欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

高层建筑结构设计要点范文

时间:2023-09-08 17:00:35

序论:在您撰写高层建筑结构设计要点时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

高层建筑结构设计要点

第1篇

关键词 高层建筑结构设计;结构分析

中图分类号 TU973 文献标识码 A 文章编号 1673-9671-(2012)071-0094-01

当前高层建筑结构设计工程师面临的一个首要问题就是怎样才能设计出安全、舒适、经济、美观,并能满足人们精神及物质生活要求的高层建筑。因此,对高层建筑结构设计要点的熟练掌握,是高层建筑结构设计人员的必备基本素质。笔者将多年从事高层建筑结构设计的经验做了一个总结,提出了高层建筑结构设计中一些需要注意的问题,并对高层建筑结构设计的体系作了分析,以供参考。

1 高层建筑结构设计的特点分析

1.1 水平荷载是高层建筑结构设计当中的决定因素

高层建筑所承受的楼面荷载及其自身重量于竖向构件当中的弯矩及轴力数值与高层建筑的实际高度成正比;高层建筑结构中倾覆力矩的产生与水平荷载相关,结构的轴力也由竖向构件所引起,倾覆力矩及轴力都与高层建筑本身的实际高度成正比;对于具有特定高度的建筑来说,竖向荷载在一般情况下是一个定值;而高层建筑结构中的水平荷载数值由结构动力的特性决定,随动力特性变化而变化,尤其是水平荷载当中的风荷载。

1.2 轴向变形在高层建筑结构设计当中是不可忽视的因素

如高层建筑所承受的竖向荷载值较大,可引起柱中出现轴向变形的现象,且幅度较大,从而影响连续梁的弯矩,对连续梁中部的支座处负弯矩值产生了减小作用,而对端支座的负弯矩值及跨中正的弯矩值则是产生了增大作用。较大的竖向荷载值还会影响预制构件下料的长度;在这样的情况下,就需要以轴向变形作为依据的计算值,调整下料长度。此外,竖向荷载值对构件侧移及剪力产生的影响也不可忽视,因其与构件竖向的变形相比较考虑,会产生与不安全结果不相符合的现象。

1.3 侧移是高层建筑结构设计中的控制指标

高层建筑与低矮的楼房不一样,高层建筑结构设计工作中,关键的影响因素为结构侧移;随建筑本身实际高度的增大,水平荷载之下的建筑结构侧移的变形会迅速增大。可以发现,在水平荷载的作用下,需要对结构侧移进行控制,使其保持在一定的限度之内。

1.4 结构延性为高层建筑结构设计的重要指标

高层建筑的结构要比低矮楼房的结构更柔,在地震的作用下,出现的变形幅度会更大,减少了倒塌的现象。在高层建筑的构造方面可采取相应的措施,使之进入到塑性变形的阶段后,仍具有足够延性,保持较强变形能力。

2 高层建筑结构设计体系分析

2.1 剪力墙-框架体系的设计

在高层建筑结构中的框架体系刚度及强度均不能达到要求时,常常需要在高层建筑的平面内适当的位置,建立剪力墙以代替结构中的部分框架,将剪力墙-框架结构体系应用于结构设计当中[3]。当建筑物承受来自水平方向的压力时,剪力墙及框架可以通过刚度足够强的连梁及楼板共同组成相互协同结构工作体系。在剪力墙-框架设计体系中,承受来自垂直方面荷载的主体为框架体系,水平剪力的承受主体为剪力墙;在剪力墙-框架体系中,位移曲线为弯剪型。结构侧向的刚度由于剪力墙的作用而增大,建筑在水平方向上的位移得以减小;框架所承受的水平方向上的剪力出现明显下降的趋势,竖向的内力分布变得均匀。

2.2 剪力墙结构体系的设计

剪力墙结构体系是指由平面的剪力墙结构组成的建筑主体受力结构。在剪力墙结构体系当中,全部的水平力及垂直荷载由单片的剪力墙所承受。剪力墙结构体系是一种刚性的结构,位移曲线是一种弯曲型结构。剪力墙结构体系的刚度及强度均相对较高,具有一定延性,在传力时具有直接及均匀的优点,整体性好,且抗倒塌的能力较强,不失为一种优良的建筑结构体系,其可建的高度一般大于剪力墙-框架体系。

2.3 筒体结构体系

筒体结构体系指的是以筒体作为抗侧力的构件建筑结构体系,筒体结构体系主要包括筒体-框架、单筒体、多束筒及筒中筒等其他多种形式。可将筒体分为空腹筒及实腹筒两个大类。筒体为空间受力的结构构件与三维竖向的结构单体,由曲面墙或平面墙围成;也可由窗裙梁、密排柱及开孔钢筋外墙等构成。筒体结构体系的强度及刚度均相对较高,在大空间、大跨度等特殊类型的高层建筑中被广泛应用

3 高层建筑结构设计的基本假定分析

由剪力墙及简体框架组成了高层建筑主体结构,组成的方式为平楼板水平连接。因此,在三维空间中精确及完善的分析高层建筑结构设是存在难度的,特别是不同的实用分析方法,要引入不同程度的简化计算模型。以下四种假定是高层建筑结构设计中比较常见的计算模型。

3.1 小变形基本假定

在一般情况下,小变形基本假定在高层建筑结构设计分析中被应用得最多。很多从几何方面入手的研究人员对P—效应进行了详细研究,并得出以下注意事项:在建筑高度与顶点的水平位移的比值大于0.2%的情况下,需高度重视建筑结构受到P—效应影响的程度。

3.2 刚性楼板基本假定

在分析高层建筑结构设计时,存在的问题主要是过于注重平面内刚度,而忽视了平面外刚度。采用刚性楼板基本假定的分析法不仅能将结构的位移自由度减少,计算的方法简化,而且能为筒体结构空间薄壁的杆件理论创造良好的计算及使用条件。在一般的情况下,在剪力墙结构体系及框架结构体系当中运用刚性楼板基本假定是可行的。但是,就竖向刚度结构出现突变的情况而言,受到楼板变形的影响较大,如有些楼板的层数不多、刚度不大及抗侧力构件的间距过大等情况,尤其是结构底部及每层顶部内力的影响更为显著。对于以上问题,要采取一些适当的调整措施进行解决。

3.3 弹性基本假定

目前,在高层建筑结构设计的分析方法当中,弹性基本假定

计算方法被运用的范围较广。尤其在垂直荷载的计算当中,因高层建筑结构长时间处于弹性的工作阶段,实际工作情况与弹性基本假设的情况相吻合。但如果遭到较严重的自然灾害,如较大强风及地震等,建筑结构会因较大的位移幅度而产生裂缝,从而进入到弹塑性的工作阶段。在这样的情况下,为了能使高层建筑结构状态得到真实的反应,只能在结构设计中运用弹塑性分析方法。

3.4 计算图形基本假定

高层建筑结构设计中三维空间的分析方法主要为计算图形基本假定。二维协同分析没有将侧力构件中公共的节点在外位移纳入到分析的范围当中;侧力构件外的刚度及扭转刚度并没有受到高度重视。分析精通杆的三维空间中每一节点时,自由度只有六个,不足以完成分析,使用计算图形基本假定分析法,可以弥补这一缺陷。

4 结束语

高层建筑的快速发展增加了对其力学及结构分析模型等方面的诸多要求。因此,寻找新的结构设计形式与正确的力学分析模型,是当前高层建筑结构设计工作人员的主要奋斗目标;只有找到新型建筑结构设计形式与正确的力学分析模型,才能使高层建筑获得更好的发展。

参考文献

[1]都凤强.高层建筑结构设计的实践探讨[J].科技创新导报,2009,21(8):942-943.

第2篇

【关键词】高层;建筑;结构;设计; 要点

但是就目前来说,在其结构设计中还具有一定的问题。下面本文分析高层建筑结构设计中存在的问题和对策,并探讨其改进措施。

1 高层建筑结构设计中存在的问题

1.1 高层建筑结构设计不合理,没有处理好高层建筑结构的均衡关系

在目前一些高层建筑结构设计中,过分地追求美观度和个性化,从而忽略了其设计的科学性和合理性。同时高层建筑的结构设计是多种多样的,框架结构体系、剪力墙结构体系、框架剪力墙结构体系、筒体结构体系等等,在选择过程中存在一定的不合理性。另外在高层建筑的整体结构设计中,要注重考虑水平载荷中的风荷载以及地震作用,做好抗震设防系统,以能够提高建筑安全性,但是在实际建筑结构设计中,还存在对这些问题不注重问题,考虑不全面问题,从而导致高层建筑存在一定的安全隐患。一个造型完美的高层建筑必须很好地均衡主体、裙房和顶部的尺度关系。高层建筑是城市形态的关键因素和重要景点,因此要规划好城市的结构中高层建筑的位置,以及高层建筑与城市街道的关系,保证高层建筑不能对街道行人和正常活动造成影响,也不能造成视觉上的影响。目前高层建筑在这一方面还具有一定的薄弱性,没有处理好高层建筑结构的均衡关系。

1.2 高层建筑结构设计对其受力情况和水平荷载的考虑不够完善

在高层建筑结构设计中,其高度不同,那么其受力情况也就不同,其水平荷载跟竖向荷载共同作用,是对高层建筑整体设计效果进行控制的主要因素。但是随着建筑高度的不断增加,其侧向位移增加的速度也越来越快,底部弯矩也随之加大,其侧向变形过度会导致其结构在横向荷载下,附加应力明显增加,从而引起了填充墙裂缝的出现;导致电梯轨道以及装修等服务设施,出现变形或者裂缝问题,严重危及了高层建筑结构的正常使用和耐久性。

2 高层建筑结构设计要点

2.1 高层建筑基础设计中注意事项

在高层楼宇根基策划中要关注的情况划分为三类:第一类,高层楼宇根基一定要持久耐用,由于高层楼宇根基在地下部分,地下水分含量高,根基大多处在比较潮湿的环境中,因此建筑高层楼宇的根基一定要使用持久耐用的材料,如增加根基中钢筋混凝土的钢筋结构;第二类,高层楼宇的根基要足够厚实,才能够确保承担住上层构造传递下来的重量,同时匀称的传递到高层楼宇的根基中;第三类,高层楼宇根基计划一定要进行整体的考虑,不能只想到建筑楼宇自身的高度以及对附近建筑物的作用,还要想到高层楼宇在承受冲击之后是不是形状能够不改变,符合科学、经济的建筑环境。

2.2 高层楼宇构造策划中的共振情况

共振形成的环境是,高层楼宇的自震时间以及出现地震位置的特性一致抑或相当,因此能够使用具有目的性的预测楼宇出现地震时的特点情况,之后加强高层楼宇的自震时间和楼宇所建筑地区地震特点之间的距离,来防止形成共振的可能性。

2.3 高层楼宇构造策划中的水平挪动情况

高层楼宇构造策划中水平挪动不能仅以达到高层楼宇建筑标准为基础,还要结合所建位置的地震周期等情况。如在高层楼宇构造低于地震策划时,因为抗震情况和构造刚度有关,是正比的关系,所以策划的构造刚度小,不过出现的挪动在允许的范畴内,构造周期长,抗震力不大,因此这种构造策划是不科学的。

2.4 选取适宜的设计简图

设计简图一定要确保有相关的高层楼宇结构技术,并且有对高层楼宇构造的设计方式,设计简图如果选取的不适合甚至对高层楼宇构造的安全产生不良影响,所以保证高层建筑构造稳定的关键是选取适宜的设计简图。还要留意的是设计简图存在错误是很正常的,不过差错一定要在高层施工构造策划准许的范畴内。

2.5 选取科学实用的构造方法

科学的高层楼宇策划一定凭借经济实用的构造方法,也就是说在高层楼宇构造策划中要选取实际可行的构造系统以及构造方式。针对构造系统,在同一个构造单位中最好不要使用不一样的构造系统结合在一起运用,构造系统一定要简单便利,受力确定。在对高层楼宇构造策划程序中,要全面的对各种会存在影响的要素进行解析,和有关部门商定,之后敲定详细的最科学的高层楼宇构造策划方案。高层建筑中,由于竖向负荷较大的原因,可能会引起在柱中较大程度上的变形,从而对连续梁、弯矩产生比较大的影响,该影响包括两个方面:一方面是,会增大端支座负弯矩的数值或者是增大跨中正弯矩的数值,另一方面是,减小连续梁中间支座的负弯矩值。

2.6 准确解析、核实设计结果

在高层楼宇构造策划程序中大多使用电脑,不过因为现在市场中存在的电脑软件类型繁多,不一样的电脑程序设计的结果也是不一样的,因此这就需要高层楼宇构造设计工作者要全面熟悉电脑的程序所适合使用的范畴,避免在借助电脑设计的过程中,因为程序自身的不足,软件中的设计方式不适合构造的实际设计状况因为电脑程序对项目施工构造策划产生不良影响。还有,要避免电脑协助设计构造策划中操作者的失误,在输入资料时一定要严谨仔细,并且操作者在后续作业中,对资料也要严格的进行审核,科学解析,做出最正确的判定。高层建筑和低层建筑的区别之一就是:在建筑结构方面,高层建筑的结构较柔和,同时也就保障在地震作用下高层建筑的变形更大。为了避免高层建筑在遭受较大冲击后,在进入高层建筑塑性变形阶段的前提下,高层建筑仍可以具有较强的变形能力,也就是避免高层建筑的倒塌,需要在高层建筑结构设计时采取恰当合理的措施,达到保障高层建筑结构具有应对较大冲击的延性。

2.7 高层建筑结构设计时尽量减轻自重

在同样的地基情况下,减轻自重更有利于加大楼层的高度,同时可以获得更高的经济效益。减轻自重在一定程度上可以减少地震的破坏性,是提高结构抗震能力的有效办法。如果高层建筑的质量很大,作用在结构上的地震剪力大,而且高层建筑重心高地震造成的倾覆力矩大,破坏性也就越强。因此,在高层建筑房屋中,结构构件在保证高强度材料的条件下,各种非结构构件和围护墙体都应当采用轻质材料以减轻房屋自重。这样有利于减小结构刚度和地震破坏强度,节省材料,降低成本,充分利用有限的土地面积创造更大的建筑面积。

2.8 使结构具有足够的抵抗侧向力和刚度的能力

高层建筑结构设计中,不仅要求整体结构能够承受足够的垂直负荷,而且必须使结构具有足够的抵抗侧向力和刚度的能力,不至于因受到侧向力时而发生超出允许范围的侧向偏移。如果侧向位移太大,会使楼层重心偏移,造成居民的惊慌,影响楼层内居民的正常学习、工作和休息。甚至还会是家居的墙体出现倾斜,装饰脱落或出现裂纹,整个楼层里的水气管道、电梯发生异常,框架结构破坏等。

3 结语

随着社会技术的不断发展和进步,高层建筑的设计理念和设计技术也在不断地更新,对其设计风格也进行了积极的探索和改变,这都将推动现代高层建筑的迅速发展。高层建筑的结构设计是一项综合性的技术工作,是建造建筑物的基础工,结构设计的优劣对建筑物的安全性、经济性、实用性有着重要的意义。因此工程技术人员要结合专业知识、施工技术要求、地质情况、开发商设计要求等,合理设计建筑物高度和建筑结构。

参考文献:

第3篇

关键词:转换层;高层建筑;梁式;竖向;抗震

中图分类号:TU208文献标识码: A

一、转换层的功能与设计原则

(一)转换层的功能

1、建筑功能

利用转换层结构可以为高层建筑提供宽阔的室内空间和出入口。

2、结构功能

高层建筑利用转换层可以实现上下部结构的转换,上部的剪力墙结构更适合于民用住宅结构,而下部框架结构由于可以具有较大的内部空间,更适宜商用。通过转换层将两者有效的融合为一体,确保了高层建筑结构的多样化。

3、轴线及上下层柱网转换

利用转换层进行结构设计时,在其不改变上下结构形式的情况下,可以通过对轴线及上下层柱网的改变,实现下部柱距的扩大,以大柱网的形式满足下部大空间的需求。

4、错位布置

在进行上下结构转换时,可以对上部结构和下部结构的轴线和柱网轴线进行错位布置。

(二)设计原则

高层建筑由于自身重量较大,所以对其稳定性和抗震性具有较高的要求,但在进行转换层设置时,极易导致竖向刚度突变的发生,从而导致高层建筑结构的抗震性能受到较大的影响,所以在进行转换层设计时需要遵循利用直接落地的竖向构件、宜低不宜高、宜小不宜大的诸多原则。即在进行转换层设置时,由于竖向构件会对刚度和结构的抗震性能带来突变,所以需要选择直接落地的竖向构件来进行设置;在进行转换层设置时,尽量选择高层建筑竖向位置较低的地方;同时为了确保所设置的转换层结构型式能够具有更明确的传力路径,所以需要对转换层结构进行优化,这样对于结构设计和施工都会有一定的益处;在转换时需要对刚度进行适度的控制,不宜过大,这样不仅有利于建筑物的安全性,而且也会带来较好的经济性。

二、结构转换层的类型及设计方法论述

高层建筑结构转换层可以分为四种类型:梁式转换层、厚板式转换层、箱式转换层和桁架式转换层。

(一)梁式转换层

特点:梁式转换层分为托柱形式转换梁截面设计和托墙形式转换梁截面设计,这两者是按功能不同来进行划分的。

1、托柱形式转换梁截面设计

当转换梁承接的是上部的普通框架时,可以按照普通的截面设计进行配筋计算,因为这时的转换梁承受的力基本上和普通梁承受的力是一样的,但是,当转换梁承受的是上部斜杆框架时,就应该按偏心受拉构件进行截面尺寸设计,因为,此时的转换面承受的是轴向拉力。

2、托墙形式转换梁截面设计

在转换梁的施工过程中,力学问题是一个关键问题,必须要予以重视,当转换梁承受上部的墙体是小墙体时,要采取普通梁的截面设计方法进行配筋计算,且纵向的钢筋也可以放置在转换梁的底部,像普通梁那样布置就可以了;当转换梁承受的是上部墙体且满跨不开洞时,转换梁应采取的截面设计方法是深梁截面设计方法,它的受力特点和破坏形态表现为深梁,不过此时的转换梁跨中较大范围的内力较大,所以其纵向的钢筋就不应该弯曲或者截断了;当转换梁承托上部墙体满跨或者不满跨时,但是剪力墙长度比较大时,应该采取的转换梁设计方法是深梁截面设计方法。

(二)箱型转换结构

当转换梁的截面较大时,可以在转换梁的梁顶和梁底同时设置一层楼板,遍布全层,使得整个楼层都构成“箱子”形式,也因此被称为“箱型转换层。

箱型转换结构也是高层建筑设计中较为常用的一种结构形式,在设计过程中主要要注意支撑体系的合理设置,这是保证建筑施工质量的重要前提,主要特点有:层高大、自重大、混凝土强度高、结构受力比较复杂、墙柱模板支设困难等,主要优点是转换层本身的整体性非常好,但是,它也有其缺点,就是它直接占用了整个楼层的面积,使得这个楼层不能再有其他用途,只能当做设备层使用,还有一个缺点就是上面所提出的自重大、造价高,这也是在实际应用当中很少使用的原因。

(三)厚板式转换层

这种厚板厚梁式转换结构主要优点是布置灵活,整体性比较好,当上、下柱网线错开比较多很难用梁来承托时就需要采取这种形式,做成厚板,厚板的厚度也可以根据上下的结构以及柱网尺寸而定,但是这种厚板式转换层的自重很大,地震作用大,耗费材料多,不仅耗费资金而且还容易发生震害,所以这种方法采用的也不是很多。

厚板式转换层可以采用T B SA 等的三维空间分析程序对整体进行内力分析,主要是转换板的不规则边界,这样一般会采用有效单元法进行内力分析,还可以采用复杂楼板有限元分析软件进行进一步计算,还可以对板进行在竖向压力荷载作用下的受弯和局部压力等的计算。

(四)桁架式转换层

桁架可以分为两种,一种是空腹桁架,另一种是实腹桁架,这种桁架式转换层主要是由梁式转换层结构转换而来的,与梁式转换层相比它的受力更加明确、整体性好、抗震能力强、框支柱柱顶弯矩和剪力更加小一点,这是它主要的优点,但是缺点也比较明显,施工难度大,更加复杂、节点设计难度大。可以对其进行整体结构的内力分析,当高层建筑的下部为大商场时,需要的空间必须要大,上部则是居住办公等的小空间,这时就可以采用桁架式转换层,特别是在需要设置管道时,更要采取这种方式,一般采用桁架式转换层时应该满层进行布置,而且上弦节点要与上部密柱中心对齐。桁架式转换层的重量比较小,所以也减小了下部框架的承重负荷。

三、带转换层的高层建筑结构设计要点

(一)转换层结构布置

据相关研究已经显示,在底部的转换层中,如果其位置越高,它的上下高度的突变就会越大,转换层的上下内力的传递途径,其突变也会加剧,落地的剪力墙以及其他墙体就容易出现裂缝现象,框支柱内力加大,使得转换层的上部其附近的一些墙体就会被破坏。所以说,转换层的位置如果过于高,就会对抗震产生不利的影响。按照相关的研究结果显示,转换构件能够运用箱形结构、斜撑、厚板、转换大梁等形式,在地震区对于一些转换厚板的使用经验是比较少的,可以在一些非地震区采用,在一些大空间的地下室中,因为其周围有着约束的作用,而地震的反应也低于上部的框支结构,所以,在 7 度到 8 度地区的地震设计的一些地下室就能够采用这种厚板转换层。

(二)转换层竖向布置

转换结构可以根据结构的传力以及建筑的功能需要,沿着层高的建筑方向灵活布置,也可以符合建筑功能要求的基础上,能够在楼层的局部来设置转换层,而且自身的空间可以作为一种技术设备层,也可以作为一种正常的使用层,但是前提是要保证转换层的刚度,这样来防止刚度的过分悬殊。

(三)转换层抗震设计

为了进一步的保证设计的准确性与安全性,规定在一些框支剪力墙其转换层的位置如果是设置在第三层以上,那么框支柱以及剪力墙其底部的抗震等级要提高一级,如果已经是特一级就不再需要提高,而对于底部的框架来说,如果其为密柱框架,其抗震等级就不用再提高。转换层其构件在水平地震作用下的内力要将其调整,如果是八度的抗震设计,就要对竖向地震的影响需要考虑。

(四)转换层楼板设计

转换层将框支剪力墙分成上下两部分,对于这两者来说,其受力情况是有一定差距的,在上部的楼层中,因为外荷载而产生的水平力,有自己的分配原则,它是根据剪力墙的刚度来进行的。在下部楼层中,框支柱的刚度与落地的剪力墙的刚度也是不同的,后者承担着水平剪力,也就是说,在转换层处荷载的分配不是很均匀。转换层其楼板具有比较重的任务,转换楼板其自身的变形大、受力大,应该要保持足够的刚度来完成对于自己任务的支撑。

参考文献

[1]李多龙. 高层建筑结构设计的基本流程分析[J]. 江西建材. 2013(06)

第4篇

关键字:高层建筑;结构设计;要点分析

1高层建筑结构设计的基本原则

1.1结构方案合理化原则。高层建筑结构方案的合理化是指高层建筑结构设计方案必须与结构体系和结构形式的要求保持一致,同时应满足经济性的要求,其中结构体系的具体要求为传力简单化、受力明确化。针对某些结构单元相同的高层建筑物,其结构体系应相同。1.2计算简图合理化原则。高层建筑结构设计的基础是计算简图,计算简图的合理性直接关乎高层建筑结构的安全,由此可见高层建筑结构设计必须坚持简图合理的原则。高层建筑结构构件及节点的简化可以有多种选择,但必须把计算结果的误差控制在合理的范围内,以免对建筑结构产生负面的影响,从而影响建筑结构的安全。1.3结果分析精准化原则。伴随着计算机技术的迅速发展,当前很多领域都开始应用计算机技术,并且发挥着至关重要的作用,而在建筑结构方案设计中,通过应用计算机技术能够对相关数据进行科学更加科学的分析,不仅能够有效的降低人工计算存在的失误,而且还能确保建筑结构方案的准确与合理。

2高层建筑结构设计特点

2.1水平荷载。建筑同时承受竖向荷载和地震及风产生的水平荷载,在多层建筑中,因水平荷载产生的内力和位移相对较小,对建筑建构设计的影响不大,主要是以重力为代表的竖向荷载着建筑结构的设计起控制作用。而在高层建筑中,很多时候是水平荷载对建筑结构设计起决定性作用,尽管竖向荷载对结构设计会产生重要的影响,但相对于水平荷载来说,影响相对较小。2.2轴向变形。对于多层建筑轴力项相对于弯矩项来说,对结构设计产生的影响不是很大,结构设计时可只考虑弯矩项而忽略轴力的影响。但是对高楼层建筑结构进行分析所要考虑的因素就不太一样了,需充分考虑到高层建筑的层数、高度对竖向构件轴力值的影响。随着高度的不断增加,竖向构件的轴力变形也会变得特别明显,当竖向构件轴向变形达到一定的程度,会使高层建筑的结构内力数值和分布产生变化。2.3建筑侧向位移。随着建筑楼层及高度的增加,在水平荷载的作用下产生的侧向位移也会不断的增大。高层建筑设计时,需要保证足够的结构强度,在应对风荷载及地震作用产生的内力作用时,才能有足够大的力量去抵御。为了能够将风荷载及地震作用下产生的侧移距离控制在一定的限度之内,就必须拥有足够的抗侧刚度能力,才能较好的保障结构安全及正常使用的舒适度。

3高层建筑结构设计存在的问题分析

3.1建筑短肢剪力墙设置存在问题。随着人们对住宅平面与空间的要求越来越高,高层住宅建筑中短肢剪力墙的运用越来越多。在一般情况下,建筑结构的短肢剪力墙是指墙肢的高度、厚度比例为5-8的墙体。短肢剪力墙与普通剪力墙相比承担较大轴力与剪力,抗震性能较差,从受力特性及构件的安全储备有别普通剪力墙,为安全起见,在高层住宅结构中短肢剪力墙布置不宜过多,不应采用全部为短肢剪力墙的结构,在某些情况下还要限制建筑高度。3.2抗震结构设计问题。高层建筑结构设计中很重要的内容是结构抗震设计。受高层建筑高度过高、荷载过大的影响,一旦出现了地震,就会诱发出各种不可估计的问题。现阶段我国建筑工程建设要求高层建筑最低要保证五十年的设计基准期,并对高层建筑的抗震设计进行了明确的规定。但是在实际结构设计中,存在设计人员对规范理解不透、概念设计模糊等问题。如果高层建筑结构设计人员没有充分认识到上述问题,就会给高层建筑留下安全隐患。3.3扭转问题。质量中心、刚度中心和几何中心是高层建筑结构设计中的“三心”,“三心合一”也是高层建筑结构设计过程中需要尽量达到的目标。但是在实际设计中存在“三心”偏离较大的问题。在三心偏离较大的情况下,受较大水平力的影响就会出现高层建筑扭转震动的问题,影响高层建筑的安全。

4高层建筑设计相关假定

4.1弹性假定。当建筑处于一般风力的、正常使用竖向荷载及低于设防烈度的地震的作用时,建筑结构构件一般处于弹性的工作阶段,这一假定与实际的工作情况存在的差异不大。但当遭遇强震作用或者强烈的台风天气时,建筑产生的位移会比较大,结构构件会转入弹塑性的工作阶段。在这个时候就应当按照弹塑性动力分析方法进行分析,而不能只按照弹性假定的方法计算,否则就不能将结构构件的真实工作状态反映出来,留下安全隐患。4.2小变形假定。小变形假定方法是除了弹性假定之外另一种比较常用的方法,但也有学者对几何非线性问题进行研究。除了弹性假定,小变形假定方法也常被采用。但有不少学者对几何非线性问题(P-Δ效应)做了一些研究。一般情况下,当顶点水平位移Δ与建筑物高度H的比值Δ/H>1/500时,P-Δ效应的影响就不能被忽视了。4.3刚性楼板假定。目前在我国对很多高层建筑结构进行分析时,都是将楼板的平面内刚度设定为无限大,而将楼板平面外的刚度予以忽略。在这种假定下,建筑结构体系的自由度在一定程度上减少,对计算方法进行了简化。此外通过这种假定,使得在使用薄壁杆件的理论在对筒体体系的结构进行计算时非常方便,但是一般情况下,因为受到计算方式以及其他因素的影响,使得这种假定通常比较适合对建筑的框架以及剪力墙体系的计算。4.4计算图形的假定。在高层建筑架构体系中,整体分析将采用的计算图形分为一维、二维协同分析和三维空间分析三种。其中,三维空间分析的普通杆单元,每一节点含有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应该考虑截面翘曲,截面翘曲有7个自由度。

5高层建筑结构设计要点

5.1建筑的载荷设计。在高层建筑的建筑结构设计中,建筑的安全性以及稳定性是设计的重中之重,而建筑的荷载直接影响着建筑的安全以及稳定,因此在进行建设设计时一定要做好荷载的计算。相对于一般的建筑,高层建筑的荷载及其组合要复杂的多,相关的设计人员在进行建筑的荷载计算时需要考虑的内容也多得多。在进行高层建筑的荷载计算时,最主要的内容是以下两个方面:建筑的地震荷载以及风荷载。在实际的设计中,复杂的超限高层建筑还应当进行的风洞试验及振动台试验,以确保建筑的安全。5.2建筑抗震性能的设计。因为高层建筑的高度要比普通建筑高出很多,多以其对应力的承受能力也不一样,因此当地震时其产生的反应程度也不是一样的,因此对于高层建筑,在进行设计的时候必须要充分考虑抗震设计。而且抗震设计时,必须要对建筑所处的地形地质条件都进行充分的考虑,通常土地比较坚硬的其抗震强度会比较大,所以要尽量选择硬度比较大的土层,而避开那些土质疏松的地层,而对土层的变化进行有效的把握成为抗震设计中的一个困难点。5.3高层建筑结构的包络设计。包络设计是近年来比较常见的设计方式,可以有效解决工程项目结构设计中存在的各种问题。当前工程设计问题变化比较多,有许多因素都会影响到结构效应,各种问题盘根错节,使用目前已经掌握的只是或者软件很难对其进行准确的分析。学术科学和工程的不同点在于后者难以长时间等待。因此要通过优化结构设计的形式,利用最少的经济投入来获取最大的经济效益,并解决工程项目存在的问题。不同的工程条件可以用不同的网络设计原则来处理,在对待转换结构转换层或者连体结构时,也可以用网络设计,对构件进行分析验算,取不利值包络设计。

总之,高层建筑的复杂性不仅要求其设计人员必须具有较高的综合素质,而且还有掌握足够的理论知识以及相关的法律知识,而且在对其进行结构设计时也要对对建筑周围的环境进行综合的考虑,由此来提高设计的质量,同时降低建造的成本,促进高层建筑的健康发展。

作者:崔惠林 单位:保定市城乡建筑设计研究院

参考文献:

[1]刘军进,肖从真,王翠坤,徐自国,田春雨,陈凯.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011,11:34-40.

[2]曹彬,李铭.高层建筑结构设计中剪力墙结构的要点分析[J].中国建筑金属结构,2013,22:65.

[3]杨留学.论高层建筑结构设计的注意事项和要点分析[J].门窗,2012,08:225-226.

[4]王慧君,徐勇.高层建筑结构设计的要点探析[J].科技与企业,2014,06:171.

[5]杨俊.高层建筑结构设计中的要点分析[J].江西建材,2014,13:35-36.

[6]邹喜财.高层建筑结构设计的要点分析[J].建材与装饰,2016,12:123-124.

第5篇

【关键词】高层建筑;结构设计;设计要点;对策

1高层建筑结构设计的特点分析

(1)水平力是设计的决定性因素。在低层或者多层的建筑结构设计中,常常用重力为代表的竖向荷载去控制建筑物的结构。然而,在高层建筑中,虽然竖向荷载能起到一定的控制作用,但是水平荷载在其中却起着决定性的作用,因而不能忽视。使得水平荷载比竖向荷载更起决定性作用的主要原因在于,高层建筑物的自身重量和使用荷载在竖向构件中能够引起的轴力和弯矩的数值,仅仅与建筑物的高度一次方成正比,而水平荷载对结构产生的倾覆力矩以及在竖向构件中引起的轴力,与建筑高度两次方成正比。

(2)侧移是设计的重要控制指标。在高层建筑结构设计中,结构侧移是高楼结构设计中的重要控制因素,这一点与低层建筑不一样。当楼房的高度不断增加的时候,水平荷载下的结构侧移变形会逐渐拉大,这就给高层建筑的稳定性造成了一定的影响。因此,在设计高层建筑结构的时候,应该将水平荷载作用下的侧移控制在一个限度之内。

(3)抗震设计要求较高。在高层建筑结构设计中,对于抗震设计的要求显得更高。一般来说,除了要求抗震设防的高层建筑有普通的竖向荷载、风荷载以外,还应该促进结构设计具有良好的抗震性能,达到小震不坏,大震不倒的目的。

(4)轴向变形需加以重视。在高层建筑中,竖向荷载数值变大的时候,会在柱内产生较大的轴向变形,使得连续梁弯矩发生变化,让连续梁之间支座处的负弯矩值变小,还会对预制构件的下料长度造成影响。因此,在进行高层建筑结构设计的时候,要对轴向变形的数据进行仔细计算,对下料长度进行有效的调整,防止高层建筑的轴向变形数据不断拉大。

2 高层建筑结构设计的原则

高层建筑结构的设计是一个复杂繁琐的内容,其中需要注意的内容涉及也十分广泛,根据多年的工作经验总结,主要集中在以下几个方面:

2.1结构方案的选择

合理的结构设计方案对于工程来讲是十分关键的,好的设计方案在满足结构形式和体系的基础上,还要充分考虑造价成本,把经济适用发挥到最大程度。结构体系的最基本的原则是受力明确、传力简单,结构方案在满足使用、安全要求的基础上,尽量的简洁。最终结构方案的确定,需要对地理条件、工程设计需求、材料的选择和施工条件等进行全面的考量和整合,并且和建筑水、暖、电各个分项相互协调,综合各方面因素进行最后的确定。

2.2计算简图的选择

计算简图是进行高层建筑结构设计的基础,是所有计算数据的出处和根源所在。关系到各环节的建筑尺寸和误差。如果不能选择合理的计算简图,对于结构安全就会埋下隐患。因此,高层建筑结构设计的安全保障前提,就是合理计算简图的选择。同时,在选择了计算简图之后,还应该采用相应的构造方法保证其安全性。在结构的实际施工中,结构节点不单单是钢节点或者铰接点,要使得计算简图的误差在规定的允许范围之内。

2.3 计算结果要进行准确的分析

科技的发展也推动建筑领域不断的进步,计算机作为现在科技发展的集中产物,自然在建筑结构设计中也得到了广泛的应用。经过几年的发展,市场上的计算机软件种类和数量都大大提升,但问题也随之涌现出来,很多时候,统一种类的计算数据在不用软件中处理产生的结果并不一致。这就对计算数据的准确程度提出了严苛的校对要求,也对结构设计人员的能力提出了更高水平的要求。在全面了解软件的使用范围和条件的基础上,选择最为合理准确的软件也成为设计人员必须完成的课题。与此同时,建筑结构受到各种不可掌控的实际情况制约,与计算机得出的理想结果不能达到完全的吻合,因此在计算机辅助设计的同时,设计人员的主导能力还是最为关键的。

3高层建筑结构设计中关键要点分析

(1)扭转问题设计。要求高层建筑的结构设计必须三心尽可能汇于一点,即建筑结构的刚度中心、几何形心、结构重心三心合一。倘若在设计中未很好地做到三心汇聚一点,建筑易发生扭转问题,并在水平力作用下造成高层建筑结构的毁坏。

(2)抗风结构设计。高层建筑由于其具有楼层多,高度高的特点,因此相比较其他建筑,在建筑物表面更易改变风的流动性和空气的动力效应。在楼层柔软部分风和空气会产生动力形式和静力形式,并由此产生的震动,会对楼层的墙体、装饰结构以及支撑结构产生破坏,危害建筑的稳定性,所以在进行高层结构设计的过程中,应该进行抗风结构的设计,杜绝建筑物在自然因素的影响下留下隐患。

4高层建筑结构设计问题的有效对策

4.1合理设计平面布局

高层建筑结构设计过程中,扭转问题出现的原因是由于三心未合一导致的建筑物质量分布不均匀。所以在设计过程中,相关设计人员对高层建筑应当采用相对规则的图形,例如正方形、矩形、圆形、正多边形等较为简单、分布均衡的平面形式。尽量不采用L形、T形、十字形等复杂平面形式。在环境要求或结构要求特殊情况下,应当根据相应规范进行设计,避免建筑结构突出部分过大,同时尽量保证结构的对称性。

4.2优化抗风结构设计方案

针对高层建筑结构抗风结构存在的难点和问题进行优化。一是基础优化。要保证高层建筑结构的抗风性良好,首先要保证高层结构的基础牢固。二是增加高层建筑耗能结构设计。在高层建筑结构设计过程中,对相应非承重构件利用耗能构件如楼板、剪力墙等来抵消风能对建筑的影响。三是减小水平荷载和风力叠加对高层建筑的影响。四是增大结构承载力和抗风力。根据相关数据进行高层建筑结构承载力验算和抗风力验算,在此基础上制定一个放大系数,进一步保证高层结构的抗风性能。

4.3优化抗震结构设计方案

当今高层建筑结构的抗震设计存在很多问题和难点,结合相关设计经验总结了集中抗震结构的优化方案。一是合理布置抗侧力构件。二是增加地基抗震能力。三是设计高性能剪力墙。高性能剪力墙的设计能够有效地提高剪力墙在地震过程中吸收建筑内力的能力,可以适当增加墙体和楼板的刚度来控制建筑位移,达到抗震目的。四是进行高层结构构件的简化和一体化。通过对扶壁、筒口、筒脚的简单化设置,达到相应建筑物的对称。

4.4加强消防结构设计

当下很多大型火灾、恐怖袭击等恶劣事件已经让高层建筑的消防结构设计面临必须改善和加强的地步,但是消防设计应该从消防结构设计和使用期间消防规范来共同执行。在高层建筑消防结构设计过程中,应该加强对防火结构间的距离控制,在符合当地的地形条件基础上,高层结构在防火结构间距离上可适当加大处理。在材料使用上,可以尽量减少易燃材料的使用,同时增加耐火材料的运用来达到防火目的。另外,良好的疏散系统是保证火灾发生之后减少人员损伤的重要保证。高层建筑的疏散系统呈垂直状态,容易导致疏散效率不高的问题出现。在消防结构设计时,可以通过设置双通道疏散,增设防烟区、耐火区、避难层等设施来增加消防能力。同时,高层结构可以通过设置相应的隔离结构来有效地控制火势蔓延,增强建筑消防安全能力。

参考文献:

[1]柳奕成.高层建筑混凝土结构设计[J].江西建材,2014(04):20-21.

第6篇

【关键词】高层建筑;结构设计;扭转;受力性能;结构方案;计算简图

中图分类号:TU208 文献标识码: A

前言

高层建筑的出现是科技发展、社会进步、建筑行业提升的重要标志,当前,国家和城市发展越迅速,高层建筑的数量和层次就越高,很多大城市已经开始了超高层建筑的设计和施工,并已经逐渐成为一种社会和行业发展的趋势。在这样的趋势下,高层建筑结构设计工作就显得尤为重要,在设计工作中要通过科学的手段、统筹的方法和高超的技巧将设计的合理性、安全性和需要的广泛性和差异性有效地统合在一起,满足从行业到社会,从个人到集体,从需要到发展等各方面的需要。当前,各界为建筑行业提出了做好高层建筑结构设计的要求,因此,在高层建筑结构设计中要了解高层建筑结构的特点,注意设计中的要点,重点对高层建筑结构的扭转和受力性能进行关注,在坚持安全、质量和经济的原则下,提升高层建筑结构设计的水平。

一、高层建筑的结构特点

1、重视对待轴向变形。高层建筑中,由于竖向负荷较大的原因,可能会引起在柱中较大程度上的变形,从而对连续梁、弯矩产生比较大的影响,该影响包括两个方面:一方面是,会增大端支座负弯矩的数值或者是增大跨中正弯矩的数值,另一方面是,减小连续梁中间支座的负弯矩值。除了这两方面的影响外,还会影响预测构件的侧移和剪力,以及影响构件的下料长度,对于对构件的侧移和剪力的影响,将其和构件竖向变形相比较,就会得出较为不安全的结果;对于对预测构件下料长度的影响,可以采取根据计算轴向变形数值,然后针对性的对下料长度进行调整分配。

2、重要的高层建筑结构设计指标是结构延性。高层建筑和低层建筑的区别之一就是:在建筑结构方面,高层建筑的结构较柔和,同时也就保障在地震作用下高层建筑的变形更大。为了避免高层建筑在遭受较大冲击后,在进人高层建筑塑性变形阶段的前提下,高层建筑仍可以具有较强的变形能力,也就是避免高层建筑的倒塌,需要在高层建筑结构设计时采取恰当合理的措施,达到保障高层建筑结构具有应对较大冲击的延性。

3、高层建筑结构设计的决定性因素是水平荷载。一方面,对于大多数的高层建筑楼房来说,竖向荷载基本上是定值,而水平荷载,比如地震作用和风负载,荷载值随着高层建筑结构动力特性的不同而发生较大程度上的浮动变化;另一方面是,由于高层建筑楼房自身的重量和楼面引起的弯矩和轴力的数值,与建筑物的高度的一次方成正比,而水平荷载产生的倾覆力矩和引起的轴力与建筑物高度的二次方成正比。

三、高层建筑结构设计的要点

1、高层建筑的构造措施

高层建筑结构设计中要重点对剪力、压力、柱体等相关结构和特性进行强化,同时要加强弯力矩的防护,提高拉力的大小,提升构造梁的性能,要注意对薄弱部位的加强,特别重点考虑的构造要点有:延性、温度应力、薄弱层厚度,钢筋锚固长度,抗震结构层次等主要环节,要达到高层建筑结构的设计合理化,就必须做好上述构造方面的设计。

2、高层建筑结构的计算简图

计算简图是高层建筑结构设计和高层建筑结构计算时的中要基础,因此,需要选择适宜的高层建筑结构计算简图。在计算简图中要对高层建筑结构的刚节点和铰节点进行重点把握,同时要控制计算简图的误差,使其限定在高层建筑结构设计的允许范围中。在高层建筑结构计算简图的应以中要对构造的重点防护措施进行强化,这样有利于控制高层建筑结构的稳定。

3、高层建筑结构的方案

结构方案的经济性、科学性和合理性是整个高层建筑结构设计的关键,要采用高层建筑结构的合理形式和经济形式,这样可以使高层建筑结构得主要性能和要求达到相应的设计。在方案中要注意竖向和水平向的规则,同时,要注意在同一结构单元内不能应用同样结构体系和方式,以避免高层建筑结构出现问题。

4、高层建筑的基础方案

在高层建筑结构进行基础设计师要重点考虑高层建筑结构的荷载分布、高层建筑工程的地质条件、高层建筑的施工条件。设计高层建筑结构时要重点考虑到对地基潜力的挖掘,因此,在高层建筑结构设计阶段要对工程地质勘查报告的内容和技术参数进行重点了解,以便形成具有科学性和合理性的高层建筑结构基础方案。

四、高层建筑结构设计的基本要求

1、高层建筑结构设计的规则性

高层建筑结构设计应符合抗震概念设计的要求,应采用规则的设计方案,不应采用严重不规则的结构体系。高层建筑结构设计应该具备多道抗震防线;具有合理的承载力和刚度分布的结构水平和竖向布置,避免因扭转和突变效应造成局部薄弱部位。

2、高层建筑结构设计的平面规则布置

高层建筑结构平面布置需要能抵抗竖向和水平荷载,对称均匀,明确受力,传力直接,减少扭转的影响。在地震作用下,建筑的平面要简单规则,在风力作用下可以适当放宽要求。建筑的抗震设防要求建筑的平面形状宜对称、简单、规则,才能达到减震的目的。

五、高层建筑结构设计问题的防范和处理

1、高层建筑结构设计中的扭转问题

在进行结构设计时,我们需要建筑的三心尽可能汇于一点,即三心合一。高层建筑结构设计的扭转问题就是指建筑的三心在结构设计过程中未达到统一,结构在水平荷载的作用下发生扭转振动的效应。

2、高层建筑结构的受力性能

对于高层建筑物最初的方案设计,建筑师考虑更多的是应该是它的受力性能,而不是详细地确定它的具体结构。沉降缝两侧单元层数不同时,由于高层的影响,低层的倾斜往往很大,因此沉降缝宽度可按高层单元的缝宽要求来确定。

3、高层建筑结构设计中的其它问题

一是,剪力墙的墙肢与其平面外方向的楼面梁连接时,应采取在墙与梁相交处设置扶壁柱或暗柱,或在墙内设置型钢等至少一种措施,减小梁端部弯距对墙的不利影响。二是,对各抗震等级框支梁纵向钢筋的最小配筋率提高了要求,同时增加了最小面积配箍率的要求。三是,严格要求各抗震等级剪力墙在各种情况下的厚度与层高。四是,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。

六、结束语

综合全文,近些年我国的高层建筑建设行业迅速发展,而高层建筑结构设计是高层建筑建设行业的关键因素,高层建筑建设行业的进一步发展,使得对高层建筑结构设计质量的要求越来越高。高层建筑结构设计质量好坏直接影响到整个高层建筑是否具有安全性,直接影响到高层建筑建设行业是否达到可持续发展。本文从高层建筑结构设计的原则人手,对高层建筑结构设计的特点进行详细的概述,进而引出高层建筑结构设计中应该注意的问题,并对这些问题进行简单的概括。

[参考文献]

[1]蒋最.浅探高层建筑设计和城市空间合理化[J].城市建设理论研究(电子版)

第7篇

关键词:高层建筑,结构,设计,要点

前言

高层建筑本身的特点决定着建筑结构的特殊性,比如结构复杂,建筑施工的工作量很大,施工的周期较长等,所以,如果在结构设计方面发生问题,不但会使得经济造成巨大的损失,而且也会危及人们的生命以及财产的安全,因此,我们要对高层建筑结构设计要点严格把握,并且对工程施工的各种相关因素全面考虑,详细的分析及把握影响建筑质量的潜在问题,从而采取有效的方法及措施进行防治。

一、高层建筑结构体系

1.高层建筑的剪力墙体系

在高层建筑设计结构体系中,其重要组成部分就是剪力墙,在高层建筑承受风荷载或高层建筑承受地震作用方面,剪力墙有着积极性的作用。因为其不仅对结构中水平构件所产生的竖向荷载能够承担,而且对外部因素所引起的振动作用也能够承担。

2.高层建筑的框架―剪力墙体系

高层建筑中常见的结构体系就是框架―剪力墙体系,垂直荷载的力量是框架所能承受的,而剪力墙所承受的则是水平剪力。剪力墙的设置不仅能够在很大程度上增强建筑的侧向刚度,使其水平位移变小,而且还能够使框架所受的力实现均匀分布。

3.高层建筑的筒体体系

高层建筑筒体结构体系由框架―剪力墙结构与全剪力墙结构综合演变和发展而来。筒体结构体系是将剪力墙或密柱框架集中到建筑的内部和而形成的空间封闭式的筒体。其特点是剪力墙集中而获得较大的自由分割空间,目前在高层建筑中被广泛应用。

二、高层建筑结构设计要点分析

1.选择合理的结构方案

高层建筑的结构设计不仅要具有较高的经济性,更要满足使用性及合理性,因此在进行高层建筑结构设计时,首先就要选取一种既可行又满足较好经济性的结构形式及体系。其中要注意如下问题:首先在同一结构单元中,最好不要混合使用不同的结构体系,同时还要综合考虑使用要求、地理环境及施工条件等实际情况,还要协调好建筑电气及水暖等配套设施的设计,从而选择最优的建筑结构体系。

2.选择合适的基础方案

综合考虑高层建筑物的上层结构类型和地基的承受能力,对建筑物的结构设计。尽量充分利用地基的承受强度,建筑合理的高度,必要时要求进行地基变形的检验。根据当地的地质调查结果,对高层建筑结构基础设计。建筑设计人员在进行建筑地基基础设计的时候,必须要根据当地的设计规范标准,由于我国各个地方都会有自己地区规划制定的《地基基础设计规范》,各个地区制定的规范对建筑结构设计师在设计时有着非常重要的帮助。

3.选用适当的计算方法及简图

在高层建筑结构设计中,要注重相关计算方法的选择,以保证强度等计算结果能够满足真实情况,从而更好的为结构设计提供依据。此外,由于建筑结构设计是在结构计算的基础上开展的,一旦计算方式不准确,导致计算结果有误,就会严重影响高层建筑的结构设计质量,更可能造成安全事故的发生,并带来巨大的损失,因此在高层建筑结构设计中,要注意相关计算方法的选择及计算简图的选取。同时,计算简图还应有相应的构造措施来保证。实际结构的节点不可能是纯粹的铰结点和刚结点,但与计算简图的误差应在设计允许范围之内。

4.正确分析计算结果。

计算机技术是在结构设计中普遍采用的技术,但是随着目前软件种类繁多,软件的不同往往也会导致计算结果的不同。所以,设计师要对程序的适用范围以及条件进行全面的了解才可。设计师在拿到计算结果时一定要对其认真分析,并且慎重的校核,其原因是计算机在辅助设计时常常会因为结构实际情况与程序不相符合,或人工输入有误,或软件本身有缺陷从而导致计算结果错误,这就需要设计师以此做出合理判断。

5.采取相应的构造措施

“强柱弱梁、强剪弱弯、强压弱拉原则”是在进行高层建筑结构设计时需要牢记的,并且一定要注意构件的延性性能;对薄弱部位加强;对钢筋的锚固长度也要注意,更要注意的就是钢筋的执行段锚固长度;同时对温度应力的影响力等也要考虑。

6.高层建筑结构抗震设计

由于高层建筑的楼层数较高,特别是某些超高层建筑,如果遇到如地震等灾害时,其抗震能力得不到有效的保证,就使其变形及破坏力都会远远的大于其它类型的建筑,因此要综合多方面因素,全面的提升高层建筑的抗震能力。

首先要注重地基的选择及设计,高层建筑最好应建筑在土地较硬的地区,并远离河岸,同时还要注意,不要在断层或地陷等较易发生地震的地区建造,如果地基选择不合理很可能影响到其抗震能力。其次,在设计阶段还要注重建筑材料的选取,将钢筋与混凝土结合在一起的建筑形式主要是利用钢筋与混凝土具有相似的膨胀系数,在任何环境下都不会产生过大的应力,同时这两者之间的粘结性很好,特别是将钢筋表面预置肋条或在钢筋的端部弯起弯钩,可大大的提高钢筋与混凝土之间的拉力,可以更好的提高建筑的强度及抵抗外力的能力,从而更好的满足人们的使用要求。而在高层建筑的设计施工中会在框架结构中融入一定的剪力墙结构,从而更好的实现不同建筑的功能及相应的强度要求。

结束语

综上所述,我国城市化建设速度的不断加快,使得提高城市土地利用率的相关问题越来越被社会所重视,与此同时,各种形式的高层建筑拔地而起,从而缓解了城市居民住房紧张问题,但是由于高层建筑本身的结构特点,决定着其相应的结构设计必须满足一定的强度及使用要求,这对建筑设计师来说是一项艰巨的任务。要想保证高层建筑施工质量,首先在结构设计阶段就要保证其设计方案完全符合国家的相关标准,并结合其实际用途,抓住设计要点,并对较易发生的潜在问题的设计进行及时排除,确保施工方案得以顺利的展开,从而保证整体高层建筑的施工质量,为人们的正常使用提供较高质量的保障。

参考文献