欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

统计学的前景范文

时间:2023-09-03 14:47:56

序论:在您撰写统计学的前景时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

统计学的前景

第1篇

在中国,统计学经过几十年的发展,于2011 年成为一级学科,这标志中国的统计学正进入一个新的全面发展阶段。与此同时,不少人对统计学的一些分支,特别是经济统计学、计量经济学和数理统计学这些学科的定位、作用以及它们之间的相互关系与发展前景的认识并不一致,在某些方面可能存在认识误区,甚至将经济统计学和数理统计学的发展对立起来。这些认识误区的产生,有其历史的原因,也有现实因素的影响。但是,这不利于统计学的发展。因此,有必要厘清统计学科内部分支,特别是经济统计学、数理统计学、计量经济学与经济理论等之间的相互关系及其发展前景。本文的主要目的,是从统计学与经济学统一的视角,论述统计学各个分支,特别是数理统计学、经济统计学、计量经济学和经济理论( 包括数理经济学) 各自的学科定位、作用,以及这些学科之间的相互关系。本文的分析表明,作为现代统计学的一个重要发展方向,数理统计学在中国正在迅速兴起。在经济学中,经济统计学和计量经济学由于与经济理论的密切结合,在量化描述经济现象并透过现象揭示内在经济规律的过程中发挥着重要作用,两者一起构成了经济研究特别是实证研究完整的方法论,其中经济统计学作为测度方法论是经济实证研究与计量经济学的前提条件与基础,有其深厚的学科根基以及广阔的发展前景,不可替代。

作为统计推断的一般方法论,数理统计学的发展不会弱化经济统计学与计量经济学在经济学中的方法论作用,相反地,随着这些学科之间的交叉与融合,经济统计学与计量经济学将得到迅速的发展,从而进一步提升中国经济实证研究的水平与科学性。本文的结构如下: 第二部分分析并论述统计学、概率论、数理统计学、经济统计学、计量经济学以及经济理论( 包括数理经济学) 等学科之间的相互关系,特别是它们的区别与联系。第三部分讨论经济统计学的主要特点,以及其在经济研究与经济管理中发挥的基础性作用。第四部分讨论发展经济统计学的主要途径。第五节是结论。

二、经济统计学与计量经济学等相关学科的相互关系

统计学是一门关于数据的科学,是关于数据的搜集、整理、加工、表示、刻画及分析的一般方法论。统计学就其研究范畴来说,包括描述统计学( descriptive statistics ) 与推断统计学两大领域。描述统计学主要是数据搜集、整理、加工、表示、刻画和分析等,包括概括性的数据处理与分析; 而推断统计学则是基于样本信息,对产生样本数据的母体或系统进行推断的方法论科学。现代统计学的迅速发展有两个主要历史原因,一是各个国家、政府和社会部门基于管理目的搜集社会经济信息的客观需要; 二是数学学科中的概率论的发展。在人类社会中,数据搜集的历史非常悠久,描述统计学特别是数据搜集、整理、描述、刻画与分析的重要作用是不言而喻的。数据的搜集及数据质量本身是任何有意义的数据分析的基础与前提。没有高质量的数据,任何数据分析及其结论将毫无意义。在当今信息爆炸时代,如何用简洁、方便、易于解释的方式,从大量复杂数据中概括其最有价值的信息,也是描述统计学的一个重要作用。

但是,现代统计学的发展及其在自然科学与人文社会科学中很多领域的应用,主要是由概率论的产生与发展推动的。概率论的产生最初主要是对赌博研究的需要,后来成为研究不确定性现象最主要的数学工具,广泛地应用于自然、工程、社会、经济等各个领域。在统计应用中,人们一般无法获得整个母体的信息,而只能搜集到母体的一部分信息,即样本信息,其主要原因是因为获取整个母体信息的成本太高、时间太长或者因为客观原因而无法获得。因此,人们只能从有限的样本信息推断母体的规律特征。在这个推断过程中,概率论对描述样本信息与母体规律特征之间的关系提供了一个非常有用的数学工具; 更重要的是,它对基于样本数据的统计推断所获得的结论能够给出某种可靠性描述。这奠定了推断统计学的科学基础,也是统计推断区别于其他形式的推断( 如命理师根据手相或面相等样本信息推断一个人一生的命运) 的最为显著的特点。

因为这些原因,概率论的发展极大地推动了推断统计学的发展,特别地,概率论提供了很多数学概率模型,可用于对母体的概率分布进行建模。因此,统计推断就转化为从样本数据推断数学概论模型参数值以及其他重要特征等信息。这样,推断统计学就主要表现为数理统计学的形式。数理统计学有两个主要内容,一个是模型参数的估计,另一个是参数假设的检验。经过几十年的发展,数理统计学发明了很多推断理论、方法与工具。这些推断理论、方法与工具能够从样本信息推断母体特征、性质与规律,并提供所获结论的可靠性判断。由于自然科学与社会科学大多是从实验数据或观测数据推断所研究的系统或过程的内在规律,因此,数理统计学被广泛而迅速地应用于各个学科和领域的实证研究。数理统计学之所以成为现代统计学的一个重要的发展方向,就是因为它作为一门严谨的实证研究方法论,符合人类科学探索的过程与需要,即从有限样本信息推断系统或过程的性质与规律。随着中国科学的发展与研究水平的提高,包括人文社会科学在内的各个学科,对实证研究的方法论的需要将与日俱增。

因此,统计学特别是数理统计学今后将得到日益广泛的应用与迅速的发展。描述统计学几十年来也有长足的进展,在包括实验或调查方案设计,数据的搜集、整理以及分析,无论在方法论、调查手段还是工具方面,都有极大改进。数据挖掘作为一门关于数据分析方法与技术的新兴学科,可视为描述统计学的范畴。在描述统计学和推断统计学之间,描述统计学发挥着基础性作用,因为描述统计学牵涉到数据的搜集、解释、整理、测度、表示、刻画与分析,而数据及其质量是推断统计学结论科学性的重要前提和基础。描述统计学在刻画数据特征时所使用的一些统计方法与统计量,也是推断统计学的基础工具。与描述统计学相对应,经济统计学是对经济系统中各个主体、部门、变量和各种经济现象的一种数量描述。经济统计学的本质是经济测度学。经济统计学可视为描述统计学的一个分支,但不是描述统计学在经济学领域的简单应用,而是描述统计学和经济理论的有机结合。前苏联以及中国改革开放前的计划统计,特别是部门统计,就是在社会主义计划经济理论和实践基础上建立起来的。随着中国经济从计划经济模式转为市场经济模式,部门统计乃至计划统计越来越不适用于描述中国经济的实际运行。经济统计学需要经济理论的指导。这其实是著名经济统计学家钱伯海( 1997)在他的晚年将精力从研究经济统计学转向研究社会劳动价值论的主要原因,因为传统社会主义计划经济理论已经落后于中国经济转型以及中国经济统计学发展的需要。经济统计学主要是在描述统计学和经济理论两者基础上发展起来的,具有统计学与经济学双重学科属性。

由于研究对象经济系统的复杂性,经济统计学中量化描述经济现象与测度经济变量的理论、方法与工具,比描述统计学标准教科书所介绍的理论、方法与工具要丰富和复杂得多。这也是经济统计学的魅力所在。同经济学可划分为宏观经济学与微观经济学一样,经济统计学也可划分为宏观经济统计学、中观经济统计学和微观经济统计学。所谓宏观经济统计学就是国民经济统计学,主要是搜集和整理整个国民经济运行全过程的所有数据信息,对包括存量与流量、总量与结构、国内与国外,静态与动态等各种方面进行量化描述与分析。

微观经济统计学也称为企业经济统计学,主要是对企业本身各种经济活动、经济行为、经济现象进行量化描述。以企业财务为主要对象的会计学,在某种意义上是微观经济统计学的一个重要组成部分,即企业财务统计学。所谓中观经济统计学,是指对介于整个国民经济与企业之间的中观部门,如政府部门、产业部门,不同地区的经济活动和经济现象进行以数据为基础的量化描述。与经济统计学密切相关的一门学科是计量经济学。计量经济学假设经济系统是一个随机过程,服从某一客观运行规律; 任何观测经济数据,都是从这个随机经济系统产生出来的。计量经济学的主要任务就是基于观测经济数据,以经济理论为指导,利用统计推断的方法,识别经济变量之间的因果关系,揭示经济运行规律。有关计量经济学的学科定位与方法论作用,可参看洪永淼( 2007,2011),李子奈和齐良书( 2010)。

可以说,计量经济学是推断统计学在经济学的应用,但并不是简单的应用,而是统计推断理论和经济理论的有机结合。

首先,在数理统计学中,统计推断是通过数学概率模型对样本数据建模。在计量经济学中,计量经济模型不仅仅是数学概率模型,其模型设定需要经济理论的指导( 如选择哪些经济解释变量) 。

其次,数理统计学的一些方法论并不能直接用于对经济数据的统计推断,因为经济数据有其特殊性。比如很多高频金融数据,有所谓的波动聚类现象( volatility clustering) ; 在劳动经济学中,很多数据存在所谓的内生性,这种内生性对识别经济变量之间的因果关系造成很大困扰。另外,一些计量经济模型,如宏观经济学和金融学领域的动态资产资本定价模型( Hansen、Singleton,1982),是通过欧拉方程条件矩刻画的,其中经济理论( 如理性预期理论) 并没有假设相关经济变量的概率分布已知。因此,数理统计学没有现成的方法可用于估计、检验这个模型。这就是为什么2013 年经济学诺贝尔奖得主Hansen( 1982)提出广义矩( GMM) 估计方法的原因。

第三,使用什么样的计量经济模型,要由所研究的经济问题来决定。什么时候需要用回归模型,什么时候需要用波动模型,什么时候需要用整个概率分布模型,这并不是由研究者个人随其偏好而定,而是取决于所研究的经济问题的本质。例如,用历史数据研究市场有效率理论以及资产收益率的可预测性时,合适的计量经济模型是时间序列回归模型( 即条件均值模型) 。这是因为预期收益率可由条件期望来刻画( 陈灯塔和洪永淼,2003)。

第四,计量经济学是经济计量模型的推断方法论,包括如何估计参数和进行检验参数假设,判断模型是否正确设定,以及如何进行经济解释。参数假设与原始的经济假说既密切相关又有区别。经济学家关心的是经济理论、经济假说的正确与否,为此必须首先将经济理论和经济假说转化为可检验的计量经济模型的参数假设,然后利用经济数据进行参数假设检验,并解释参数假设检验结果的经济含义。计量经济学建立在经济观测数据的基础上,即建立在经济统计学的基础上。经济统计学对经济变量和经济现象进行量化测度,这些测度首先表现为经济数据。经济数据是计量经济学实证研究的原材料。计量经济学的推断结论的科学性很大程度取决于原材料即经济数据的质量优劣。

绝大多数经济数据是现实经济生活中的观测数据,不能用可控的实验方法获得,因此经济数据的测度具有巨大的挑战性。同时,由于经济观测数据的不可实验性,计量经济学需要一些基本假设,如假设经济系统是一个随机过程,经济观测数据是经济随机系统的一个( 偶然) 实现,经济随机系统满足某种平稳性或同质性条件,等等。这些假设是否符合客观经济现实也会影响计量经济实证研究结论的科学性。对经济变量、经济现象的准确测度,是经济实证研究的先决条件与基础。没有高质量的经济数据,任何经济实证分析及其结论将毫无意义。

与此同时,经济统计学可以揭示、刻画重要经济变量的性质以及它们之间的数量关系,也就是通常说的典型经验特征。这些典型经验特征实际上是经济实证研究与经济理论创新的重要基础与出发点。测度与刻画经济变量的数据特征,包括它们之间数量关系的特征,是经济统计学的范畴。如何更进一步地揭示经济变量之间的因果关系以及内在规律,则需要经济理论与统计推断。经济理论在某种意义上就像概率论一样,可以指导对经济现象的建模。因此,在经验典型特征事实基础上,以经济理论为指导,对经济现象进行建模( 所建模型即为计量经济模型) ,并基于经济观测数据对计量经济模型进行统计推断,从中找出经济变量的因果关系及经济运行规律,并解释经验典型特征事实。这是计量经济学的范畴。可以看出,计量经济学是经济统计学、经济理论( 包括数理经济学) 与数理统计学三者的有机结合,是一个交叉学科。正如著名计量经济学家Goldberger( 1964)指出的,计量经济学可以定义为这样的社会科学: 它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。

随着中国经济学研究从定性分析为主转为定量分析为主,特别是转为实证研究为主,可以预计,计量经济学作为实证研究最主要的方法论,将发挥越来越重要的作用。综上所述,经济统计学和计量经济学有不同的研究对象和研究范畴。经济统计学是对各种经济现象、经济行为和经济主体的一种量化描述,其本质是经济测度学。而计量经济学是在观测经济数据的基础上以经济理论为指导进行计量经济学建模与统计推断,从而检验经济理论和经济假说的有效性与正确性,并揭示经济变量的因果关系和内在经济运行规律。

很明显,经济统计学是计量经济学的重要前提与基础。经济统计学和计量经济学两者结合在一起,构成了经济实证研究的完整的方法论。经济统计学是经济研究的基础方法论,是整个经济研究过程中的一个前置环节。计量经济学的推断方法,包括计量经济学模型的构建( 由经济理论指导) ,模型参数的估计、检验及其经济解释,是经济实证研究的主要内容。1970 年经济学诺贝尔奖得主萨缪尔森曾说过,计量经济学可以定义为实际经济现象的数量分析,这种分析基于理论与观测的并行发展,而理论与观测又是通过适当的推断方法得以联系。换言之,计量经济学是建立在经济理论和经济测度两者基础上的,而经济理论和经济观测又是通过统计推断方法,即通过数理统计学而联系在一起。与经济统计学一样,计量经济学同样具有统计学与经济学两种学科属性,并不是数理统计学的一个分支。以上各个相关学科之间的关系,可用图1 表示。

三、经济统计学的地位与作用

前文分析指出,经济统计学是对经济现象的量化描述与对经济变量的测度,而计量经济学则是在观测经济数据的基础上,以经济理论为指导,结合统计推断,揭示经济变量的因果关系与经济运行规律。经济统计学和计量经济学一起,构成经济实证研究完整的方法论,其中,经济统计学是经济实证研究与计量经济学的重要方法论前提,它起着一种基础性方法论的作用。那么,经济统计学在社会经济管理和经济研究中具体能够发挥什么样的作用呢?

首先,作为经济测度学,经济统计学用数字描绘经济系统的各种经济现象、各个经济主体、各个经济部门、各个经济层面在不同时间的动态立体图景。Samuelson 和Nordhaus( 2000)指出,虽然GDP 和国民经济核算似乎有些神秘,但它们是20 世纪最伟大的发明。如同人造卫星探测地球上的气候,GDP描绘出一幅经济运行状况的整体图形。这种对经济现象的数字描述,为经济学者、政府官员、企业家以及社会公众了解整个经济现状以及进行相关的经济决策,提供了非常有价值的信息。可以说,在现代经济学中,宏观经济学和微观经济学是经济理论的基础,而在经济统计学中,国民经济统计学是宏观经济学的统计版本,企业经济统计学则是微观经济学的统计版本。宏观经济学和微观经济学是对经济系统的理论描述,而宏观经济统计学和企业经济统计学是对经济系统的一种现实描述,以数量的形式描绘了整个经济运行的实际状况。

第二,统计学有一个重要思想,是通过构造简单、方便、易于解释但又具有科学性的统计方法与统计工具,从大量数据中概括其最主要特征与最有价值信息。经济统计通过收集每时每刻都在产生的大量经济数据并且进行分析,从中获取最有价值的信息,这是经济统计的最主要任务与最主要功能。在信息爆炸时代,从海量数据中总结有价值的信息,并及时地以简单、方便、易于解释的方式将信息传递给政府官员、经济学者、企业家、社会公众,这些重要经济信息是政府宏观经济管理与决策、企业微观管理与决策及社会公众了解社会经济现象的重要基础。举几个例子: 第一个例子,各国中央银行的一个重要任务,是控制通货膨胀。根据通货膨胀率的变化趋势,及时调整央行的货币政策,而通货膨胀率,主要是CPI 的测度,其有效性、精确性与科学性是央行制定政策的依据。第二个例子是经济增长率。GDP增长率是政府进行宏观经济决策与经济管理的一个主要目标,是衡量经济发展的一个重要指标。如何测算GDP 是一个重要问题。第三个例子是如何测算中国的人力资本( human capital) ,这也是一个具有挑战性的问题。一段时间以来,社会公众对官方的经济统计数字经常表示质疑,这种质疑一方面表明,中国经济统计学家与经济统计工作者还需要做大量的解释工作和改进工作,另一方面也表明经济统计学知识在中国的普及势在必行。

第三,经济统计学是经济研究特别是实证研究的前提与基础。经济统计学提供的数据质量的优劣,直接影响实证研究结论的科学性。众所周知,经济学研究的最主要任务是通过对所观察到的各种经济现象进行理论思维与理论创新,揭示经济运行规律。经济统计学可以从观测经济数据中找出重要的经济变量之间的数量关系。这些数量关系构成经验典型特征事实。经验典型特征事实是对复杂经济现象的一种概括性刻画,是经济学实证研究与理论创新的重要基础。在宏观经济学中, Phillips( 1958)从英国宏观经济数据中发现货币工资增长率和失业率之间存在负相关的关系,这后来被转化为刻画通货膨胀与失业率之间的负相关关系并称为菲利普斯曲线。菲利普斯曲线作为宏观经济学的一个经验典型特征事实,构成了凯恩斯以后宏观经济学理论发展的基础。所有宏观经济理论都必须能够解释为什么通货膨胀和失业率之间存在负相关关系。上个世纪70 年代,以美国为代表的西方经济陷入了滞涨阶段,菲利普斯曲线变为正斜率,这个新的经验典型特征事实推动了后凯恩斯宏观经济理论的发展。另一个例子,是由Mehra 和Prescott( 1985)提出的所谓证劵风险溢价之谜( equityrisk premium puzzle) ,即美国证券市场收益率远高于无风险债券市场收益率。这一经验典型特征事实,对宏观经济学与金融学领域的资本资产定价理论的发展起着巨大的推动作用。

在微观经济学中,有所谓的恩格尔曲线,即一个家庭消费所占的比例随收入的增加而逐渐减少。这是恩格尔通过微观经济统计数据发现的经验典型特征事实。在金融学方面,早在1960 年代,金融经济学家就发现,股票市场存在波动聚类现象,即今天一个大的波动,明天常常伴随另一个大的波动; 今天一个小的波动,明天常常会伴随一个小的波动,这两种变化交替进行,而不是大小波动均匀分布。2003 年经济学诺贝尔奖获得者Engle( 1982)提出的著名的ARCH 波动模型之所以流行,一个重要原因是它可以解释金融市场波动聚类这个重要经验典型特征。在中国,引起中国经济学者、政府官员和社会公众关注的很多重要经济问题,其实都有经济统计学的贡献。

例如,经济学家在分析中国经济统计数据过程中发现,劳动收入在整个国民经济收入中所占的份额在过去近20年中逐步降低。这个经验典型特征事实成为一段时间以来中国经济学者的热门研究课题。中国经济研究特别是实证研究水平的提升,关键就是要能够在细致、准确地搜集与分析中国经济数据的基础上,总结反映中国经济在转型期的经验典型特征事实,在此基础上提出经济转型理论解释中国经济的运行及发展趋势,并运用计量经济学方法验证经济理论的有效性。如果中国经济学能够遵照这种研究范式,那么中国经济学的研究水平将得到很大提升,并对经济转型理论做出自己创新性的贡献。但是,目前中国经济统计学家、计量经济学家和经济学家在总结中国经济经验典型特征事实方面,做得还很不够,对重要经验典型特征事实在经济研究与理论创新过程中的作用与重要性,也认识不足。

第四,经济测度对计量经济学的学科发展有重要的推动作用。首先,经济测度的质量决定了计量经济学实证分析结论的科学性。其次,经济数据,特别是经济数据的类型,对计量经济学学科发展影响巨大。举几个例子: 首先是经济数据观测的误差( measurement errors) ,对计量经济学的推断,包括参数估计和参数假设检验,有很大的影响,如导致不一致的参数估计。为了研究测度误差的影响,计量经济学很早就有了一个分支,即变量误差的计量经济学。当然,变量误差也可能由其他因素而非测度误差引起。第二个例子是时间序列计量经济学的发展。Nelson 和Plosser( 1982)在一个实证研究中发现,绝大部分宏观经济时间序列,包括GDP、CPI和股票价格,都是非平稳时间序列。这对当时以平稳时间序列作为主要研究对象的时间序列计量经济学提出了挑战,因为平稳时间序列计量经济学的理论与方法,不适用于分析非平稳时间序列。

后来的单位根和协整等现代时间序列经济学理论,就是为了研究非平稳时间序列而发展起来的。第三个例子是不完全识别计量经济学( partialidentification econometrics) 。在微观经济数据中,有一些经济变量不能获得精确测度,比如在美国问卷调查一个人或家庭收入时,因各种原因只能调查收入处于哪个区间,不能获得一个精确测度。这种不精确经济测度,对计量经济学实证研究造成了很大影响。特别地,在估计计量经济模型参数值时,不能获得点估计,只能得到区间估计。这种统计推断的方法催生了一个新的计量经济学分支,即部分或不完全识别计量经济学。第四个例子,在大数据时代,各种以前没办法获得的数据,现在通过现代信息技术可以得到,比如在金融市场,可以获得每笔交易数据,即tick by tick data,每次交易的价格、交易量以及交易的时间点,都可以完整地记录下来。这种新型的交易数据,包含很多交易行为和市场微观结构的信息。除金融市场外,超级市场或商店通过信用卡完成的交易,其交易以及交易者的信息,也同样可以获得。对这种实时交易数据进行计量经济学建模及推断,产生了一个新的计量经济学分支超高频数据计量经济学( econometrics ofultra-high frequency data ) 。更多讨论参见Engle( 2000)和Engle Russell( 1998)。

最后一个例子是面板数据。以前大部分经济数据,要么是时间序列数据,要么是横截面数据。现在,越来越多的二维数据,即对每个横截面单位( 如个人、家庭、国家等) ,可以在不同时期跟踪并测度。这种二维数据称为面板数据。一个很著名的例子,是美国密歇根大学PSID 调查数据。这个数据库调查了很多美国的个人和家庭,而且在不同时期跟踪测度,对研究美国劳动力市场与收入分配发挥了重要作用。这种数据推动了面板数据计量经济学的发展。实际上,不仅是面板数据,现在也可每天观测到一个曲线,如IBM 股票价格每天从开盘到收盘随时间变化的曲线,又如不同城市每天温度随时间变化的曲线,这些在统计学上称为函数数据,有相应的统计模型,更多讨论参见Ramsey 和Silvema ( 2005)。上面几个例子表明,数据的类型,即经济测度的类型,在很多方面都推动了计量经济学学科的发展,这其实是经济统计学对计量经济学发展的影响和重要贡献。第五,一个多世纪前,有一位美国学者说过,统计思想与统计思维总有一天会和要求一个人能够读、写一样,是一个人在现代社会中所具备的基本能力。培养大量具有经过系统训练的经济统计人才,对完善一个国家的治理体系与提高治理能力是非常重要的。中国经济统计学的一个重要任务就是培养大量高素质、具有系统的经济统计学训练的专门人才,推动中国市场化经济转型、提高宏观与微观经济管理水平,提高国家社会治理水平。尤其是,现代社会是信息爆炸的社会,需要培养大量懂得搜集数据、分析数据、解释数据、基于数据进行决策与管理的经济统计人才

四、如何推动经济统计学的发展

如何在新的历史条件下提升与发展经济统计学?第一,坚持经济统计学是经济测度学这个基本学科定位。经济统计学用数字描绘各种经济现象、各种经济主体、各个经济部门和各个不同层次在不同时间的动态全景图像。经济统计学的最主要任务是经济测度方法论的创新,发展能够更精确地测度经济现象、经济行为和经济变量的理论方法与工具,并应用于实践。这个基本定位将保证经济统计学在经济学中的基础地位,从而不会受到包括数理统计学和计量经济学在内的其他相关学科在中国兴起的可能冲击与影响。一些学者曾提出广义经济统计学的建议,将作为推断方法论的计量经济学作为其中一部分。

这种想法符合统计学的范畴定义,即如统计学分为描述统计学和推断统计学那样,经济统计学也可分为经济测度学和计量经济学。然而,由于历史的原因,计量经济学作为一个学科在国外已有80 多年历史,在中国也有30 多年发展历史。如果将计量经济学作为经济统计学的一个组成部分,有可能会出现计量经济学取代经济统计学的情形。因此,坚持经济测度学的基本定位可以更加明确经济统计学的学科特色,有利于经济统计学的长远发展。在这方面,邱东( 2013)对国民经济统计学科的定义与内涵、外延发展,做了精确阐述。

事实上,在国外,经济统计学主要也是定位在经济测度学方面。第二,发展经济统计学必须立足本土化。在中国,经济统计,特别是现代统计学意义上的经济统计,历史不是很长。中国地大物博、不同地区之间、城乡之间与不同群体或阶层之间差异巨大,经济统计不但水平较低,而且面临的挑战与困难也特别巨大。这种基本国情为在中国发展经济统计学提供了一个很大的空间,比如,关于宏观经济数据的构建,一个重要问题是处理季节性因素。在西方的经济统计工作中,季节性因素对经济变量的影响,比如感恩节、圣诞节、元旦等等,其处理都有一套成熟的方法,但是这些方法并不完全适合一些具有中国特色的季节性因素。比如中国的端午节、中秋节、春节,都是根据中国农历而定,而不是根据西方公历而定的季节性因素。这些季节性因素的处理方法将与国外季节性因素的处理方法有所不同,这是中国特色。

又如,中国在过去30 多年,成功地从计划经济模式转为市场经济模式。但是,与西方发达国家相比,中国市场经济发育、成熟的程度还比较低。中国经济统计学家能否提出一套刻画中国市场经济发展成熟程度的指标,以测度中国市场经济完善的程度? 还有,中国过去30 多年,以要素投入为主要特征的粗放型经济增长模式已经面临一个转折点。中国经济必须经济转型,以确保持续稳定发展。对中国过去30 多年粗放型经济增长模式所带来的一些不可持续的因素制约,如对环境污染的经济成本,在统计方法上还没有一个系统的、有说服力的量化描述与估计。最后,中国正处于实现以民族复兴、人民幸福为主要内容的中国梦过程中,对中国梦的量化指标的构建,包括对人民幸福感指数的构建,也是中国经济统计学家,计量经济学家与经济学家可以做的具有理论与现实意义的研究工作。总之,立足本土、立足国情、服务国家社会经济发展需要,将使经济统计学焕发出巨大的发展活力。第三,大力促进学科交叉与融合,通过学科交叉与融合,推动中国经济统计学的发展与现代化。上文在描述经济统计学的重要作用时,讨论了经济统计学对发展其他学科,特别是计量经济学的重要作用。同样地,包括经济理论、计量经济学、概率论与数理统计学在内的其他相关学科的发展,对发展经济统计学也有很大的推动作用。前面提及,著名经济统计学家钱伯海在他的晚年,集中精力从事社会劳动价值论的研究,他从经济统计学研究中深深感受到要发展经济统计学,特别是国民经济综合平衡核算体系,必须有新的经济理论作为指导。作为经济测度学,经济统计学不可避免地涉及到统计抽样调查。

在这方面,数理统计学特别是抽样理论的最新发展可以提供很大帮助。在国民经济统计学中,对宏观经济变量的测度,以及对宏观经济变量之间数量关系的描述及解释,也需要经济理论的指导。宏观经济变量是微观经济变量在一定时期内的加总( aggregation) 。由于微观个体的异质性,加总以后的宏观经济变量的性质,以及宏观经济变量之间的数量关系,与原始的微观经济变量以及它们之间的关系可能有很大的不同。在微观经济学中,一个著名的例子,就是需求函数,即微观个体需求与个体收入之间的关系,如果对微观层面个体的需求函数加总,所获得的总需求与总收入之间的关系与原来个体的需求函数将有所不同,除非微观个体消费者的效用函数满足所谓的hypathetic utility function 假设。由此可以看出,对宏观经济变量的测度( 类似加总) 之后,如何理解宏观经济变量的性质以及它们之间的数量关系,需要有微观基础,而这就涉及到经济理论。另一方面,概率论与数理统计学对理解宏观经济变量的性质也是很有助益的。例如,Granger( 1980)讨论了微观消费函数的加总问题。他假设个体之间的边际消费倾向系数有所不同,而且微观个体的边际交易倾向的数值可视为是从 分布中产生的实现。

加总以后的宏观消费变量与原始个体消费变量的统计性质将出现本质区别: 虽然微观个体的消费是一个短记忆的时间序列,但是加总以后的宏观消费变量将具有长记忆( longmemory) 的时间特性。总之,推动各个统计学科的交叉与融合将促进各个学科的发展,包括经济统计学。不管是计量经济学、经济统计学或是数理统计学,这些相关学科都有它们共同的基础,即统计思想与统计思维。因此这些学科完全能够在互相交叉融合中不断完善。同时,也有可能因此产生一些新的交叉学科。例如,实验产生的数据与现实观测经济数据有很多不同特点。特别地,经济观测数据是各种因素联合作用的结果,而且具有不可实验性( 即不能通过重复实验获得) ,因此一般情况下没有办法将其中某一或某些因素所产生的经济后果准确地分离测度出来。而实验经济学则借鉴自然科学的研究方法,通过控制实验条件排除其他因素的影响,从而可以较精确地测度所关注因素所产生的后果。实验经济学实质上是通过可控实验改进经济测度,从而可以更好地研究经济行为与经济规律,包括经济因果关系。

事实上,实验经济学与经济测度学及计量经济学的交叉与融合,正在产生一个新的交叉学科,即实验计量学( experimetrics)。第四,为了发展经济统计学,必须大力推动国际化,通过国际化推动经济统计学的发展。在中国,经济统计的历史相比西方国家短得多,特别是中国社会主义市场经济的实践只有30 几年历史,而西方成熟的市场经济已有几百年历史,我们在统计资料搜集、统计方法与工具等各个方面,还有较大差距。上个世纪70、80 年代,中国国家统计局和厦门大学合作,提出了中国国民经济核算体系,这是西方经济统计学、现代经济学和中国经济实际相结合的一个范例。今天中国的经济统计学同样可以从国外相关学科学到很多有益于自己学科发展的知识。例如,众所周知,GDP 大体反映了一个经济体社会财富水平。但是GDP 作为描述经济发展的指标,有很多缺陷,既不能精确地反映总量,也不能反映经济活动的质量与效益,更不能反映经济结构、社会分配、民生改善、以及对环境破坏的程度等等。

认识到GDP 的种种缺陷,国外学者,包括经济统计学家、经济学家,过去几十年提出各种指标,试图修正GDP 的缺陷,比如Nordhaus 和Tobin( 1972)提出了去除环境污染和交通堵塞等成本的净经济福利指标; Repetto等( 1989)提出了扣除资源损耗成本的国内生产净值; Daly、Cobb( 1989)提出了将财务分配状况、社会成本等因素计算在内的所谓可持续经济福利指标; Pinter、Hard( 1995)提出可持续发展指数; VonWeizsacker 等( 1997)提出了绿色GDP 概念,等等。这些对构建适合刻画中国宏观经济增长与发展水平的指标都有很好的借鉴意义。第五,必须顺应时展潮流,与时俱进地发展经济统计学。我们正处于一个大数据的时代,大数据提供了极其丰富的信息。如何有效地获取大数据中的有用信息,统计学无疑提供了非常重要的方法、理论与工具。与此同时,大数据也为包括经济统计学在内的统计学等分支学科的发展提供了一个新的广阔空间。例如,包括跨境电商在内的电子商务,正在中国蓬勃兴起,深刻地影响了贸易、购物、消费乃至生产形态。如何统计电子商务成为一个迫切需要解决的现实经济统计问题,这也为经济统计学的发展提供了一个难得的机遇,又如,大数据使得以较高频率测度宏观经济变量成为可能。目前绝大多数的宏观经济变量( 如CPI) 最高频率只有月度数据,在大数据条件下,完全有可能获得更高频( 如每周) 的宏观经济数据,这样可更及时反映客观经济运行情况。第六,加速经济统计学教材更新换代,尽可能地全面反映几十年来中国乃至世界上经济统计学和现代统计学的研究成果。在国外,不论是统计学还是经济学相关专业,大都没有经济统计学课程设置,因此也就没有相应的教材。这与宏观经济学、微观经济学、计量经济学等其他经济学课程有很大不同。因此,中国经济统计学教育必须更加注重教材建设,在明确学科定位的基础上,总结国内外各个相关学科以及经济统计的理论与实践,尽量汲收国内外所有有用的研究成果与经验,争取使经济统计学的研究与教育不但成为中国经济学教育的一大特色,同时也成为引领世界前沿研究的国际化学科。

五、结论

本文从统计学和经济学统一的视角出发,分析论述了现代统计学若干分支,特别是概率论、统计学、描述统计学、数理统计学、经济统计学、计量经济学以及经济理论( 包括数理经济学) 之间的内在联系,包括它们的区别与联系,以及发展前景。分析表明,统计学的这些相关学科,各自定位非常清晰,在各自学科发展方面,都有自己不可替代的发展空间。其中,经济统计学既是统计学的分支,也是经济学的分支,是统计学与经济学结合的交叉学科,具有统计学和经济学双重学科身份。经济统计学本质是经济测度学,是经济测度的方法论,是经济学实证研究的前提与基础。这是经济学其他任何相关学科,包括计量经济学,经济理论,数理经济学等无法替代的;也是统计学的其他相关学科,包括数理统计学无法替代的。

随着中国自然科学和社会科学的发展,作为推断方法论的数理统计学与计量经济学,因为有日益增加的需求而得到迅速发展。作为从样本数据推断母体特征的一般方法论,数理统计学因为符合科学研究与探索的过程与需求而在自然科学和社会科学很多领域有广泛的应用。作为经济实证研究的推断方法论,计量经济学在中国过去30 多年来有了巨大的发展。在《经济研究》、《统计研究》、《管理世界》等国内顶尖学术期刊,可以看到大量应用计量经济学理论与方法的实证研究,而专门研究经济测度的经济统计学的文章的数量则相对减少,这主要是因为经济实证研究对推断方法论日益增加的需求。计量经济学方法的大量使用,显著地提升了中国经济实证研究水平与规范程度。

第2篇

随着社会的整体经济水平迅猛提升,社会发展对于经济型人才的需求量也在不断的增加。作为一名中学生,我们在进行中学课堂知识的学习过程中,应当明确自身的方向,进而有针对性的完善自身的不足之处。在中学数学课堂上全面的掌握统计学知识,熟练地应用在经济学领域中,为将来成为一名合格的经济学人才奠定稳定的基础。

二、经济学中,统计学的重要性

由于经济学具有复杂性和精确性的特点,因此需要将统计学应用于其系统的建立进程中,而统计学的准确、灵活的应用,则需要我们具备合格的数学理论基础,方能在经济学中找到其发展规律。由此可见,成为一名合格的、优秀的经济学人才,需要我们在中学数学课堂的学习中,尽可能的丰富自身的统计学知识,并且将学习到的统计学知识,灵活的应用于我们的日常学习生活当中,例如进行班费的管理工作、班级活动经费的统计工作、外出活动的经费预算与控制等等,在提升了我们的统计学知识应用能力的同时,实际生活中的锻炼也使得我们的综合素质和能力都得到了迅速的提升,为成为优秀的经济学人才打下了良好的基础。

三、探究经济学中统计学的运用方式

在明确了经济学中统计学的探究思考重要性后,可以使我们在学习高中数学的过程中,以更加明确、科学的方式培养自身的统计学理论掌握和应用能力,进而实现高效的自我提升。

1.发散自身的思维,有方向的锻炼统计学知识的掌握和应用能力

我们在中学数学课堂上学习统计学的相关理论知识过程中,应当注重自身的思维发散性和灵活性。很多同学在数学课堂上计算统计学习题的过程中,由于思路过于死板,因此无法根据老师所讲解的统计学理论内容和传授的理论学统计方式灵活的进行解题,进而认为统计学十分难以掌握,丧失了对于学习统计学的信心和兴趣。实际上这些同学是进入了学习思维上的误区。如果我们能够在数学课堂上进行发散思维,灵活的将数学知识应用于思考过程中,问题便能够迎刃而解。例如,我们在学习参数的过程中,可以将样本参数、方差以及函数的理论概念灵活的运用其中,进而明确统计学中的估量值和估量极值的概念,参数统计问题也就随着这些函数的灵活应用被成功的解答出来。

2.应用模型的建立,更加直观的、高效的掌握经济学中的统计学

当我们在学习统计学知识的过程中遭遇瓶颈时,也可以通过数学模型的建立帮助我们度过学习上的难关。由于数学模型具有直观性较强以及精确度较高的特点,因此数学模型的建立可以引导我们运用更加简洁的方式,理解经济学中的统计学理念,并且完成经济学中的统计学的学习。例如我们在统计班级内部同学的身高分布状况时,就可以建立数学统计模型,将身高标准分为几个区间,分别统计,这样,所得出来的统计结果会更加具有直观性。

开展经济学中统计学的学习方式探究,主要可以将经济学中的统计学掌握方式得以有效运用。发散自身的思维,有方向的学习统计学知识,数量的应用和掌握应用模型的建立,更加直观的、高效的掌握统计学的知识要点。通过研究可知,统计学的良好的学习和掌握,需要我们在中学学习课堂上充分的调动自身学习的积极主动性,努力的去思考和探究老师所教授的内容,并且将其进行灵活的运用,在生活中,我们可以统计日常零用钱的消费,记录消费的种类与用途,这样,在月末的时候,就可以知道自己最大的支出模块,根据自己的支出总结,合理的调控各项支出比例,使消费更加合理化,各模块支出均衡,初步做一个简单的经济统计结果。掌握统计学,将使得我们在经济学行业中,充分的发挥自身的实力,体现出我们的个人能力和个人价值。

四、结束语

开展经济学中的统计学探究,首先应当明确探究它的重要性,进而进行学习掌握方式的探究和思考。进行经济学中的统计学探究可知,我们也应当在中学学习课堂上认真学习数学知识,良好的完成统计学的掌握,在中学数学课堂上熟练、全面的掌握统计学知识,实现自我综合素质的全面提升,才能使得我们在日后真正成长为社会所需要的经济学人才。

参考文献:

[1]刘明.统计学专业计量经济学教学中的问题探讨——以兰州商学院统计学专业计量经济学课程为例[J].陇东学院学报,2013.

[2]韩春蕾,罗文海,相静.形成性评价在医学类院校统计学专业课程考核中的应用——以计量经济学课程为例[J].卫生职业教育,2015.

[3]王纯妍.浅议数学统计方法对现代经济社会的作用[A].北京中外软信息技术研究院.第三届世纪之星创新教育论坛论文集[C].北京中外软信息技术研究院,2016:1.

作者简介:

成永琦(1999—),女,汉族,山东省滨州市邹平县人,高中学历。

第3篇

统计学专业主要培养具有良好的数学与经济学素养,掌握统计学的基本理论和方法,具有较好的科学素养,能熟练地运用计算机分析数据,能在企事业单位和经济、金融和管理部门从事统计调查、统计信息管理、数量分析、市场研究、质量控制以及高新技术产品开发、研究、应用和管理工作,或在科研教育部门从事研究和教学工作的高级专门人才。因此,毕业生的去向有政府统计部门,银行、证券公司、保险公司等金融机构,信息咨询公司等。在很多院校,本专业继续深造的机会很多,如攻读研究生,将来在工作中会有更多的竞争优势。

第一,统计学专业的学生首先应具备扎实的数学基础,后继课程的学习离不开数学能力的培养。现代的统计学专业是在随机抽样基础上建立的推断统计学,在专业课程中,概率论是基础课程,其次是数理统计。基本的统计方法包括回归分析、多元统计分析、抽样调查、试验设计、时间序列分析及描述性统计等,是主要的专业课程。具备良好的专业素养也能为将来的继续深造打下基础。

第二,统计学专业的学生应熟练掌握一至两门统计软件。目前国际上通用的统计软件主要有两种:SPSS和SAS。前者的优点是完全菜单化,操作简便;后者的优点是功能强大,有很多子程序,可以自己编制程序调用子程序。SPSS由统计专业与非统计专业人士共同使用,SAS主要由统计专业人士使用。现在很多教材中例子的计算都是由SPSS或SAS来实现的。另外,Excel软件中也有简单的统计计算功能,且很多政府及企业的统计人员较习惯用该软件。因此,统计学专业的学生应利用在校的一切教学及学习资源,熟练掌握统计软件,并能结合统计理论及方法对输出结果给予恰当的解释。这样对今后的就业帮助很大。

第三,统计学专业的学生应具备一定的经济理论基础。因为我们遇到的很多都是与经济现象有关的问题。在成功地运用统计方法解决问题前,我们必须具备一定的相关专业的知识,这样对我们统计模型的建立及结果的解释,显得尤其重要。

第四,统计学专业的学生应具备与时俱进的思维。统计是一门搜集数据、整理数据、分析并解释数据的学科。数据是统计的生命,因此,对数据质量的要求非常高,总要求能收集到最新的数据。从而,若学生只用过时的数据来分析问题,没什么实际意义。

第五,统计学专业的学生应具备广阔的视角。统计是方法论学科,很容易与其它学科结合,从而也就产生了卫生统计学、医药统计学、生物统计学、环境统计学、数量经济学、保险精算、数理金融等,这也未我们学生提供更多的深造的空间,而且也更加强了统计学的应用。因此,学生在决定考研时,可结合自己的兴趣爱好进行报考。

第六,统计学专业的学生应注重实践能力的培养。在校期间,每个学生都会参加专业实习、毕业实习、社会调查以及专业课程的课程设计,这些都是注重学生的学以致用的能力。学生若能充分地利用这些机会,不但能增强自己解决实际问题的能力,还能从中发现课堂知识与实际的脱轨,从而加强自己理论联系实际的能力,以及如何促进中国的统计事业的发展。

第七,统计学专业的学生也可以通过考证增强自己的市场竞争力。如市场调查师、质量工程师及精算师,等等。

总之,新形势下,一方面,统计专业学生就业面越来越广,另一方面,市场对人才的需求也越来越高,希望统计学专业学生能珍惜在在校的学习机会,发挥自己的专业特长,在激励的市场竞争中立住脚。

参考文献:

[1]统计学专业就业前景及课程介绍.

[2]闫敏伦,李宗娟.大学统计学教学模式探讨[J].通化师范学院学报,2009,(4):109-111.

第4篇

摘要:经济学与西方经济学不是完全对立的关系,而是对立统一的辩证关系,将二者有机地统一起来,致力于建立一门适应社会主义市场经济建设需要的经济学,不仅十分必要,而且也很有可能。本文从经济学与西方经济学的社会基础、理论基础和现实基础三个方面浅析二者之间的对立统一关系。

关键词:经济学 西方经济学 对立统一

1 社会基础:生产力与生产关系的对立统一

西方经济学是一门研究稀缺性资源有效配置的科学。萨缪尔森曾在他的《经济学》中讲到,经济学研究人和社会如何做出最终抉择,在使用或不使用货币的情况下,来使用可以有其他用途的稀缺的生产性资源来在现在或将来生产各种商品,并把商品分配给社会的各个成员或集团作消费之用。它分析改善资源配置形式所需要的代价和可能得到的利益。在经济学大师萨缪尔森看来,经济学研究的是人们如何有效地利用生产性资源。因为人们有效利用生产性资源是一种控制和征服自然的能力,所以说,西方经济学是一门侧重生产力研究的学科,它的强项不是生产关系研究。

而经济学,是一门侧重研究生产关系的科学,它极其深刻地揭示了资本主义商品生产条件下人与人之间的关系。在他看来,在商品生产者的社会里,一般的社会生产关系是生产者把他们的产品当作商品从而当作价值来对待,而且通过这种物的形式,把他们的私人劳动当作等同的人类劳动来互相发生关系。马克思终生致力于资本主义商品生产背后人与人之间关系的研究,从研究对象的方面讲,经济学同西方经济学确是对立的关系。

虽然生产力与生产关系是对立的,但二者又是紧密相联、互相依存、互相影响,在对立的统一中发展变化的。经济学中讲到,生产关系归根到底是由生产力决定的,客观上存在着生产关系一定要适应生产力性质的规律。生产关系也不是消极被动的,它又反作用于生产力,对生产力的发展起着促进或阻碍作用。因此,研究生产力变化规律的西方经济学与研究生产关系变化规律的经济学,不应是完全对立的关系,而是对立统一的辩证关系。

经济学也是十分重视生产力研究的,不然,就提不出生产关系归根到底是由生产力决定的论断了。但经济学又没把生产力作为一个主要研究对象。西方经济学也很重视生产关系问题,然而,又理智地拒绝研究生产关系,人为地将一个问题的两个方面割裂开来。但是,就系统、完整的这门经济学来讲,它应是全面地对生产力和生产关系进行研究,而不该顾此失彼。

2 理论基础:使用价值与效用价值的对立统一

经济学和西方经济学长期争论而不能统一的另一个焦点问题是,者指责西方经济学的基础理论(效用价值论)是主观唯心的庸俗理论,判定只有劳动价值论才是客观唯物的科学理论。他们认为,商品是以它的使用价值而不是效用价值来满足人的需求和欲望的。使用价值即物的有用性,一经生产出来,就是客观存在的,不可能发生边际变化,从而是一个客观的唯物的概念。由此得出,以效用价值论为基础理论的西方经济学,因它的主观唯心性而不具有科学性。劳动价值论把使用价值当作满足人的需求和欲望的客体,是具有客观唯物性的,因此也就具有了科学性。

使用价值与效用价值作为一个问题的两个方面,不能主观地使其完全对立起来,二者是一种对立统一的关系。效用价值被认为是满足人的需求和欲望的能力,其显著特征是有用性和稀少性。在效用价值论者看来,物有用而不稀少,没有价值;物稀少而无用,也没有价值;只有既稀少又有用的物品才具有价值。效用价值论者把物的有用性作为效用价值的一个特征看待,则劳动价值论者把物的有用性作为使用价值的定义看待。因此,使用价值与效用价值的确是一个问题的两个方面。

经济学把使用价值和价值看作商品的两个因素,认为两者是对立统一的关系。使用价值与效用价值,及使用价值与价值的对立统一关系为效用价值与价值,进而为效用价值论与劳动价值论的对立统一奠定了基础。因为西方经济学研究的对象、内容和体系是以效用价值论为理论基础构建起来的,经济学研究的对象、内容和体系是以劳动价值论为理论基础构建起来的,且由于效用价值论和劳动价值论两者的对立统一,所以就有了统一的可能。

3 现实基础:社会主义市场经济――寻求经济学与西方经济学的统一

西方经济学是在资本主义市场经济环境下发展起来的、可以适应市场经济要求的经济学理论。因为我国既要坚持社会主义制度,又要发展市场经济,所以就必然要学习和借鉴西方经济学的有关理论。既坚持经济学理论的指导,又吸收西方经济学理论的有用成分,这就为经济学与西方经济学的有机统一奠定了现实基础。

目前,社会主义市场经济尚在初级阶段,市场经济体制还不太完善,法律法规亦不健全。生产资料的公有制形式和生产资料的私有制形式不和谐及按劳分配和按生产要素分配不和谐的问题仍很突出。若我们不把经济学与西方经济学有机统一起来,就会因看到这些不和谐现象而否定以公有制为主体、多种经济成分共同发展的基本经济制度,就会否定按劳分配和按生产要素分配相结合的分配方式。

如果说在社会主义计划经济环境下,是因为坚持生产资料的公有制形式和按劳分配的分配方式而否定商品生产和商品交换,进而否定经济学与西方经济学相统一的话,则在社会主义市场经济条件下,因为坚持以公有制为主体、多种经济成分共同发展的基本经济制度以及按劳分配和按生产要素分配相结合的分配形式而需要商品生产和商品交换,也就必然要求经济学与西方经济学相统一。

参考文献

[1] 马克思恩格斯选集[M].第4卷,人民出版社,1995年版

第5篇

一、大数据时代对传统统计教学的冲击

统计的研究对象是大量社会经济现象总体的数量方面,可以说统计就是研究量的,大数据时代恰恰是以数据为中心的,所以说统计人员必须学会用数据去思考问题。如何适应大数据时展的要求,如何在这样的背景下对统计学教学进行改革,是急需解决的问题。除了普查这种调查方式以外,许多传统的统计方法都是基于小样本数据而建立起来的,因此它并不适用于大数据分析的需要。在如今这样的大数据时代,这些传统内容的相对重要性也会随之发生改变。比如,传统统计的数据搜集,通常是根据研究目的,在已知来源的数据当中搜集,记录者的身份是确定的,而大数据时代,数据的来源是很难追溯的,而且对记录者的身份也很难确定。再如,传统的抽样推断是在概率保证的前提之下,以分布理论为基础,用样本的特征推断总体特征的,而在大数据背景下,分布状况是实际的,判断也是基于总体特征进行的。

二、大数据时代下的传统统计教学必要性分析

大数据一词是由统计学家提出来的,可见大数据与统计渊源甚深。目前大数据时代致使统计学的教学内容发生了重大改变,但是其中最基本的原理保持不变,因此在统计学的教学过程中,要能够让学生应用基本原理进行新的教学内容的理解。在教学过程中要能够采取理论与实际并重的教学模式,将基础理论以及实际应用进行紧密的结合。大数据虽然对传统的统计教学产生了近乎颠覆性的影响,但并不是所有的问题都有海量的数据,不是说传统的统计理论和方法就不能用了,也不是所有的数据问题都适合用现有的大数据处理技术来处理。

(一)统计基础理论的重要性

在教学过程中,理论教学的作用非常重要。应该强调统计学理论基础,并分析基本理论在实践当中的应用。虽然一些统计学中的概念在大数据背景下变得不再是普遍性问题,比如样本的概念。但是在淡化了类似样本和总体概念的同时,似是模糊了抽样推断这一传统统计分析方法,但事实上却是强调了归纳,本质来说仍是推断(归纳推断)。

(二)传统统计调查、整理方法的重要性

传统统计学在数据搜集、模型的选择方面,有相当的独特之处。虽然已经进入了大数据的时代,但是并不是所有的问题都有海量的数据。传统的统计数据搜集、整理的方法仍然适用,因此,相关知识的传统统计教学十分重要。

(三)传统统计分析方法的重要性

较之传统的统计分析方法,现有的大数据分析方法更为复杂。大数据背景下,要强化分析统计软件的使用,同时要能够考量方法的适用性以及解决问题的可用性,使得学生能够掌握应用统计学基本原理解决实际问题的能力。大数据统计学对传统统计学是补充,而不是替代。以样本统计和预测分析为基础的传统统计学仍将会在经济分析和社会统计的很多领域中继续发挥重要的作用。因此,不难看出相关的基础知识、理论的教学的重要性。

第6篇

【关键词】大数据 统计学 挑战 机遇 教学

【基金项目】贵州省科技厅、贵州民族大学联合基金(黔科合J字LKM[2011]09号)

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2014)08-0235-01

1.引言

“大数据”时代的来临和“大数据”处理技术的发展深深的影响着统计学的发展。能否利用传统的统计理论和统计方法对海量的数据做出快速、准确的处理并获取相关信息?如何对传统的统计理论与方法进行改进或探索新的统计理论和方法来对大数据进行挖掘与处理以获取信息?如何在“大数据”时代背景下培养符合市场需求的统计分析师或数据分析师?如何将“大数据”处理技术融入相关统计学课程教学以促进数据处理与分析技术的发展?这些都是我们在统计学相关课程教学过程中必须思考的一个问题。

2.大数据与统计学

“大数据”随着社交网络、物联网、云计算等的兴起而产生。一般认为大数据具有规模性、多样性、实时性及价值性四个基本特征,包含分析、带宽和内容三个要素。“大数据”在数据来源、数据结构和处理方法方面对传统的统计分析方法产生了冲击。第一,在大数据背景下,数据来源不再是原来的简单抽样,而是“样本即总体”,直接将总体作为研究对象。第二,在大数据时代,研究对象也不是原来单一的结构化数据,由于数据的多样化与规模化,我们更多的是研究非结构数据,采用人工智能来进行数据挖掘和信息获取。第三,数据处理方法也不是简单的采用传统的假设检验方法进行研究,特别是对于统计学中的异常点,不再采取以往的丢弃或者平滑处理方式。

“大数据”处理技术对统计学的发展提出了巨大挑战,但我们必须认识到学科之间的发展是相互交融的,“大数据处理技术”其本质上是数据处理与分析技术,其发展对统计学学科的发展也有积极的一面,同时统计学作为一门独立的学科,有其自身独特的学科优势。首先,海量的数据有利于提高各类统计分析的精度,如减小抽样误差等。其次,较之于传统的统计学方法,现有的“大数据”分析方法难度较大、成本较高、耗时较长。而在实际的应用中,我们关心的不是数据量的多少,而是数据量所蕴含的信息。传统的统计学分析方法是以较少的数据进行精确度相对较高的统计分析,这是“大数据”分析所无法替代的。另一方面,统计学在数据收集方法、模型选择、模型假设以及模型诊断方面有很大优势。而且并不是所有的问题都具有海量的数据,并不是每一个“大数据”问题都适合用现有的“大数据处理技术”来处理。

3.对策与建议

3.1 夯实基础教学

针对以上的分析我们可以看出,大数据对统计学的发展既是机遇,又是挑战。因此我们在教学过程中要夯实统计学基础知识的教学,讲清楚统计学的基本原理与基本方法,特别是数据分析与数据处理的基本原理与方法。对于许多传统领域,如生物、医药以及质量与可靠性工程等,我们面对的多是“小数据”而不是大数据,因此基于样本的统计分析方法仍然是进行此类问题研究的最有效的科学手段。

另一方面,我们要结合大数据技术的特点,对统计学的基本知识进行拓展教育,引导学生思考怎样将已有的统计学基本原理与方法运用到大数据处理的技术研究中。如在大数据环境下怎样进行数据的收集、筛选与甄别、存储与分析等,如何分析并厘清可能的数据来源与范围,如何建立相关指标体系并对数据进行分类,如何制定或调整相应的统计参考标准,以及如何对依靠非传统数据源加工生产的统计数据进行规范的统计推断等。

随着大数据时代的来临,各行各业对具有统计背景知识人才的需求必定越来越多。因此,在统计学教学过程中,一定要结合各专业的特点,特别是“大数据”的特点,切实加强统计学的基础知识教学与拓展教学。

3.2 加强统计学专业软件教学

“大数据”环境下,对统计人才需求也发生了变化。面对海量的数据与多样化的数据,一名合格的统计人才或数据分析人才不单需要良好的统计素养与扎实的统计基础知识,更需要具有数据的存储与整理能力、计算能力以及数据分析与处理能力等。这就要求在教学过程中,加强统计软件或数学软件的教学。

针对传统的“数学证明+手工计算”或“重理论轻专业统计软件”的统计学课程教学模式,可将统计软件或数学软件融入课堂教学并安排一定的课时上机学习统计软件,以此提高学生数据处理能力,加深对统计学基本原理的理解与掌握。

在加强统计软件或数学软件,如SPSS、R、SAS以及Matlab的教学过程中,要摈弃“会软件的操作即会统计技术”的思维,要让学生真正掌握相关操作与相关算法,深入思考算法的实现与相关理论的应用。同时引导学生思考对“大数据处理”的技术要求,包括数据搜集、发掘、存储以及计算分析过程中的算法与设备要求等,引导学生针对大数据进行软件升级与开发。

3.3 突出案例教学与实践教学

大数据的产生和发展源于规模经济问题或超规模经济问题的研究。每一个大数据问题的研究都是与实际经济或社会问题紧密相联的,因此,在实际教学过程中,要突出案例教学与实践教学,由易到难,通过案例教学逐步引入大数据的概念以及大数据处理的基本技术,提高学生的分析全局观以及进行实际数据分析与处理的能力。

教学改革的目的是培养在“大数据”时代背景下,符合市场需求的专业统计人才,而合格的专业统计人才必须具备良好的统计实践能力。案例教学与统计实践活动是培养学生统计实践能力的有效途径。因此,在教学过程中,一方面,教师可融合各种与实际问题相关的案例进行分析和讲解,加深学生对相关统计理论知识的理解,激发学生的学习兴趣,培养学生解决实际问题的能力。另一方面,教师可以组织多种形式的课堂或课堂外的统计实践活动以培养学生统计实践。如,指导学生针对他们感兴趣的与经济、社会发展相关的统计实际问题展开统计研究,设计调查问卷,收集数据、整理和分析数据,撰写研究报告,实现对实际问题的分析和解决等。

4.结束语

总之,在“大数据”环境下我们既要积极面对挑战,又要紧紧抓住机遇,切实结合“大数据”的特点和“大数据处理技术”发展的需求,既加强对传统的统计学方法、统计理论的教学,又积极开展 “大数据“环境下的拓展教学,推动统计学的发展,在数据收集、数据分析以及统计制度等方面进行改革和创新。

参考文献:

[1]李国杰. 大数据研究的科学价值[J]. 中国计算机学会通讯,2012,8(9) .

[2]姜奇平. 2013 全球大数据-大数据的时代变革力量[J]. 互联网周刊,2013,1.

[3]游士兵,张佩,姚雪梅.大数据对统计学的挑战和机遇 [J]. 珞珈管理评论标,2013,2(13).

第7篇

关键词:高中数学;数学统计学;现代经济

统计学是发现社会数量关系的一项重要数学工具,不管是对现代经济的发展还是对高中数学的学习都要依靠通过统计学计算出科学的信息数据。统计学在现代经济发展中涉及到许多方面:预测、评估、分类等相关领域。同时,在现代经济的发展中,也对统计方法、统计分析提出了相关要求。不管是为了自身提高学习成绩,还是为了促进现代经济的发展,高中阶段的统计学学习尤为重要[1]。

一、统计学对现代经济发展的益处

高中统计学对现代经济的益处主要体现在以下几个点:第一,解决经济学问题,高中数学统计学对现代经济发展其至关重要的作用,对于一些实际经济问题通过建立数学模型、运用高中数学统计方法、分析计算、最后得出结论。这些结论不仅可以预测现代经济的未来走向,还可以为相应的经济类工程项目提供参考。在现代经济发展中统计学的应用及其广泛,人们对于经济活动的评估方式也由定性向定量转变。高中数学统计学的应用,可以使現代经济科学化、合理化。应用高中数学统计学可以让经济的风险控制在一个合理范围内。

二、高中数学统计学的应用

统计学是高中数学必修课。通过对高中数学统计学的学习,可以让高中生的数学逻辑思维更加敏捷,思考问题的方式更加严谨,让学生达到全面发展。一方面,通过统计学的学习,为高中生未来的工作、生活提供了诸多便利;另一方面,可为日后的现代经济发展做出贡献。高中数学统计学的应用,可以通过以下两个方法来进行。

(一)抽样法

抽样法由系统抽样、分层抽样等方面构成。系统抽样,在抽样的过程中,需要将总体分成若干部分,从每一小部分中进行抽取。例如,某学校要了解高中生的身高状况,依据1∶20的比例抽取样本,把高中生看作一个整体,依据1∶20的比例抽取样本,则要将所有高中生按整体分为20个部分,这样的分法符合系统抽样的应用条件,进而使用系统抽样法来解决生活中在校调查学生身高的问题。分层抽样,例如,某学校高一学生总数500人,高二学生人数总计400人,高三学生人数总350人,要调查3个年级学生对学校规章制度的看法,依据1∶9的比例抽取样本,这些学生是3个不同的年级,可划分为3个部分,依据既定比例抽取,各年级学生对应抽取的人数也会不同,这问题要求与分层抽样法的理念基本一致,因而对于这类问题要用分层抽样的方法来解决。

(二)样本估计

样本估计是统计学中最常见的,对样本估计的学习最主要的是提高对样本数量的认识,样本数量与估计值准确率相互关联,即样本数量越多,则估计值越准确。例如:某一整体可划分为60个个体,将各个个体进行1~60的编号,同时将它们划分为6个小组,组号分别为1~6,如果运用系统抽样抽取容量为6的样本,首次抽取个体号码为A,在第B次抽取时,个体号码个位数与A+B个位相一致,请问若A=3时,第5组号码为多少?经分析可得出,在A=3时,第B次抽取的个体号码个位数为A+B,由此表明第5组号码的个位数为3,再结合样本估计知识,便可得出具体的号码数字。由此可见,利用统计学解决生活中的实际问题无处不在,只有牢记相关的概念、方法,才能准确无误地解决问题。