欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

人工智能在小学教学的应用范文

时间:2023-09-17 14:52:56

序论:在您撰写人工智能在小学教学的应用时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

人工智能在小学教学的应用

第1篇

近两年,“AlphaGo”连胜全世界的围棋名将,被媒体广泛报道。人工智能开始成为社会关注的热点,引起人们的广泛兴趣,并令人深信不疑。

在刚刚结束的2017年高考,学霸君与准星云学两家企业的“高考机器人”分别拿出了 134 分和 105 分的高考文科数学成绩。在做题方面,机器可能已经超越了不少人类。正是这样一件事,同样引发了人们的深度讨论与思考。

的确,随着理论和技术的日益成熟,人工智能开始受到产业资本的热捧,语音识别、机器视觉、智能控制、智能检索、智能互联、专家系统、自动规划等应用步伐加速。金融、电商零售、医疗健康、交通、个人助理等多个领域都可以看到人工智能的应用,人工智能已然开始取代工厂工人、客户服务等重复性工作。人工智能在教育领域同样拥有巨大的应用潜力,随着知识表示方法、机器学习与深度学习、自然语言处理、智能、情感计算等关键技术的发展,人工智能将在学校管理、校园安全、课堂管理、智能助教、自动阅卷、自适应教学等方面发挥作用。

面向未来,我们不禁要问,人工智能是否能够改变教育?人工智能在教育领域将释放怎样的潜力?本期策划,我们邀请上海海事大学魏忠,探讨人工智能视角下的未来教育,从人工智能的教育本体、对学科的影响、对教育技术的改变、对教育价值的重新定位几个方面进行了系y思考与分析。江苏师范大学智慧教育学院周宝、杨现民结合人工智能在教育中的典型应用,探讨人工智能对学校管理及教学带来的革命性影响。华东师范大学第二附属中学刘党生,从技术与教育的关系延伸到人工智能,并对非生物智能介入教育的未来趋势进行了预测;重庆市江津区聚奎小学校刘春林、重庆市聚奎中学校张渝江从教育教学实际出发,介绍了人工智能软件如何温柔地改变教育。上海市位育中学陈凯从教育哲学的角度,探讨了人工智能如何作用于思维、认知、学习,并进行了反思。

“这是最好的时代,这是最坏的时代;这是智慧的时代,这是愚蠢的时代。”人工智能时代的钟声已经敲响,我们还在工业时代的迷梦中寻找教育的未来。谁曾想到,未来来得如此之快,我们是否准备好做出改变?未来,我们需要什么样的人才?我们需要什么样的教育?我们不妨想象一下,未来10年、20年的教育将发生怎样的改变?也许一个崭新的时代并不会留给我们那么长时间去形成新的教育生态系统。

第2篇

人工智能的迅速发展将深刻改变人类社会生活、改变教育教学。2020年2月26日,教育部在印发的《2020年教育信息化和网络安全工作要点》第24条“培养提升教师和学生的信息素养”中明确提出:完善义务教育阶段课程设置,加强信息科技教育。建设普通高中人工智能样板实验室,保障中小学校具备开设人工智能课程的环境条件。开展人工智能相关教学与师资培训,搭建区域间人工智能教学成果交流平台。继续推进中小学人工智能教育课程建设、应用与推广工作。中小学人工智能教育课程包(初中版和高中版)和支持服务系统并推广应用。

我校是青岛市人工智能实验学校。在工作中我们借助教研、教学平台,积极推动人工智能课程开展和教师教研、集备工作,根据兴趣导向、应用驱动,学用结合,强化实践的原则,组建了实验班,按照上级对于高中段开课部署每两周开设1课时,开展人工智能教育教学工作。

在课堂上组织实验班的学生观看了人工智能的《开学第一课》,主要是“什么是人工智能”、“如何制造人工智能?、“New Google AI Can Have Real Life Conversations With Strangers”等内容,很有收获。但是在观看过程中发现很多的人工智能相关联的知识,比如JAVA、大数据、Python、人工智能、物联网、数据分析、H5/WEB前端、嵌入式、Linux、C语言、单片机、C++等解根本看不懂,发现自己的很多方面都需要补课,不然每次培训老师讲解的专业东西还是理解不了,这对于我们教师和学生都是一个难点。也断断续续参加了各种形式的培训,和同仁们交流起来总体感觉是没有系统化,特别是参加了祁荣斌博士组织的磨课,和同事们讨论起来感觉层次太高,有些内容也是理解不了!学生和学生的学习和生活环境比较起来也存在地域差异性导致了学生接受人工智能相关教育程度深浅不一,而且面向高中生的课本难度很大,很希望能有个机会从零基础开始系统化学习人工智能,这样才能更好的教好学生,这一点线下交流的时候是很多老师的心声,期望能在领导和专家的引领下实现。

通过断断续续的学习,比如Python基础知识,由于实战少,只能阅读别人的文章里附带的相关算法的实现代码,这样的学习效果不明显。很多算法的实现,难以从代码级去理解其设计思路;对于很多算法比如随机森林,决策树,SVM等常见算法,虽然看了相关文章很多遍但是还是一知半解的。

第3篇

关键词:人工智能;图形编程;创新实践

近年来,人工智能已成为一个高频词,各种与人工智能相关的智能家居、自动驾驶、智能语音、图像识别等新技术,深刻影响着社会的方方面面,也逐步改变人们的工作及生活方式。许多国家已经开始积极尝试,大力推进小学人工智能教学。2017年,国务院正式颁布《新一代人工智能发展规划》,明确提出了“在中小学阶段设置人工智能相关课程,逐步推广编程教育”;如今,计算思维培养又成为热点。在这样的一个时代背景下,学校和教师有责任和义务组织、引导学生去接触、了解、学习、应用人工智能技术,以适应未来学习和工作环境的变化。人工智能涉及的学科内容较为广泛复杂,小学生相对年龄较小,储备的相关知识较少,学校应如何在小学阶段有效开展人工智能教学,推进人工智能教学真正落地?笔者结合自己的教学实践,从“巧”借活动、“巧”设场景、“巧”编程序、“巧”创项目等方面,积极探索小学人工智能教学的推进路径。

一、“巧”设场景体验人工智能

人工智能的知识结构具有较强的逻辑性和抽象性,与之前信息技术课上所教的内容相比,难度及复杂性更高。在日常人工智能教学中,教师应根据学生的心理特点以及不同教学要求,改变教学方式,把体验搬进课堂,让学生通过具体的体验活动逐步理解人工智能的相关知识,把重难点从对概念、原理、技术的学习转换到了解相关概念、技术实现的过程、体验人工智能技术的应用上。丰富有趣的教育实践活动可以让学生在愉悦的教学情境中,从不同的思维角度、用不同的思维方式来认识和理解与生活密切联系的一些人工智能概念,如机器学习、大数据、神经网络等,体验人工智能在实际生活中的应用。例如在《人脸识别》一课教学中,需要让学生了解人脸识别技术的应用、影响、实现过程和原理,其中人脸识别的原理和过程较为复杂,如果教学中只进行简单说教,无法有效达成教学目标。本课设计了一个“人脸大比对”体验活动,活动分两个部分,第一部分就是通过百度AI开放平台里的人脸检测与属性分析功能,体验人脸检测中具体检测哪些属性;第二部分就是通过人脸对比功能,完成教师提供的三组人像照片的对比分析。在第一部分的实例体验中,学生通过自己上传照片进行检测,主要是通过对人脸的面部、肤色、毛发、眼睛、嘴、鼻和轮廓等150个特征的精准定位来准确地识别和计算出一张人脸的特征和属性信息,包括年龄、性别、颜值、情绪、是否戴眼镜等。这样的体验让学生非常感兴趣,也能很好地理解特征提取的过程。第二部分的体验是人脸对比,教师提供给学生三组照片,第一组是一对相似度很高的双胞胎;第二组是同一个人戴口罩和不戴口罩的照片;第三组是同一个人的两种表情。学生先自己观察,记录三组照片的结果,再上传照片到百度AI体验人脸对比过程,并查看对比结果。经过体验,学生认识到在现有的技术下,人脸识别的准确度还是非常高的,对人脸识别的过程也留下了非常深刻的印象。

二、“巧”编程序理解人工智能

从当前人工智能技术应用的实际情况分析来看,主要应用领域为大数据及机器学习,这些功能的实现得益于算法的不断完善。可见,算法学习是实现人工智能的关键,而对算法的学习又是计算机编程教学中的一大难点。推进小学编程教学将有利于帮助学生理解人工智能的相关知识。小学生相对抽象思维偏弱,采用图形化的编程教学,更加有利于他们接受,有助于提高学习的积极性。通过编程教学引导学生学会分析问题、抽象与建模、设计算法、编写程序脚本,在验证过程中不断改进和完善,并最终实现问题的解决,能有效培养学生的计算思维,并过渡到对人工智能所需要的其他知识的学习上。例如在五年级的《创编游戏》教学中,情境任务是设计制作一个猫捉老鼠的小游戏,目标是让学生认识“碰到颜色”“如果……那么……”等指令,能够用它们的组合来编写判断角色是否碰到边缘和老鼠的脚本。人工智能的概念主要体现在“碰到颜色”和“如果……那么……”语句的应用上,“碰到颜色”是侦测识别,“如果……那么……”则是逻辑判断的处理。在教学中,首先通过问题引导学生思考完成游戏需要考虑哪几个要素,从问题和答案中帮助学生提炼出“舞台”“角色”“动作”三个要素,进而帮助学生厘清实现游戏功能的基本思路。在程序编写中,让学生具体体验侦测模块的编写与判断语句的应用。简单的编程实践,能让学生逐步了解人工智能的基本概念及其实现流程。

三、“巧”创项目实现人工智能

知识的学习必须与学生的生活实际结合起来,如果学生在掌握人工智能知识和技能后能将所学知识应用于实践,解决生活中的实际问题,那么这样的学习就是真实有效的。学生通过设计创作具体作品,可以大大增强分析和处理问题、解决实际问题的意识和能力,培养逻辑思维和动手实践能力,这也是人工智能教育的方向和目的。根据学生的实际生活经验,教师将人工智能的具体应用案例巧妙引入课程中,引导他们科学地确定项目内容;通过对项目的梳理分析,建立逻辑关系和模型;用编程语言描述逻辑关系;采用硬件设备实现人工智能的具体功能,这种基于真实任务的学习活动,能有效促进学生的理解。例如四年级实践小组的“智能垃圾桶”作品,便是以垃圾桶为课题进行探究,先让学生对现有垃圾桶的优劣势进行分析,思考怎样改造垃圾桶才能真正实现智能化。通过教师的引领和自身观察,学生很快认识到智能垃圾桶应该具有的功能:一是能检测什么时候有人投放垃圾;二是垃圾桶盖能自动开启和关闭。确定了目标之后,就是思考达成上述目标需要哪些条件。学生根据已有知识,确定可以用超声波检测是否需要打开垃圾桶盖子,打开和关闭动作可以通过舵机和连杆来实现。通过探究后,学生根据设计的方案自主完成了智能垃圾桶的作品搭建,接下来就是通过编写程序和不断调试验证来实现预期的功能。作品完成后,学生可以根据实际情况进行功能的增加与修改,如增加桶内垃圾超过一定高度时能自动提醒的装置等,让智能垃圾桶更加智能。本次作品的创作过程,不仅锻炼了学生分析实际问题、解决实际问题的能力,又锻炼了他们的编程思维和计算思维,更重要的是体验了自己创作人工智能作品的乐趣和成就感。在人工智能应用日益普及的今天,人工智能课程进入小学课堂是大势所趋。在小学阶段开展人工智能课程教学,主要是为了让学生掌握人工智能知识,体验和运用人工智能技术,培养学生的信息技术核心素养、创新意识、实践应用能力,为学生适应未来社会打下扎实的基础。但人工智能教学具有其特殊性,如何有效推进人工智能教学,还面临着许多需要解决的问题。学校和教师应尽最大努力创设更好的人工智能教学环境,探索更有效的教学策略,促进学生对人工智能相关知识的学习。

参考文献

[1]丁华.人工智能教学中对学生计算思维的培养[J].华夏教师,2020(13):42-43.

[2]徐欣彦.引入体验活动创新小学人工智能教学模式[J].中小学信息技术教育,2019(9):62-64.

第4篇

[关键词]人工智能;中学辅助教育;教育资源

[DOI]10.13939/ki.zgsc.2016.36.197

1 中学教育现状

教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。

目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。

1.1 学生得到的公共教育资源不足

学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。

1.2 学生获取的社会教育资源不公

学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。

本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。

2 智能辅助学习

2.1 人工智能简介

人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。

在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。

2.2 智能辅助学习系统

智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。

该智能辅助学习系统,具备以下几个特征。

2.2.1 虚拟教师跨学科能力

与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。

2.2.2 虚拟教师深度自学习

虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。

2.2.3 接近自然语义的沟通

学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。

2.3 优势分析

智能辅助学习系统,有三大核心优势。

一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。

二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。

三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。

2.4 前景预测

笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。

第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。

第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。

3 结 论

本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。

参考文献:

[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).

[2]王斐.人工智能在中学教育教学中的应用现状分析[J].中国医学教育技术,2013(4).

第5篇

2016年1月,美国佐治亚理工学院计算机学院的教授AshokGoel,借助IBM的Watson人工智能系统创建了一个在线机器人JillWatson,并将其作为课程教学助理。其目的是帮助教师回答学生通过在线论坛提出的大量课程问题。通过几个月的反复调试,JillWatson的回答已经能够达到97%的正确率。现在,机器人助教已经可以直接与学生沟通,不需要真人助教的帮助。这项人工智能在教育中的使用,解决了AshokGoel教授的助教人数不够,难以及时回答学生提问的困境,增加了学生参与在线学习的兴趣,提高了在线学习的留存率。

这只是人工智能在教育领域的小试牛刀。虽然有专家预测在未来十年内不会看到人形机器人替代教师进入课堂,不过地平线报告2016年基础教育版和2107年高等教育版都预测未来五年内人工智能将会在教育行业普及。

教育行业已有的人工智能研究和应用

Woolf等人在2013年提出了人工智能在教育领域应努力解决“五大挑战”:①为每一个学习者提供虚拟导师:无处不在地支持用户建模、社会仿真和知识表达的整合。②解决21世纪技能:协助学习者自我定位、自我評估、团队合作等。③交互数据分析:对个人学习、社会环境、学习环境、个人兴趣等大量数据的汇集。④为全球课堂提供机会:增加全球教室的互联性与可访问性。⑤终身学习技术:让学习走出课堂,进入社会。

过去十年,一些研究者对人工智能在教育领域中的应用做了大量的探索。相关的研究成果包括:①跟踪学习者的思维步骤和解决问题的潜在目标结构(Anderson等,1995);②诊断误解和评估学习者的理解域(VanLehn,1988);③提供及时的指导、反馈和解释(Shute,2008);④促进高效学习的行为,如自我调节、自我监控和自我解释(Azevedo&Hadwin,2005);⑤以合适的难度水平和最适当的内容来规划学习活动(VanLehn,2006)。

这些研究,基本上使用到了人工智能的每一项技术——自然语言处理、不确定性推理、规划、认知模型、案例推理、机器学习等。“智能导师系统”就是基于这些研究和技术而开发的人工智能教育应用。类似的成熟产品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷泽大学的一项试验发现用智能导师系统的学习者比使用其他教学方法的学习者获得的成绩更高。

人工智能在教育行业的新发展

教育行业的三种类型(内容、平台和评估)的服务商都在经历着一场变革。内容出版商面临纸质印刷到数字出版和开放教育内容的挑战。学习平台正试图区分自适应、个性化和数据分析的功能。评估供应商则继续探寻从多项选择题测试转向更具创新性的问题类型。人工智能将为这三种类型教育服务商带来新的发展思路和契机,同时也惠及教育生态系统中的所有利益相关者。学生通过即时反馈和指导提高学习效率,教师将获得丰富的学习分析和个性化指导经验,父母能够低成本地为孩子改进职业前景,学校能够规模化提高教育质量,政府能够提供负担得起的教育。2017年,人工智能将在以下领域发挥其效益。

1.人工智能批改作业

批改作业和试卷是一件乏味的工作,这通常会占据教师大量的时间,而这些时间本可以更多地用于与学生互动、教学设计和专业发展。

目前,人工智能批改作业已经相当接近真人教师了,除了选择题、填空题外,作文的批改能力已经大幅提高。美国斯坦福大学已经成功开发出一种机器学习程序,能够批改8~10年级的作文。随着图像识别能力的大幅提高,手写答案的识别也接近可能。就连占有美国标准化考试60%市场份额的全球最大教育企业——培生公司也认为,人工智能已经可以出现在教室并提供足够可信的评估。据培生公司近期的报告IntelligenceUnleashed推测,人工智能软件所具有的广泛的、定制的反馈能够最终淘汰传统测试。

2.人工智能实现一对一辅导

自适应学习软件已经能为学生提供个性化学习支撑。据2011年VanLehn的一项研究发现,人工智能在某些特定主题和方法上比未经训练的导师更具有效性。进一步的研究发现,人工智能导师能在学生出错的具体步骤上给予实时干预,而不是就整个问题的答案给予反馈(Corbett&Anderson,2001;Shute,2008)。

自适应学习在拉美地区正在兴起。AndréUrani市政学校的学生使用人工智能软件Geekie观看在线课程(视频和练习)。Geekie为学生提供每一步的实时反馈,并随着学习的进展来传授更为精细的课程内容。

早在1984年,本杰明·布卢姆的研究就提出一对一辅导能带来更好的学习效果。而人工智能技术可以模拟一对一辅导,以更好地跟踪、适应和支持个体学习者。这将是人工智能在教育中更高层次的个性化学习应用。例如,比尔·盖茨看好的人工智能聊天机器人或个人虚拟导师,能在学生面临挑战时提供强有力的支持,随时随地回答学生的提问;还可以为学生订制学习方案和规划职业发展路径,并引导学生走向成功。更重要的是,人工智能可以匹配聊天机器人或虚拟导师的面孔和声音来满足学生个人喜好。对比网页界面的自适应学习系统,这才是真正做到了一人一导师。

3.人工智能关注学生情感

2016年地平线报告高等教育版把情感计算列为教育技术发展普及的重要方向。也就是说,人工智能不仅限于模拟人类传递知识,还能通过生物监测技术(皮肤电导、面部表情、姿势、声音等)来了解学生在学习中的情绪,适时调整教育方法和策略。例如,机器人导师捕捉到学生厌烦的面部表情时,就可以立即改变教学方式努力激发他们的兴趣。这种关注情感的人机交流为学生营造一个更真实的个性化学习环境,更好地维持了学习者的动机。美国匹兹堡大学开发的AttentiveLearner智能移动学习系统就能通过手势监测学生的思想是否集中。突尼斯苏斯国家工程学院的研究人员正在研究开发基于网络的人工智能教学系统。该系统能够识别学生在任何地方开展科学实验的面部表情,以优化远程虚拟实验室的教学过程。

进一步的研究发现,人工智能还可以关注学生的心理健康。当前已经有使用人工智能来为自闭症儿童提供有效支持的案例。例如,伦敦知识实验室在Topcliffe小学开展试验,让自闭症学生与半自动虚拟男孩安迪开展互动交流,研究人员发现患有自闭症的学生在社交能力方面有进步。

4.人工智能改进数字出版

教科书等课程材料并非总是完美,传统印刷出版让课程的修订变得过于缓慢。这不仅是生产工艺的问题,更主要的是纸质课程材料无法快速获取使用者的反饋来识别缺陷所在。而数字化出版在人工智能的支撑下能彻底改变这一现状。

人工智能可帮助使用者快速识别课程缺陷。大规模网络开放课程Coursera的提供者已经将这一想法付诸实践。当发现大量学生的作业提交了错误的答案时,系统会提示课程材料的缺陷,进而有助于弥补课程的不足。

另一项人工智能在数字化出版的应用是自动化组织和编写教材。这是基于深度学习系统能模仿人类的行为进行读和写。ScottR.Parfitt博士的内容技术公司CTI就依据这项技术帮助教师定制教科书——教师导入教学大纲,CTI的人工智能引擎能自动填充教科书的核心内容。

随着自然用户界面和自然语言处理在人工智能领域的成熟应用,课程材料的数字化出版也会有更新的形态——不再局限于书本或网页的形式,聊天机器人和虚拟导师将成为内容表达的更好的方式。

5.人工智能作为学生

多年的研究表明,教会别人才是更好的学习,即learning-by-teaching。美国斯坦福大学教育学教授DanielSchwartz正基于这一理念来开发新的人工智能产品。他联合了多个领域的专家一起开发了人工智能应用——贝蒂的大脑(Betty’sBrain),让学生来教贝蒂学习生物知识。试点研究发现,使用这一方法来学习的学生比其他学生成绩更好,且在科学推理上也更胜一筹。

类似的研究和开发还有瑞典隆德大学的TimeElf和美国卡内基梅隆大学的SimStudent,这两个人工智能产品也是基于learning-by-teaching而开发,让学生在教会机器人知识的过程中深化对知识的理解。

另外,人工智能还推动其他教育方法和技术更好实现。如让虚拟现实学习环境更具沉浸感;给学生带来更多动手实践的机会;提供基于丰富学习分析的仿真和游戏化学习场景等。

第6篇

【关键字】人工智能;教育;进展

【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03

人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。

人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。

一 专家系统

专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。

目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]

教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]

目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。

二 机器人学

机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。

机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。

机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。

三 机器学习

机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]

随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。

四 自然语言理解

自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]

自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]

五 人工神经网络

人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。

人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。

六 分布式人工智能(Distributed Artificial Intelligence,DAI)

分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。

分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。

综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。

技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。

参考文献

[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.

[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.

[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.

[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.

[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.

[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.

[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.

[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.

[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.

[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].

[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.

[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.

[16] 自然语言理解[DB/OL].

[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.

[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].

第7篇

【关键词】人工智能;未来教育;未来学校;创新变革;挑战

【中图分类号】G434 【文献标识码】A

【论文编号】1671-7384(2017)07-0012-03

近年来,世界各国高度重视人工智能技术的发展,相继了相关研究报告。2016年10月,美国白宫了《为人工智能的未来做好准备》和《国家人工智能研究与发展战略计划》两份重要报告。2016年11月,英国政府《人工智能:未来决策制定的机遇与影响》报告。2017年3月,国务院总理发表2017政府工作报告,指出要加快培育壮大包括人工智能在内的新兴产业,“人工智能”首次被写入政府工作报告。当前,人工智能正逐渐融入电商零售、医疗健康、交通以及个人助理等多个领域,并展现出巨大的应用空间。人工智能在教育领域同样拥有巨大的应用潜力,随着知识表示方法、机器学习与深度学习、自然语言处理、智能、情感计算等关键技术的发展,人工智能将在教育领域发挥越来越大的作用[1]。

人工智能在教育中的典型应用主要集中在智能导师辅助个性化教与学、教育机器人等智能助手、居家学习的儿童伙伴、实时跟踪与反馈的智能测评、教育数据的挖掘与智能化分析、学习分析与学习者数字肖像六大方向[1],已经表现出巨大的应用潜力。学校作为教育活动的重要组织场所之一,人工智能将为学校的管理与教学带来变革性的影响,主要表现在四大方面:维护校园安全、辅助教师教学、变革学习范式以及优化学校管理。

维护校园安全

校园安全是顺利开展学校教育活动的基础,也是教育改革和发展的基本保障。《国家中长期教育改革和发展规划纲要(2010-2020年)》指出,要“切实维护教育系统和谐稳定,深入开展平安校园、文明校园、绿色校园、和谐校园创建活樱为师生创造安定有序、和谐融洽、充满活力的工作学习生活环境”[2]。计算机视觉与机器人技术的发展使得人工智能维护校园安全成为可能,其将在非法人员识别、消防安全预警、活动事故防护三个方面发挥重要作用。

1. 非法人员识别

部署保安机器人将是未来学校保证维护校园安全的重要措施之一。保安机器人能通过眼部的图像采集设备采集进入校园人员的面部信息,识别当前人员身份,若未检测到相关人员信息,系统则会通知学校的安保人员进行身份验证、登记等工作。同时,位于校园各处的保安机器人还将实时监控是否有陌生人通过非正规途径进入校园,检测到相关行为之后,则会通知学校安保人员进行处理。此外,位于学校门口的保安机器人还将采集学生的面部信息,与信息库中的学生信息相比对,确定学生身份,并记录学生到校与离校时间,确保学生在校期间的安全。

2. 消防安全预警

未来学校的消防安全预警系统包含了感烟探测器、感温探测器、火焰探测器、可燃气体探测器等多种感应器,同时通过摄像设备实时采集图像信息,分析画面中是否出现明火、烟雾等现象。其综合图像分析与探测器感知,判断是否有火灾现象发生。此外,系统通过实时采集校园内人员的行为数据,与数据库中消防安全危险行为做比对,分析是否有相关危险行为发生。若危险行为发生,则会通知学校安防人员。在火灾发生时,拥有智能搜救技术的消防机器人将会代替人进入火灾发生区,通过生命探测仪,自动感应、搜索、识别被困人员,将其救出火灾发生区。消防机器人的部署很大程度上避免了人员进入火灾发生区受到二次伤害现象的发生,其机动性超越了现有的消防安全系统,在很大程度上保证了校园内师生生命和财产安全。

3. 活动事故防护

目前,校园课间活动的伤害事故主要表现在拥挤踩踏伤害、追逐打闹伤害、危险游戏伤害等三个方面。基于人工智能的活动事故防护系统通过校园内的摄像设备实时采集师生行为数据,通过与数据库中活动事故危险行为模型相比对,分析判断是否有危险行为发生。若相关行为发生,系统则会将相关危险行为发生的地点、类型等发送给学校的安防人员,提醒安防人员采取相应措施。

辅助教师教学

随着图像识别、语音识别、自然语言处理等技术的发展,越来越多的人工智能工具被应用于教育领域,成为教师教学的得力助手。教育机器人和智能作业测评工具的出现大大减轻了教师的负担,提高了教师教学的效率。

1. 辅助备课

备课是真实教学实践的预演,是应用教师知识并发展教师知识的过程。其既是确保教学质量的条件,也是教师专业发展的途径[3],是教师教学的重要组成部分。备课机器人能够通过语音识别记录教师话语信息,利用自然语言处理技术分析整合教师话语信息,识别教师要求。备课机器人根据教师提供的教学目标、教学重难点、学生的基础知识等,在相关学科的知识库中进行资源的搜索与整合,形成电子教案。同时,根据教案内容为教师提供课堂测试习题以及上课所需课件。教师只需要根据所教班级的学生特点与自己的教学习惯,对教案、测试习题以及课件稍作调整即可应用于教学。

2. 智能作业测评

自然语言处理技术的进步使得作业自动批改成为可能。科大讯飞将“讯飞超脑”计划的阶段性研究成果“全学科阅卷”技术应用于考试,实现阅卷过程的数据化与自动化,在将教师从简单重复的阅卷工作中解放出来的同时,完成对考试数据的采集[4]。基于人工智能的作业评测系统可对作文、阅读等主观题进行语义识别并提出修改意见,根据学生的作业结果为教师自动生成详细的学情报告。智能作业评测技术的应用将有效分担教师的教学压力,显著提高教学效率,教师能够更多地专注于与学生互动、教学设计和专业发展。

3. 辅助课堂管理

在未来,教辅机器人将走进教室,辅助学生解决学习中遇到的难题。教辅机器人能够识别学生身份,读取学生当天所学课程信息以及学生在课堂的行为数据,为学生提供个性化解题方案奠定基础。教辅机器人通过语音识别获取学生问题信息,利用自然语言处理技术分析整合学生话语信息。然后,教辅机器人通过人脸识别采集学生的面部信息,综合面部表情、姿态和语调通过情感计算技术分析目前学生的情绪状态,综合学生的情绪状态和行为数据确定学生当前学习状态。教辅机器人依托优秀教师授课资源库,智能搜索相关答案,针对不同学习状态的学生采取不用的解题风格。此外,教辅机器人将收集到的学生行为数据上传到学生管理系统,辅助教师等进行学生的日常管理工作。

变革学习范式

学习范式是指特定时代的学习共同体所共有的学习理念、学习方式,并对学习者的学习态度、学习行为产生积极的引导作用,以促进学习的有效进行[5]。人工智能技术的发展使自适应学习系统真正地为教育所用,为学习所用,人工智能将使现有的学习范式走向自适应学习。

自适应学习系统在本质上是一类支持个别化学习的在线学习环境。它针对个体在学习过程中的差异性(因人、因时)而提供适合个体特征的学习支持,包括个性化的学习资源、学习过程和学习策略等[6]。基于人工智能的自适应学习系统将整合自适应内容、自适应评估和自适应序列三种工具。自适应内容通过分析学生对问题具体的回答,为学生提供个性化的内容反馈和学习资源推送。自适应序列利用一定的算法和预测性分析,基于学生的学习表现,持续收集数据。其中在数据收集阶段,自适应序列会将学习目标、学习内容与学生互动集成起来,再由模型计算引擎对数据进行处理以备使用。自适应评估可根据学生回答问题的正确与否,及时改变和调整测评的标准。

优化学校管理

学校是教育的核心单元,高效的学校管理是学校开展各项工作并得以高效运行的重要保障[7]。人工智能的融入将使未来学校的管理工作更加高效,使学校更好地服务于教师的教学与学习者的学习。其将在考务管理、教师管理、学生管理三方面发挥重要作用。

1. 考务管理

在未来的学校中,监考机器人将代替监考人员进行考务工作,很大程度上节省学校考务管理方面的人力资源。监考机器人通过内置于眼部的摄像头采集学生的面部信息,与数据库中学生信息比对,确定学生身份,自动完成签到。其通过内置于手臂端的金属探测器,扫描学生全身,z测学生是否带有作弊物品。监考机器人通过摄像头、红外感知等确定学生位置以及教室内的桌椅等位置,规划行动路径,分发和收集试卷。此外,监考机器人还将通过位于眼部的摄像头实时采集学生行为数据,与数据库中作弊行为实时对比分析,如果学生有作弊行为发生,则会立即制止,维护考场纪律。

2. 教师管理

教师管理是学校管理工作中的重要组成部分,教师评价则是教学管理中的核心部分。人工智能为教师的智能评价提供了可能。基于人工智能的教师评价系统通过教室的摄像设备实时采集教师及学生的行为数据、表情数据,通过学生的穿戴设备采集其体征数据。系统经过对教师和学生的行为数据、情绪数据和体征数据的分析(如系统与学校的学科管理系统相连通,确定教师的教学内容是否与教学大纲要求相适应,重难点是否突出,所讲述内容是否具有实用性;教师讲授知识时,根据学生的行为、情绪和体征的反应确定教师所讲授知识是否被学生理解;教师在讲授内容和组织学习活动时,语言是否规范、清晰,态度是否亲切和蔼等),最终评定教师的教学效果,并生成可视化报告,辅助学校完成对教师教学效果的评估工作。此外,系统还将通过教室的摄像设备采集教师面部信息,识别教师身份,自动记录教师的出勤情况,辅助学校的教师管理工作。

3. 学生管理

学生管理在学校管理中同样发挥着重要作用。基于人工智能的学生管理系统可通过位于学校门口以及教室的摄像设备采集学生面部信息,识别学生身份,自动记录学生的到校时间和离校时间,为学生的出勤考核提供数据支持。通过位于教室的摄像设备实时采集学生的行为数据,分析学生的课堂表现以及课余时间的同学之间的交流情况,为学生管理的班风、学风管理提供决策支持。同时,通过分析学生的学习成绩、课堂表现、课下交流情况,判断学生是否有异常行为(趋向),并及时反馈给学校管理者。此外,系统还将学生的在校情况,包括到校时间、离校时间、测试成绩、作业完成情况等反馈给学生家长,家校协同完成学生管理工作。

让机器在没有人类教师的帮助下学习,让机器像人类一样感知和理解世界,使机器具有自我意识、情感,以及反思自身处境与行为的能力,是人工智能面临的主要挑战[8]。除此之外,人工智能在教育领域中的应用目前还处于初级阶段,在学校的管理与教学应用方面仍面临着数据基础薄弱、决策和推理机制适应难、缺乏专业应用人才等挑战。

(作者单位:江苏师范大学智慧教育学院)

参考文献

闫志明,唐夏夏,秦旋等. 教育人工智能(EAI)的内涵、关键技术与应用趋势――美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J]. 远程教育杂志,2017(1): 26-35.

程天君,李永康. 校园安全:形势、症结与政策支持[J]. 教育研究与实验,2016(1): 15-20.

翁春敏,陈群波. 基于教师情境知识的备课研究――国外研究的视角[J]. 外国中小学教育,2015(5): 51-57.

搜狐教育. 科大讯飞吴晓如:互联网+人工智能时代的教育变革[EB/OL]. http: // sohu. com/a/69484549_372506,2017-6-15.

George R. Boggs. What Is the Learning Paradigm? [EB/OL]. http: //vccslitonline. cc. va. us/mrcte/learning_paradigm. html, 2017-6-13.

陈仕品,张剑平. 基于EAHAM模型的适应性学习支持系统体系结构[J]. 电化教育研究,2008(11): 53-57+82.