时间:2023-09-07 17:29:58
序论:在您撰写混凝土结构设计标准时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:混凝土结构;设计;常见问题;控制措施
1 前言
在混凝土结构设计中,经常会遇到结构概念、设计理论、设计方法、设计质量等方面的问题,如果在设计工作中不能对于上述问题进行有效的控制,将严重影响到设计工作的效率和质量,对于工程项目整体建设的影响也是不容忽视的。在混凝土结构设计中,一定要严格遵守各种标准、规范,对于缺少明确规定的项目则要根据以往的设计经验加以控制,从而全面提升混凝土结构的经济性与安全性。
2 现代工程混凝土结构设计的现状及问题
2.1 结构计算方面的问题
在混凝土结构设计中,结构计算与分析的重要性是不容忽视的,特别是提高内力分析的准确性,对于设计质量的优劣有着重要的影响。在国内现阶段的混凝土结构设计中,结构计算方面的问题主要表现在专业软件的选择与应用,目前国内外建筑市场中提供的专业计算软件较多,由于各种计算软件采取的计算模型与方式不同,其计算结果会有所差异。虽然各种专业软件的结构计算结果差别较小,但是对于设计标准与规范却有着很大的影响。国内在混凝土结构设计中,常用的结构计算软件主要有:TBSA、SATWE、SAP、TAT、ETABS等,如果设计人员在选用时只是关注设计模型的特点,而忽略了结构类型,必然会导致结构计算中出现纰漏。另外,在混凝土结构计算软件的实际应用中,设计人员的操作能力和水平也是很重要的,前期的数据采集、整理、录入与分析中存在的问题较为常见,在应用软件进行结构计算时,其结果的准确性、真实性也自然难以保证了。
2.2 地基与基础设计方面的问题
在混凝土结构设计中,地基与基础设计是其重要项目之一,也是决定主体结构安全性、稳定性、抗震性的关键因素。在混凝土结构建筑的地基与基础设计中,由于柱下独立基础、地下室底板会受到建筑上部整体重力的沉降作用,产生较大的附加应力,如果地基与基础设计中不能进行准确的计算,并且采取有效的加固处理措施,将导致混凝土结构建筑出现局部不均匀沉降、变形的问题。在混凝土结构建筑的地基与基础设计中,设计人员必须考虑到在共同受力的情况下,有可能产生的附加应力,特别是底板负载能力必须满足要求,否则建筑的稳定性会受到较大的威胁。
2.3 上部结构设计方面的问题
在混凝土上部结构设计中,由于框剪结构、剪力墙等布置不均匀,可能导致施工中出现剪力墙单肢刚度过大的问题,造成结构中的应力过度集中,最终导致在使用中剪力墙遭受不同程度的破坏。同时,在混凝土上部结构设计中,梁板构件的设计难度也相对较大,如何合理布置各种构件,对于设计质量的影响也是比较大的。
3 混凝土结构设计的具体控制措施
3.1 结构计算
在混凝土结构设计中,结构计算的主要目的是利用专业软件计算出各种荷载,其中主要包括:结构自重,设备荷载、满足各种使用功能的活荷载,以及地震力、温度变化产生的应力等。在混凝土结构设计的荷载计算中,所有的荷载规范都要符合相关的技术文件规定,对于缺少明确规定的荷载计算项目,设计人员要根据现场测量与勘察的实际结果,合理进行计算。在国内的混凝土结构建筑施工中,由于建筑做法与各种机械设备等一般实在订货时才能完全落实,在此之前变换的可能性较大,设计人员必须意识到这个问题,并且不断提高自身的计算能力和水平,对于所有的荷载都要进行准确的计算。对于大型的混凝土结构建筑而言,通常需要采取多种不同的单元模型,并且进行具体的分析与比较,对于此类工程的结构计算必须采取相应的计算程序,建立的模型中边界、支撑条件等要尽量符合实际情况。
3.2 地基与基础设计
在混凝土结构设计中,设计人员必须认识到地基与基础设计的重要性,特别是对于主体结构安全性、稳定性、抗震性要求较高的建筑,在设计中要综合考虑项目所在地的地质与水文条件、上部结构类型、施工条件、使用功能,以及相邻建筑之间的影响,从而保证建筑在使用中减少倾斜或过量沉降的发生率。在混凝土结构建筑的地基与基础设计中,设计人员必须了解相邻地下构筑物与各类地下设施的实际位置与标高,以确保地基与基础设计中安全系数的提高。在计算基础的宽度与面积时,经常会遇到力学模型不明确或者考虑不周全的问题,造成基础的宽度与面积不足,这是不符合相关设计标准的。在混凝土结构建筑的地基与基础设计中,如果地下结构墙体上的集中力作用较大,墙体与基础可以将集中力向地基部分扩散,但是这种扩散的范围有限,而且基底土的反力分布不均匀。因此,在设计过程中,设计人员可以根据集中力的大小、墙体的实际长度等,计算出地基与基础部分的何在情况,以此确定基础的宽度。
3.3 上部结构设计
在混凝土上部结构设计中,国内通常采用延性设计、连梁设计的方式。设计人员在进行上部结构设计时,要充分考虑混凝土结构建筑的抗震功能需求,如果可能遇到中震时,设计人员要考虑到第一级别的剪力墙,其墙肢的数量最少为4肢。当第一级别剪力墙进入塑性阶段,为了保证建筑物在地震作用下的过度变形得到有效的控制,尽量缩小地震灾害带来的建筑物破坏,需要对于小级别的剪力墙进行多道设防。另外,在混凝土上部结构设计中,各种混凝土构件必须进行科学、合理的布置,要尽量少的占用上不空间,而且要满足建筑的基本使用功能和安全性。
4 结语
总之,在混凝土结构的设计中,必须采取有效的控制措施,其设计质量是否达标之间关系到人民生命财产安全,如果出现重大安全事故,能造成严重的经济损失和人员伤亡。混凝土结构设计涉及到的项目与内容较多,设计人员必须综合考虑各方面的影响因素,不断提高自身的专业素质与能力,熟悉各种专业软件的使用要求与技巧,从而有效提升混凝土结构设计关注的效率与质量,保障工程项目施工的顺利开展与进行。
参考文献
[1]赵洪文.混凝土结构建筑对于施工技术的要求及施工工艺的发展趋势[J].重庆建筑学报,2009,(01):34-35
[2]王瑞玉,蒋光成.国内混凝土结构建筑裂缝位的措施与方法探析[J].吉林建筑科学,2003,(02):67-68
【关键词】混凝土结构;结构设计;结构分析
1引言
任何混凝土结构设计都是为实现某些特定功能。随着建筑业迅速发展,建筑功能也不断丰富,建筑新颖造型、精美外观,这样要求工程设计越来越复杂,同时,设计周期普遍较短,也使结构设计中存在一些质量问题,所以在混凝土结构设计过程中,影响混凝土重要质量问题,必须引起工程结构设计者高度重视。
2混凝土结构设计基本要求
2.1遵守设计规范要求
混凝土结构设计师在对建筑结构进行设计过程中,首先,应该做到按国家与地方有关结构设计法规、规程、规范以及设计标准中规定要求执行。尽管目前我国各行业混凝土结构设计规范,在设计理论方面还不是很统一,但是混凝土建筑结构设计通常参考规范有《混凝土结构设计规范》、《高层建筑混凝土结构技术规程》、《建筑结构荷载规范》、《建筑地基基础设计规范》、《建筑抗震设计规范》等等,在结构设计时,结构工程师应遵守这些规范最基本原则来进行混凝土结构设计。
2.2考虑现场施工材料质量
为能够满足混凝土结构功能殊性能要求,再设计时应充分考虑到现场施工材料资料,混凝土结构材料质量与现场所用水泥品种与粗骨料径大小有直接关系。因此,设计者还应了解施工工艺,机械设备使用情况,对水泥性能与凝结时间要求等因素,在施工现场决定选用外加剂以及其参入数量都应该了解。
3常见混凝土结构设计问题以及解决方案
3.1在结构计算与分析阶段常见问题
目前,在混凝土结构计算与分析阶段,如何高效地、准确地对工程进行内力分析,同时按照规范要求进行结构设计与处理,这是决定工程结构设计质量好坏关键。因此,混凝土结构设计者,应该对这一阶段常见问题,必须清醒认识。
在结构总体设计阶段,经常受到困扰问题是对设计结构整体计算软件选择问题。不同软件采用计算数学模型不同,所以不同软件计算最终计算结果也有所不同。虽然结果差别较小,但是对结构设计标准与规范却有很大影响。现在比较流行结构计算软件并不少,SATWE、TBSA、TAT、ETABS、SAP等都有其各自特点。然而,设计师在选择软件时要么只单一考虑设计模型特点,而忽视设计结构类型,要么只考虑结构类型而忽视对结构设计计算软件本身分析,所以导致在结构总体设计计算阶段,设计结构工程就出现很多问题。
对于结构设计师,应该考虑到一个科学合理计算软件,绝对不仅仅取决于软件系统本身优越与否,还应该分析这种计算软件是否与设计结构类型相适应。因此,结构设计工程师必须做到,对各个结构设计计算软件数学模型特点进行分析、对比与系统研究,熟悉结构设计类型,从而进行科学合理选择计算软件。
3.2地基与基础设计存在问题
1)在设计时缺少工程实地勘察报告或者临近建筑勘察报告;对基础设计必须按照“勘察——设计——施工”流程进行,要坚决杜绝缺少地质勘察报告,而进行设计情况。如果地质勘查不够细致、全面、内容模糊情况时,设计单位必须告知建设单位同时要求勘察单位重新勘察或者进行补勘。
2)未考虑地基变形影响;有很多混凝土结构设计都未对处理后地基进行变形验算,而根据有关规定,当结构设计等级为甲或乙级时,应按照地基变形进行设计;当为丙级时,如采取地基处理,处理应按照《建筑地基基础设计规范》相关规定;而对地基处理后情况,必须进行变形验算。
3)下卧层验算中问题
在计算下卧层顶地基承载力时,只能进行深度修正,修正系数应根据土层来决定。当扩散角所取数值满足有关规范中规定时,可直接采用;当不满足时可根据规范附录中,平均应力系数来进行计算。对复合地基来说.选取承载力较高土层来当持力层,而当软弱下卧层时,必须对承载力进行验算;如果是软弱下卧层控制承载力,那么说明持力层需要进行调整。
3.3上部混凝土结构设计过程中存在问题
目前,作为混凝土结构设计中,上部结构设计是最为关键的部位,也是体现特殊功能,特定力学结构性质的部位。主流混凝土结构有框架结构、剪力墙结构、框剪墙结构以及框支剪力墙结构,而这些混凝土结构在实际设计时,往往出现配筋不够、超配筋等情况。这样容易造成混凝土结构设计中的上部结构等工程强度不足。
1)框架柱;在设计计算时,切勿忽视角柱,必须要对角柱自行定义。如出现未进行定义,而实际配筋率又满足计算结果,那么在实际施工中就会出现配筋率无法满足最小配筋率问题。作为短柱来说,在一级抗震设计时,沿着短柱全高箍筋间距应小于纵筋直径6倍。框架柱程序可以进行自行判定。这种框架柱不可以进行直接替换,不同强度箍筋应满足不同结果。对超短柱来说,在整个结构设计中应尽量避免,如避免不了,就采用性能较好箍筋、采取控制轴比、在整个框架柱中添加芯柱等方法。
2)框架梁:框架梁在计算是容易出现实际配筋大于计算结果情况,主要原因有:绘图时只标注支座一侧配筋;当配筋率大于2%时,箍筋并没有随着支座处配筋增加而增大;跨中配筋与支座配筋比例超出正常范围。同时还应注意各抗震等级下,纵筋直径的要求以及穿过中柱及剪力墙的纵筋直径。
3)连梁:在地震作用下,为保证剪力墙不发生剪切破坏,即墙肢与连梁满足“强剪弱弯”的原则降低连梁弯矩设计值,使部分连梁先于墙肢出现弯曲屈服,降低连梁屈服弯矩的同时也降低了连梁的剪压比,可改善连梁的延性性能。一般控制连梁折减系数在0.5~1之间,抗震设防烈度越高,延性要求越高,设防水准要求越高,就可以折减多一些。这样才能够保证连粱在正常使用下不现开裂、屈服等问题。当连梁跨高比不大于2.5时,要注意不要把墙体水平分布筋当做连梁腰筋来计算,否则会出现连梁的腰筋配筋率不满足标准情况。
4)框支剪力墙;在结构设计中应该重点考虑转换层,因为转换层是整个框支剪力墙中比较薄弱楼层结构,在相关计算时,应根据相关规定将其地震剪力乘以增大系数来计算相关参数。框支柱、框支梁的纵筋各项系数都应满足有关规定的要求。
3.4混凝土结构设计中其他问题
1)各专业间配合:由于专业分工发展,一个结构设计团队由各个不同领域专业人才构成,整个项目从设计到施工也是由很多不同团队负责,因此,专业间配合问题显得尤为突出。混凝土结构设计与施工组织之间,涉及到结构设计与施工技术之间衔接与配合。配合得好坏直接关系到整个项目的质量,甚至整个设计理念与风格。结构设计专业人员不可只专注于设计,而忽视配合施工工艺技术,否则就会出现很多大的问题。
2)混凝土设计耐久性:混凝土结构功能有三方面内容:适用性、安全性、耐久性,目前,混凝土结构设计在适用性与安全性方面研究较深入,设计方法相对明确,因此,混凝土结构设计在这两方面做得比较好。结构耐久性方面研究还不是很成熟,在实际操作中也存在很多问题。混凝土结构因耐久性不足而失效的现象已经屡见不鲜,为正常使用,必需进行维护,而这样所付出维护费用是非常高昂的。影响混凝土结构耐久性因素主要有内部与外部两个方面。再结构设计时应该区别进行考虑。这真对不同结构功能需要,考虑避免降低结构耐久性的影响因素。这样设计出来的混凝土结构才是最科学,最合理的。
结语
混凝土结构设计本身是个长期、循环、复杂兼具深度和广度的专业。对于企业来讲讲究的是效率和效益,因此,目前混凝土结构设计问题产生的主要原因在于设计时间短、设计任务大而重。混凝土结构设计质量密切关系到人民生命财产安全,责任重大。因此,我们必须从根本做起,做好混凝土结构设计,总结设计经验不断改进设计理念,设计时充分考虑各种因素影响,这样来保证整个工程质量。以上仅仅是笔者的一些浅薄认识,只有不断地学习、对实践经验不断进行总结才能做出较好的作品
参考文献
[1] 周克荣等编著.混凝土结构设计[M].同济大学出版社.2001.8.
[2] 贾慧麟.混凝土结构的耐久性[J].华章,2011(05):47-47.
[3] 王刚.混凝土结构设计探讨[J]才智,2011(25):85-86.
关键词:给水排水工程 伸缩缝 结构设计标准
2002 年由建设部和中国工程建设标准化协会颁发了一系列给水排水工程结构设计技术标准,在执行过程中审查施工图发现,在若干问题上易出现偏差, 特此针对这些问题作出说明和建议。下文分几个方面对问题进行阐释。
一、关注给水排水工程结构特征及其应用标准
国家标准与协会标准的应用根据我国1989 年颁发施行的 中华人民共和国标准化法,规定我国实施强制性和推荐性两类标准。强制性标准主要是针对:人体健康,人身、财产安全、环保方面。推荐性标准的对象是纯技术性的,相当于国外的学术团体标准。 制订这些技术标准都经过科学论证和大量的工程实践经验的总结,可以极大地解脱设计人员的自我探索精力,很少有人会弃之不用而甘冒风险。
给水排水工程结构的设计要求,完全不同于民用建筑结构也不同于水工结构。据此,给水排水工程结构设计需要有一系列针对性强的设计标准。自20世纪70 年代原国家建委和建设部开始组织制定这方面的设计标准和相应的施工验收标准。需要强调的是对管道进行结构设计,不能只按产品标准随意选用,需通过结构设计核算后,选定合适的产品。
总之,给水排水工程结构设计应按本系列的标准执行,除在系列标准中说明引用其他标准外,一概避免混用民用建筑结构的设计标准。
二、 保证结构耐久性的措施
1. 材料:配制混凝土的水泥品种、水灰比的控制、 碱含量的限定、 强度等级、 抗渗和抗冻等级等要求。
2.构件截面设计:①按弹性体系,不考虑塑性内力重分布;②对中心受拉或小偏心受拉的构件,需按抗裂度核算,不允许裂缝出现;③对于受弯、大偏心受拉或压的构件,要以控制裂缝宽度进行核算,避免构件内钢筋在开裂部位加剧锈蚀,影响结构的耐久性。
3.构造措施:钢筋净保护层厚度的最小值规定;提高构件均匀碳化过程的时间;敞口水池顶端设置加强筋、超长池壁设置变形缝及纵向每侧温度筋的最小配筋率。
三、裂缝宽度计算式
钢筋混凝土结构构件裂缝宽度计算式,在2002年颁发的给水排水工程结构设计系列标准中,仍引用 给水排水工程结构设计规范GBJ69 84 中的公式。应用此项公式的计算结果以及对受弯、大偏拉、大偏压的衔接计算,与民用建筑的 混凝土结构设计规范 GB50010 2001中的计算公式得出的结果不相等同,后者通常要大些。所以,应该充分注意到裂缝宽度计算公式的重要性,而且钢筋的配置量取决于裂宽的限值。
钢筋混凝土结构构件的裂缝宽度计算是难度很大的,由于影响因素众多,根据现有的试验数据,不裂缝间距,裂缝宽度的离散性一般都很大,若要由此建立一个较精确的计算式是现实的。对此,英国BS8110标准中已给予充分的表叙,其用词为Assessment(估计),区别于其他条文中的Calculation。据此,对裂缝宽度的计算公式,还应立足于与工程实践的适应性。
四、关于闭水试验工况
对于贮水构筑物的结构设计中,均需考虑闭水试验工况。主要是针对地下式水池的闭水试验工况,规范规定在强度核算基础上还应进行限制裂缝宽度核算。争议之处,并不在于是否需要核算裂缝宽度,而是在对应的计算式中,裂宽发展的时间效应系数取1 8是否合适。从试验角度,裂缝宽度大部分在不长的时间内形成,在闭水试验的几天时间内,裂缝开展已大部分形成。尽管从理论上可以取小于1 8 的系数,但具体取值尚难以定量。目前只能取1 8 ,待积累经验后,再作完善。
五、关于变形缝的设置与外加剂的应用
对盛水构筑物而言,体量大,在混凝土浇筑成型过程中, 由于水化热的影响经常导致池体开裂,据此规范提出设置变形缝的要求。如英国BS 标准中列有详尽的规定。在国内盛行混凝土的配制中,常以外加剂替代变形缝来补偿混凝土的收缩。为此,《规范》提出了应用的条件,强调了工程实践经验。这里的涵义是多方面的。
不能简单地认为掺入外加剂是灵丹妙药,可以妥善解决池体开裂现象,工程实践已反映了多起构筑物施加外加剂后仍然出现墙体开裂的状况。对此,应该明确《规范》首先强调的是设置变形缝,通常只是在结构上处理比较困难时,才考虑掺加外加剂扩大以变形缝间距,且不得超过《规范》规定间距的两倍。
变形缝处若施工不佳会渗漏水的说法,显然是不合理的。首先,如果施工质量不佳,不论在任何部位都是不能允许的;其次是现行的变形缝构造并不是很复杂,不难保证施工质量。
六、矩形盛水构筑物的角隅应力应予重视
矩形盛水构筑物的墙体拐角处,不论墙体是竖向单向受力还是双向受力,均将受到由于相邻墙体约束引起的弯曲应力,以及相邻墙体传递的边缘反力。从近两年施工情况来看,一般对相邻墙体传来的边缘反力易遗漏。尤其是对于中隔墙,通常视为不受力,实际上其端部要承受与之相连两侧墙体上的边缘反力,应以控制开裂核算。
七、结语
本人根据给水排水结构设计规范和已建工程较经验,提出了一些有关意见和建议,以供同行参考。希望大家在施工过程中多注意积累实践经验,注意细节问题,并加以总结。其目的是使结构设计更加完善,提高质量水平。
参考文献
[1]给水排水工程结构设计规范编制组.《给水排水工程结构设计规范 》[S]
[2]胡德鹿.新规范结构的设计使用年限[J].工程建设标准化,2005年第2期
[3]国家标准.给水排水工程构建物结构设计规范(GB50069-2002)[S]
关键词:给水排水工程 伸缩缝 结构设计标准
2002 年由建设部和中国工程建设标准化协会颁发了一系列给水排水工程结构设计技术标准,在执行过程中审查施工图发现,在若干问题上易出现偏差, 特此针对这些问题作出说明和建议。下文分几个方面对问题进行阐释。
一、关注给水排水工程结构特征及其应用标准
国家标准与协会标准的应用根据我国1989 年颁发施行的 中华人民共和国标准化法,规定我国实施强制性和推荐性两类标准。强制性标准主要是针对:人体健康,人身、财产安全、环保方面。推荐性标准的对象是纯技术性的,相当于国外的学术团体标准。 制订这些技术标准都经过科学论证和大量的工程实践经验的总结,可以极大地解脱设计人员的自我探索精力,很少有人会弃之不用而甘冒风险。
给水排水工程结构的设计要求,完全不同于民用建筑结构也不同于水工结构。据此,给水排水工程结构设计需要有一系列针对性强的设计标准。自20世纪70 年代原国家建委和建设部开始组织制定这方面的设计标准和相应的施工验收标准。需要强调的是对管道进行结构设计,不能只按产品标准随意选用,需通过结构设计核算后,选定合适的产品。
总之,给水排水工程结构设计应按本系列的标准执行,除在系列标准中说明引用其他标准外,一概避免混用民用建筑结构的设计标准。
二、 保证结构耐久性的措施
1. 材料:配制混凝土的水泥品种、水灰比的控制、 碱含量的限定、 强度等级、 抗渗和抗冻等级等要求。
2.构件截面设计:①按弹性体系,不考虑塑性内力重分布;②对中心受拉或小偏心受拉的构件,需按抗裂度核算,不允许裂缝出现;③对于受弯、大偏心受拉或压的构件,要以控制裂缝宽度进行核算,避免构件内钢筋在开裂部位加剧锈蚀,影响结构的耐久性。
3.构造措施:钢筋净保护层厚度的最小值规定;提高构件均匀碳化过程的时间;敞口水池顶端设置加强筋、超长池壁设置变形缝及纵向每侧温度筋的最小配筋率。
三、裂缝宽度计算式
钢筋混凝土结构构件裂缝宽度计算式,在2002年颁发的给水排水工程结构设计系列标准中,仍引用 给水排水工程结构设计规范gbj69 84 中的公式。应用此项公式的计算结果以及对受弯、大偏拉、大偏压的衔接计算,与民用建筑的 混凝土结构设计规范 gb50010 2001中的计算公式得出的结果不相等同,后者通常要大些。所以,应该充分注意到裂缝宽度计算公式的重要性,而且钢筋的配置量取决于裂宽的限值。
钢筋混凝土结构构件的裂缝宽度计算是难度很大的,由于影响因素众多,根据现有的试验数据,不裂缝间距,裂缝宽度的离散性一般都很大,若要由此建立一个较精确的计算式是现实的。对此,英国bs8110标准中已给予充分的表叙,其用词为assessment(估计),区别于其他条文中的calculation。据此,对裂缝宽度的计算公式,还应立足于与工程实践的适应性。
四、关于闭水试验工况
对于贮水构筑物的结构设计中,均需考虑闭水试验工况。主要是针对地下式水池的闭水试验工况,规范规定在强度核算基础上还应进行限制裂缝宽度核算。争议之处,并不在于是否需要核算裂缝宽度,而是在对应的计算式中,裂宽发展的时间效应系数取1 8是否合适。从试验角度,裂缝宽度大部分在不长的时间内形成,在闭水试验的几天时间内,裂缝开展已大部分形成。尽管从理论上可以取小于1 8 的系数,但具体取值尚难以定量。目前只能取1 8 ,待积累经验后,再作完善。
五、关于变形缝的设置与外加剂的应用
对盛水构筑物而言,体量大,在混凝土浇筑成型过程中, 由于水化热的影响经常导致池体开裂,据此规范提出设置变形缝的要求。如英国bs 标准中列有详尽的规定。在国内盛行混凝土的配制中,常以外加剂替代变形缝来补偿混凝土的收缩。为此,《规范》提出了应用的条件,强调了工程实践经验。这里的涵义是多方面的。
不能简单地认为掺入外加剂是灵丹妙药,可以妥善解决池体开裂现象,工程实践已反映了多起构筑物施加外加剂后仍然出现墙体开裂的状况。对此,应该明确《规范》首先强调的是设置变形缝,通常只是在结构上处理比较困难时,才考虑掺加外加剂扩大以变形缝间距,且不得超过《规范》规定间距的两倍。
变形缝处若施工不佳会渗漏水的说法,显然是不合理的。首先,如果施工质量不佳,不论在任何部位都是不能允许的;其次是现行的变形缝构造并不是很复杂,不难保证施工质量。
六、矩形盛水构筑物的角隅应力应予重视
矩形盛水构筑物的墙体拐角处,不论墙体是竖向单向受力还是双向受力,均将受到由于相邻墙体约束引起的弯曲应力,以及相邻墙体传递的边缘反力。从近两年施工情况来看,一般对相邻墙体传来的边缘反力易遗漏。尤其是对于中隔墙,通常视为不受力,实际上其端部要承受与之相连两侧墙体上的边缘反力,应以控制开裂核算。
七、结语
本人根据给水排水结构设计规范和已建工程较经验,提出了一些有关意见和建议,以供同行参考。希望大家在施工过程中多注意积累实践经验,注意细节问题,并加以总结。其目的是使结构设计更加完善,提高质量水平。
参考文献:
[1]给水排水工程结构设计规范编制组.《给水排水工程结构设计规范 》[s]
[2]胡德鹿.新规范结构的设计使用年限[j].工程建设标准化,2005年第2期
[3]国家标准.给水排水工程构建物结构设计规范(gb50069-2002)[s]
关键词:混凝土结构设计;承载力;配筋比例
中图分类号: TU318 文献标识码: A 文章编号:
一、混凝土结构设计基本要求
1、遵守设计规范要求 混凝土结构设计师在对建筑结构进行设计过程中,首先,应该做到按国家与地方有关结构设计法规、规程、规范以及设计标准中规定要求执行。尽管目前我国各行业混凝土结构设计规范,在设计理论方面还不是很统一,但是混凝土建筑结构设计通常参考规范有《混凝土结构设计规范》、《高层建筑混凝土结构技术规程》、《建筑结构荷载规范》、《建筑地基基础设计规范》、《建筑抗震设计规范》等等,在结构设计时,结构工程师应遵守这些规范为最基本原则来进行混凝土结构设计。
2、考虑现场施工材料质量 为能够满足混凝土结构功能殊性能要求,再设计时应充分考虑到现场施工材料资料,混凝土结构材料质量与现场所用水泥品种与粗骨料粒径大小有直接关系。因此,设计者还应了解施工工艺,机械设备使用情况,对水泥性能与凝结时间要求等因素,在施工现场决定选用外加剂以及其参入数量都应该了解。
二、常见混凝土结构设计问题以及解决方案
1、在结构计算与分析阶段常见的问题 目前,在混凝土结构计算与分析阶段,如何高效地、准确地对工程进行内力分析,同时按照规范要求进行结构设计与处理,这是决定工程结构设计质量优劣的关键。因此,混凝土结构设计者,应该对这一阶段常见问题,必须清晰认识。 在结构总体设计阶段,经常受到困扰的是对设计结构整体计算软件如何选择的问题。不同软件采用计算数学模型不同,所以不同软件计算最终计算结果也有所不同。虽然结果差别较小,但是对结构设计标准与规范却有很大影响。现在比较流行结构计算软件并不少,SATWE、TBSA、TAT、ETABS、SAP等都有其各自特点。然而,设计师在选择软件时要么只单一考虑设计模型特点,而忽视设计结构类型,要么只考虑结构类型而忽视对结构设计计算软件本身分析,所以导致在结构总体设计计算阶段,设计结构的工程就出现很多问题。 对于结构设计师,应该考虑到一个科学合理计算软件,绝对不仅仅取决于软件系统本身优越与否,还应该分析这种计算软件是否与设计结构类型相适应。因此,结构设计工程师必须做到,对各个结构设计计算软件数学模型特点进行分析、对比与系统研究,熟悉结构设计类型,从而进行科学合理选择计算软件。
2、地基与基础设计存在的问题 1)在设计时缺少工程实地勘察报告或者临近建筑勘察报告;对基础设计必须按照“勘察——设计——施工”流程进行,要坚决杜绝缺少地质勘察报告,而进行设计情况。如果地质勘查不够细致、全面、内容模糊情况时,设计单位必须告知建设单位同时要求勘察单位重新勘察或者进行补勘。 2)未考虑地基变形影响;有很多混凝土结构设计都未对处理后地基进行变形验算,而根据有关规定,当结构设计等级为甲或乙级时,应按照地基变形进行设计;当为丙级时,如采取地基处理,应按照《建筑地基基础设计规范》相关规定进行;而对地基处理后情况,必须进行变形验算。 3)下卧层验算中问题 在计算下卧层顶地基承载力时,只能进行深度修正,修正系数应根据土层来决定。当扩散角所取数值满足有关规范中规定时,可直接采用;当不满足时可根据规范附录中,平均应力系数来进行计算。对复合地基来说.选取承载力较高土层来作持力层,而当软弱下卧层时,必须对承载力进行验算;如果是软弱下卧层控制承载力,那么说明持力层需要进行调整。
3、上部混凝土结构设计过程中存在问题 1)框架柱;在设计计算时,切勿忽视角柱,必须要对角柱自行定义。如出现未进行定义,而实际配筋率又满足计算结果,那么在实际施工中就会出现配筋率无法满足最小配筋率问题。作为短柱来说,在一级抗震设计时,沿着短柱全高箍筋间距应小于纵筋直径6倍。框架柱程序可以进行自行判定。这种框架柱不可以进行直接替换,不同强度箍筋应满足不同结果。 2)框架梁:框架梁计算是容易出现实际配筋大于计算结果情况,主要原因有:绘图时只标注支座一侧配筋;当配筋率大于2%时,箍筋并没有随着支座处配筋增加而增大;跨中配筋与支座配筋比例超出正常范围。同时还应注意各抗震等级下,纵筋直径的要求以及穿过中柱及剪力墙的纵筋直径。 3)连梁:在地震作用下,为保证剪力墙不发生剪切破坏,即墙肢与连梁满足“强剪弱弯”的原则降低连梁弯矩设计值,使部分连梁先于墙肢出现弯曲屈服,降低连梁屈服弯矩的同时也降低了连梁的剪压比,可改善连梁的延性性能。一般控制连梁折减系数在0.5~1之间,抗震设防烈度越高,延性要求越高,设防水准要求越高,就可以折减多一些。这样才能够保证连粱在正常使用下不现开裂、屈服等问题。当连梁跨高比不大于2.5时,要注意不要把墙体水平分布筋当做连梁腰筋来计算,否则会出现连梁的腰筋配筋率不满足标准情况。 4)框支剪力墙;在结构设计中应该重点考虑转换层,因为转换层是整个框支剪力墙中比较薄弱楼层结构,在相关计算时,应根据相关规定将其地震剪力乘以增大系数来计算相关参数。框支柱、框支梁的纵筋各项系数都应满足有关规定的要求。
4、混凝土结构设计中其他问题 1)各专业间配合:由于专业分工发展,一个结构设计团队由各个不同领域专业人才构成,整个项目从设计到施工也是由很多不同团队负责,因此,专业间配合问题显得尤为突出。混凝土结构设计与施工组织之间,涉及到结构设计与施工技术之间衔接与配合。配合得好坏直接关系到整个项目的质量,甚至整个设计理念与风格。结构专业设计人员不可只专注于设计,而忽视配合施工工艺技术,否则就会出现很多大的问题。 2)混凝土设计耐久性:混凝土结构功能有三方面内容:适用性、安全性、耐久性,目前,混凝土结构设计在适用性与安全性方面研究较深入,设计方法相对明确,因此,混凝土结构设计在这两方面做得比较好。结构耐久性方面研究还不是很成熟,在实际操作中也存在很多问题。混凝土结构因耐久性不足而失效的现象已经屡见不鲜,为正常使用,必需进行维护,而这样所付出维护费用是非常高昂的。影响混凝土结构耐久性因素主要有内部与外部两个方面。再结构设计时应该区别进行考虑。这真对不同结构功能需要,考虑避免降低结构耐久性的影响因素。这样设计出来的混凝土结构才是最科学,最合理的。
结语 混凝土结构设计本身是个长期、循环、复杂兼具深度和广度的专业。对于企业来说讲究的是效率和效益,因此,目前混凝土结构设计问题产生的主要原因在于设计时间短、设计任务大而重。混凝土结构设计质量密切关系到人民生命财产安全,责任重大。因此,我们必须从根本做起,做好混凝土结构设计,总结设计经验不断改进设计理念,设计时充分考虑各种因素影响,来保证整个工程质量。以上仅仅是笔者的一些浅薄认识,只有不断地学习、对实践经验不断进行总结才能做出较好的作品
参考文献
[1] 周克荣等编著.混凝土结构设计[M].同济大学出版社.2001.8.
[2] 贾慧麟.混凝土结构的耐久性[J].华章,2011(05):47-47.
[3] 王刚.混凝土结构设计探讨[J]才智,2011(25):85-86.
关键词 混凝土结构;结构设计;结构分析
中图分类号:TU37 文献标识码:A 文章编号:
一、前言
任何混凝土结构设计都是为实现某些特定功能。随着建筑业迅速发展,建筑功能也不断丰富,建筑新颖造型、精美外观,这样要求工程设计越来越复杂。在混凝土结构设计中,经常会遇到结构概念、设计理论、设计方法、设计质量等方面的问题,如果在设计工作中不能对于上述问题进行有效的控制,将严重影响到设计工作的效率和质量,对于工程项目整体建设的影响也是不容忽视的。因此,在混凝土结构设计过程中,影响混凝土重要质量问题,必须引起工程结构设计者高度重视。
二、混凝土结构设计基本要求
1.遵守设计规范要求
混凝土结构设计师在对建筑结构进行设计过程中,首先,应该做到按国家与地方有关结构设计法规、规程、规范以及设计标准中规定要求执行。尽管目前我国各行业混凝土结构设计规范,在设计理论方面还不是很统一,但是混凝土建筑结构设计通常参考规范有《混凝土结构设计规范》、《高层建筑混凝土结构技术规程》、《建筑结构荷载规范》、《建筑地基基础设计规范》、《建筑抗震设计规范》等等,在结构设计时,结构工程师应遵守这些规范最基本原则来进行混凝土结构设计。
2.考虑现场施工材料质量
为能够满足混凝土结构功能特殊性能要求,在设计时应充分考虑到现场施工材料资料,混凝土结构材料质量与现场所用水泥品种与粗骨料径大小有直接关系。因此,设计者还应了解施工工艺,机械设备使用情况,对水泥性能与凝结时间要求等因素,在施工现场决定选用外加剂以及其参入数量都应该了解。
三、常见混凝土结构设计问题以及解决方案
1.在结构计算与分析阶段常见问题
目前,在混凝土结构计算与分析阶段,如何高效地、准确地对工程进行内力分析,结构计算的主要目的是利用专业软件计算出各种荷载,其中主要包括:结构自重,设备荷载、满足各种使用功能的活荷载,以及地震力、温度变化产生的应力等。同时按照规范要求进行结构设计与处理,这是决定工程结构设计质量好坏关键。因此,混凝土结构设计者,应该对这一阶段常见问题,必须清醒认识。 在混凝土结构设计的荷载计算中,所有的荷载规范都要符合相关的技术文件规定,对于缺少明确规定的荷载计算项目,设计人员要根据现场测量与勘察的实际结果,合理进行计算。对于大型的混凝土结构建筑而言,通常需要采取多种不同的单元模型,并且进行具体的分析与比较,对于此类工程的结构计算必须采取相应的计算程序,建立的模型中边界、支撑条件等要尽量符合实际情况。对于结构设计师,应该考虑到一个科学合理计算软件,绝对不仅仅取决于软件系统本身优越与否,还应该分析这种计算软件是否与设计结构类型相适应。因此,结构设计工程师必须做到,对各个结构设计计算软件数学模型特点进行分析、对比与系统研究,熟悉结构设计类型,从而进行科学合理选择计算软件。
2.地基与基础设计存在问题
在混凝土结构设计中,设计人员必须认识到地基与基础设计的重要性,特别是对于主体结构安全性、稳定性、抗震性要求较高的建筑,在设计中要综合考虑项目所在地的地质与水文条件、上部结构类型、施工条件、使用功能,以及相邻建筑之间的影响,从而保证建筑在使用中减少倾斜或过量沉降的发生率。在混凝土结构建筑的地基与基础设计中,设计人员必须了解相邻地下构筑物与各类地下设施的实际位置与标高,以确保地基与基础设计中安全系数的提高。在计算基础的宽度与面积时,经常会遇到力学模型不明确或者考虑不周全的问题,造成基础的宽度与面积不足,这是不符合相关设计标准的。在混凝土结构建筑的地基与基础设计中,如果地下结构墙体上的集中力作用较大,墙体与基础可以将集中力向地基部分扩散,但是这种扩散的范围有限,而且基底土的反力分布不均匀。因此,在设计过程中,设计人员可以根据集中力的大小、墙体的实际长度等,计算出地基与基础部分的荷载情况,以此确定基础的宽度
3.下卧层验算中问题
在计算下卧层顶地基承载力时,只能进行深度修正,修正系数应根据土层来决定。当扩散角所取数值满足有关规范中规定时,可直接采用;当不满足时可根据规范附录中,平均应力系数来进行计算。对复合地基来说.选取承载力较高土层来当持力层,而当软弱下卧层时,必须对承载力进行验算;如果是软弱下卧层控制承载力,那么说明持力层需要进行调整。
4上部混凝土结构设计问题
目前,作为混凝土结构设计中,上部结构设计是最为关键的部位,也是体现特殊功能,特定力学结构性质的部位。主流混凝土结构有框架结构、剪力墙结构、框剪墙结构以及框支剪力墙结构。设计人员在进行上部结构设计时,要充分考虑混凝土结构建筑的抗震功能需求,如果可能遇到中震时,设计人员要考虑到第一级别的剪力墙,其墙肢的数量最少为4肢。当第一级别剪力墙进入塑性阶段,为了保证建筑物在地震作用下的过度变形得到有效的控制,尽量缩小地震灾害带来的建筑物破坏,需要对于小级别的剪力墙进行多道设防。另外,在混凝土上部结构设计中,各种混凝土构件必须进行科学、合理的布置,要尽量少的占用上部空间,而且要满足建筑的基本使用功能和安全性。在设计框架柱计算时,切勿忽视角柱,必须要对角柱自行定义。如出现未进行定义,而实际配筋率又满足计算结果,那么在实际施工中就会出现配筋率无法满足最小配筋率问题。作为短柱来说,在一级抗震设计时,沿着短柱全高箍筋间距应小于纵筋直径6倍。框架柱程序可以进行自行判定。这种框架柱不可以进行直接替换,不同强度箍筋应满足不同结果。在结构设计中应该重点考虑转换层,因为转换层是整个框支剪力墙中比较薄弱楼层结构,在相关计算时,应根据相关规定将其地震剪力乘以增大系数来计算相关参数。框支柱、框支梁的纵筋各项系数都应满足有关规定的要求。
5.混凝土设计耐久性
混凝土结构功能有三方面内容:适用性、安全性、耐久性,目前,混凝土结构设计在适用性与安全性方面研究较深入,设计方法相对明确,因此,混凝土结构设计在这两方面做得比较好。结构耐久性方面研究还不是很成熟,在实际操作中也存在很多问题。混凝土结构因耐久性不足而失效的现象已经屡见不鲜,为正常使用,必需进行维护,而这样所付出维护费用是非常高昂的。影响混凝土结构耐久性因素主要有内部与外部两个方面。再结构设计时应该区别进行考虑。这真对不同结构功能需要,考虑避免降低结构耐久性的影响因素。这样设计出来的混凝土结构才是最科学,最合理的。
四、结束语
混凝土结构设计本身是个长期、循环、复杂兼具深度和广度的专业,混凝土结构设计质量密切关系到人民生命财产安全,责任重大。因此,我们必须从根本做起,在混凝土结构的设计中,必须采取有效的控制措施。同时,总结设计经验并不断改进设计理念,设计时充分考虑各种因素影响,这样来保证整个工程质量。
参考文献
[1]周克荣等编著.混凝土结构设计[M].同济大学出版社.2001.8.
关键词:钢骨混凝土结构;高层建筑
0引言
钢骨混凝土结构是指在钢筋混凝土结构的基础上加入钢骨,使两者形成整体而充分发挥各自优势、达到共同工作的组合结构。这种结构在日本称为钢骨钢筋混凝土结构(Steel Reinforced Concrete Structure,简称SRC)[1-2],在英、美等西方国家称之为混凝土包钢结构(SteelEncasedConcreteStructure)[3-4],我国过去一直将其称为劲性钢筋混凝土结构。
在钢骨混凝土结构中,钢骨与外包钢筋混凝土形成整体,共同承担荷载的作用,可以充分利用各自优点,其受力性能优于这两种结果的简单叠加。这种结构优点有:(1)配置钢骨使构件的承载力大为提高,尤其是配置实腹式钢骨柱的抗剪承载力有很大提高,有利于减小构件截面尺寸和结构抗震;(2)具有更大的刚度和阻尼,有利于控制结构的变形;(3)外包混凝土提高了结构的耐久性和耐火性。
1钢骨混凝土结构的发展
钢骨混凝土的研究始于20世纪的欧美。1904年在英国,为满足钢结构的防火要求,在钢柱表面包裹一层混凝土,形成包钢结构,是SRC柱的雏形。1908年Burr完成了空腹式钢骨混凝土柱的试验,发现型钢在外包了混凝土后强度和刚度大大提高。
从1960年起,英国开始改进组合柱设计方法的研究,以此为基础形成了英国规范B55400:part5(1979)。1981年德国制定了SRC柱设计草案,1984年形成正式版本。1985年英、德、法、荷四国共同制定了欧洲组合结构设计规范Eurocodes,此规范假定型钢与混凝土完全交互作用,构成截面仅有一个对称轴,将型钢和混凝土均按照矩形应力块理论考虑,采用极限强度设计方法进行设计。
1979年美国由SSLC提出了基于纯型钢的允许应力设计方法;1989年的美国混凝土规范ACI-318中将型钢视为等值的钢筋,然后再以钢筋混凝土结构的设计方法进行SRC构件的设计;1993年,钢结构设计规范AISC-LRFD则采用了极限强度的设计方法来设计SRC结构,将钢筋混凝土部分转换成等值型钢,按照钢结构的设计方法进行设计;1994年NEHRP建筑业抗震设计规则的建议草案中设置了专章讨论组合结构的设计,综合了ACI与AISC-LRFD设计方法,并增加了组合结构的设计内容。
前苏联于1949年建筑科学技术研究所编制了《多层房屋劲性钢筋混凝土暂行设计技术条件》(BTY-03-49),1951年苏联电力工业部出版了《劲性钢筋混凝土设计规范》,1978年制定并颁布了《劲性钢筋混凝土结构设计指南》。
日本由于客观条件原因在建筑中多采用抗震性能较好的钢骨混凝土结构形式。早在1905年,白石直野设计的和田东京仓库的柱就采用了钢骨混凝土柱。1921年东京建成了高30m的日本兴业银行,就是日本典型的全钢骨混凝土结构,在1923年的东京大地震中表现出良好的抗震性能。从此钢骨混凝土结构被大量采用,1951年开始对SRC结构进行系统研究,1958年制定了《钢骨混凝土结构设计标准》。日本标准以“强度叠加法”作为理论基础,没有考虑钢骨与混凝土之间的相互作用,设计偏于保守。
我国在上世纪80年代以后,冶金部建筑研究总院率先进行了钢骨混凝土轴压短柱、偏压短柱、偏压长柱和钢骨混凝土梁的试验研究。另外,中国建筑科学研究院、清华大学、同济大学、东南大学、西南交通大学等单位先后对各种形式的钢骨混凝土构件进行了试验研究。在这些研究成果的基础上,1997年11月冶金工业部建筑研究总院负责编制了《钢骨混凝土结构设计规程》(YB9082-97)。
2钢骨混凝土的工程应用
钢骨混凝土结构具有良好的力学性能,早就得到了广大结构工程师的重视,特别是在一些多震的发达国家和地区。
美国:休斯顿得克斯商业中心大厦,79层,305m高,均采用钢骨混凝土外框架一钢骨混凝土内筒结构;休斯顿海湾大楼,52层,221m高,采用钢骨混凝土柱一钢梁框架结构。
其它地区:香港中银大厦,72层,363m高,下部为钢骨混凝土结构,上部为钢结构;悉尼恺特斯中心,198m高,采用钢筋混凝土内筒、型钢混凝土刚性悬挂内部楼层、型钢混凝土外柱结构;新加坡财政部大楼,55层,242m高,型钢混凝土核心筒结构。
前苏联在二战后的厂房及桥梁设计中采用大量此结构,并出版了“设计指南”。
日本在经历几次大地震后,钢骨混凝土结构经受了考验,更加促进了钢骨混凝土结构在日本的研究和发展。1981-1985年之间日本所建造的六层以上的建筑,钢骨混凝土结构的占了45.2%,占总面积的62.8%,其中10-15层的高层建筑中,钢骨混凝土结构占了90%。
我国从50年代开始主要在工业厂房方面应用钢骨混凝土结构。20世纪80年代以来,我国在北京、上海等地相继建了一批该种结构的高层建筑。如北京香格里拉饭店,地上24层,地下2层,高82.7米,为钢骨混凝土和钢筋混凝土混和结构一钢骨混凝土框架、钢筋混凝土核心筒,底层外柱尺寸为800mm*1000mm,内柱为800mm*800mm;上海瑞金大厦,地上27层,地下1层,总高度107米,1到9层为钢骨混凝土和钢筋混凝土混和结构,9层以上为钢柱一钢筋混凝土内筒结构;北京的国际贸易中心大厦、上海的金茂大厦、深圳的鸿昌大厦等都部分或者全部采用了型钢混凝土结构。随着我国多、高层建筑的迅速发展,钢骨混凝土在我国的应用将越来越广泛。
3结语
随着我国现代化建设的发展,高层、超高层建筑迅速发展,钢骨混凝土结构的应用越来越广泛。目前,国内外对钢骨混凝土结构有诸多方面的研究,也取得了许多科研成果。但在一些设计和计算方法上仍略显落后,应适时引进一些先进的结构设计理念,进一步完善钢骨混凝土结构设计理论,为钢骨混凝土在工程上推广应用提供科学依据。
参考文献
[1]日本建筑学会.钢骨钢筋混凝土结构设计标准及解说.冯乃谦,叶列平等译.北京:能源出版社.
[2]Architectural Institute of Japan. AIJ Standards for Structural Calculation of Steel Reinforced Concrete Structures (1987).1991