常常感到疑惑:欧姆定律适用范围究竟是金属和电解质溶液还是线性元件?小灯泡是金属,又是非线性元件,究竟是否满足欧姆定律?

[导体的伏安特性曲线 在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。对于金属导体,在温度没有显著变化时,电阻几乎是不变的(不随电流、电压改变),它的伏安特性曲线是一条直线,具有这种伏安特性的电学元件叫做线性元件。图2.3-2中导体A、B的伏安特性曲线如图2.3-3所示。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其他导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。]

1 欧姆定律的由来

1826年4月,德国物理学家欧姆《由伽伐尼电力产生的电现象的理论》,提出欧姆定律:在同一电路中,通过某段导体中的电流跟这段导体两端的电压成正比。欧姆实验中用八根粗细相同、长度不同的板状铜丝分别接入电路,推导出 ,其中s为金属导线的横截面积,k为电导率,l为导线的长度,x为通过导线l的电流强度,a为导线两端的电势差[2]。当时只有电导率的概念,后来欧姆又提出 为导体的电阻,并将欧姆定律表述为“导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。”

关于欧姆定律的m用范围,一直存在争议,笔者认为可以从不同角度进行陈述。

2 欧姆定律的适用范围

2.1 从导电材料看适用范围

欧姆当年通过对金属导体研究得出欧姆定律,后来实验得出欧姆定律也适用于电解质溶液,但不适用于气体导电和半导体元件。

从微观角度分析金属导体中的电流问题,金属导体中的自由电子无规则热运动的速度矢量平均为零,不能形成电流。有外电场时,自由电子在电场力的作用下定向移动,定向漂移形成电流,定向漂移速度的平均值称为漂移速度。电子在电场力作用下加速运动,与金属晶格碰撞后向各个方向运动的可能性都有,因此失去定向运动的特征,又回归无规则运动,在电场力的作用下再做定向漂移。如果在一段长为L、横截面积为S的长直导线,两端加上电压U,自由电子相继两次碰撞的间隔有长有短,设平均时间为τ,则自由电子在下次碰撞前的定向移动为匀加速运动,

2.2 从能量转化看适用范围

在纯电阻电路中,导体消耗的电能全部转化为电热,由UIt=I2Rt,得出 在非纯电阻电路中,导体消耗的电能只有一部分转化为内能,其余部分转化为其他形式的能(机械能、化学能等), 因此,欧姆定律适用于纯电阻电路,不适用于非纯电阻电路。

金属导体通电,电能转化为内能,是纯电阻元件,满足欧姆定律。小灯泡通电后,电能转化为内能,灯丝温度升高导致发光,部分内能再转化为光能,因此小灯泡也是纯电阻,满足欧姆定律。电解质溶液,在不发生化学反应时,电能转化为内能,也遵守欧姆定律。气体导电是因为气体分子在其他因素(宇宙射线或高电压等条件)作用下,产生电离,能量转化情况复杂,不满足欧姆定律。半导体通电时内部发生化学反应,电能少量转化为内能,不满足欧姆定律。电动机通电但转子不转动时电能全部转化为内能,遵从欧姆定律;转动时,电能主要转化为机械能,少量转化为内能,为非纯电阻元件,也不满足欧姆定律。

2.3 从I-U图线看适用范围

线性元件指一个量与另一个量按比例、成直线关系,非线性元件指两个量不按比例、不成直线的关系。在电流与电压关系问题上,线性元件阻值保持不变,非线性元件的阻值随外界情况的变化而改变,在求解含有非线性元件的电路问题时通常借助其I-U图像。

从 知导体的电阻与自由电子连续两次碰撞的平均时间有关,自由电子和晶格碰撞将动能传递给金属离子,导致金属离子的热运动加剧,产生电热。由 知导体的温度升高,τ减小,电阻增大。因此,导体的电阻不可能稳定不变。当金属导体的温度没有显著变化时,伏安特性曲线是直线,满足“电阻不变时,导体中的电流跟导体两端的电压成正比”。理想的线性元件是不存在的,温度降低时,金属导体的电阻减小,当温度接近绝对零度时,电阻几乎为零。小灯泡的伏安特性曲线是曲线,是非线性元件,当灯泡电阻变化时,仍有I、U、R瞬时对应,满足欧姆定律 如同滑动变阻器电阻变化时也满足欧姆定律[3]。

2.4 结论

综上所述,从导电材料的角度看,欧姆定律适用于金属和电解质溶液(无化学反应);从能量转化的角度看,欧姆定律适用于纯电阻元件。对于线性元件,电阻保持不变,导体中的电流跟导体两端的电压U成正比,欧姆定律适用。从物理学史推想,欧姆当年用八根不同铜丝进行实验,应该是研究了电压保持不变时,电流与电阻的关系,以及电阻保持不变时,电流与电压的关系。虽然都是非线性元件,小灯泡是金属材料,是纯电阻元件,满足欧姆定律,二极管是半导体材料,却不满足欧姆定律。因此,线性非线性不能作为欧姆定律是否适用的标准。

3 教材编写建议

“有了电阻的概念,我们可以把电压、电流、电阻的关系写成 上式可以表述为:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。这就是我们在初中学过的欧姆定律。”[1]笔者以为,欧姆定律的内容是 这个表达式最重要的意义是明确了电流、电压、电阻三个量的关系,而不是其中的正比关系和反比关系,教材没必要对欧姆定律进行正比反比的表述。

“实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。”教材已明确欧姆定律的适用范围,建议教材将线性元件和非线性元件的概念与欧姆定律的适用范围分开,同时明确线性、非线性不能作为欧姆定律是否适用的标准。

参考文献:

[1]普通高中课程标准实验教科书物理选修3-1[M].北京:人民教育出版社,2010.