欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

工厂数字化规划范文

时间:2023-08-25 16:33:49

序论:在您撰写工厂数字化规划时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

工厂数字化规划

第1篇

关键词:数字化工厂 CATIA DELMIA 工艺规划 仿真优化

中图分类号:TU274 文献标识码:A 文章编号:1007-9416(2014)05-0089-02

经济全球化促使制造企业的竞争日趋激烈化。虽然制造业是我国国民经济的支柱产业,但其存在诸多结构性矛盾,转型升级任务紧迫且艰巨。当前,以市场为导向,以产品为核心,小批量、定制化的柔性生产需求越来越突出。激烈的竞争迫使制造企业不断缩短研发周期,注重节能、环保要求,关注能源、资源、环境的可持续发展,并且不断提高相关的项目管理经验,以提高自身核心竞争力[1]。数字化工厂正是产生在这样的背景之下,倡导工厂生产以信息为主导,综合物质和能量,形成最终的产品。

1 数字化工厂

以信息化带动工业化,以工业化促进信息化,中国装备制造业正掀起一场声势浩大的产业升级之路,其中,数字化工厂是关键技术之一。数字化工厂[2]是指以工厂全生命周期(从工厂的设计、建造、移交、运营到拆除)和产品的全生命周期(从产品设计、工艺规划、产品制造、销售到后期服务)的相关数据为基础,在计算机虚拟环境中,对整个工厂的建造过程和生产过程进行设计规划、模拟仿真和管理,形成一个虚拟工厂信息平台,并和实际工厂进行集成,从而使整个工厂的建造和生产信息可以全部覆盖和控制,使得各个环节都处于最优状态,保持企业的核心竞争力。目前,数字化工厂技术已经在航空航天、汽车、造船、机械、电子等行业得到了较为广泛的应用,特别是在复杂产品的制造企业取得了良好的效益[3],未来,对数字化工厂技术的探索必将步步加深,其应用范围将也将会更加宽广。

2 PLM解决方案平台―达索V6平台

达索公司是世界上顶尖PLM―产品全生命周期解决方案的提供者。其推出的V6平台,可以基于统一的规范对产品进行管理和协同,并可以充分利用企业内外部的各种资源,以系统工程思想为指导,贯穿从产品需求开始、经过产品设计、产品制造直至产品服务的全生命周期的过程。在各个阶段的各种信息能够被准确的定义到以三维模型为核心的技术数据包中,并始终保持上游的技术数据包能够被下游直接重用,一直拓展到生产现场或服务现场[4]。其具体运用是:在协同管理平台ENOVIA的基础上,利用CATIA强大的参数化及知识工程储备功能,结合DELMIA规划设计、仿真模拟的优势,可以完成从产品设计、工艺规划、工艺实现、生产制造、运行维护等全过程的服务。本文简要介绍基于达索V6平台,对数字化工厂解决方案中工艺规划和仿真优化两方面内容的探索,流程图如图1。

3 ENOVIA完成项目协同管理

ENOVIA提供一个在线协同环境的PLM2.0平台,可以将工程建设全生命周期中的项目管理人员、设计者、审核人和业主联系在一起[5]。它基于web解决方案,提供IP管理平台,在项目开始阶段即划分好项目参与者的角色,高效统一地实施项目计划,做好沟通交流,做好工程文件实时记录,它还是CATIA和DELMIA集成管理的平台,统一管理数据,保证设计文件的唯一性和时效性。

4 CATIA进行工厂布局设计

CATIAV6[6]继承了强大的参数化建模功能,并且改进优化了知识工程模块,可令设计企业完善自身知识、资源、项目经验的积累和提升。其在快速生成工厂布局,完成工艺规划方案,并及时对设计方案进行修改等方面具有强大的优势。随着设计企业知识库的不断充实,设计过程的模板调用将会变得更加迅捷。本文利用CATIA其提供的二次开发接口,针对企业自身设计流程的特点,开发了快速生成厂房插件,快速生成厂房骨架模型。并结合企业设备构件库,完成厂房建筑方案,生产设备的布局,工艺流程设计、物流方向设计等。图2为某铸造有限公司一期建设项目工厂布局设计图。

5 DELMIA进行仿真优化

在工厂布局设计完成之后,根据设计模型、数据,添加已知生产条件,设定生产节拍,利用DELMIA对工厂进行生产仿真模拟,通过Quest软件对物流过程进行分析。对分析结果进行综合考虑,并发现工厂布局设计的不合理之处,逆向对工艺设计方案进行修改,从而统一了设计数据的一致性,提高了分析结果的指导性。图3为DELMIA

建立的仿真模型图。

设定生产初始条件,环境变量,利用仿真模型得到相应的分析结果,对生产的全部工序进行平均化,调整作业负荷,从而使得各个工序作业时间尽可能相近,提高设备利用率,降低半成品的滞留和等待时间。仿真模拟使得在工厂设计的初期,就可以进行虚拟生产,寻找最优的解决方案,提高设计质量。图4、图5为仿真模拟相应结果。

6 结语

本文基于达索V6全生命周期解决方案的平台,以某铸造有限公司一期厂房建设项目为背景,搭建了数字化工厂方案模型,研究了在数字化工厂条件下工厂工艺规划设计的新的思路和方法,对设计方案进行实时仿真模拟,及时纠正设计方案的不足之处,提高了设计效率和设计质量。本文的研究方法还有许多不足之处,希望和广大研究者共同提高。

参考文献

[1]Hans-jurgen Bittermann.数字化工厂的未来之路[J].流程工业,2013,12(2):42-44.

[2]陈淼.借力智慧技术中机六院实现跨跃发展[N].中国工业报,2013-11-13.

[3]张国军,黄刚.数字化工厂技术的应用现状与趋势[J].航空制造技术,2013,8(4):34-37.

[4]竺悦.达索系统三维时代新体验[J].英寸,201312(1):125-129.

第2篇

【关键词】 C1料场开采规划综述

中图分类号:TV73 文献标识码:A 文章编号:

1、工程概况

混凝土面板堆石坝坝顶长度为408.3m,坝顶宽度为10.0m,最大坝高121.5m,大坝上游坝坡1:1.55,下游面设置三条宽3m的水平马道,一级马道以上坡比为1:1.6,一级马道以下坡比为1:1.55。坝顶设有高度为3.3m的防浪墙与面板相接,坝顶高程3204.60m,坝顶设有高度为1.2m 的防浪墙与面板相接。面板顶端厚度0.3m,底部最大厚度0.65m,为不等厚面板,面板间设垂直缝;面板与趾板间设周边缝;坝顶防浪墙与面板间设伸缩缝。

坝体自上游至下游分别为碎石土盖重(1B)、上游壤土铺盖(1A)、面板(F)、垫层区(2A)、周边缝处特殊垫层区(2B)、主堆砂砾料区(3B1)、主堆砂砾料区(3B2)、排水区(3F)以及下游坝面砌块石护坡(3D)。坝体填筑总量507万m3。其中垫层料、特殊垫层料采用业主提供成品砂砾石料;主堆砂砾料(3B1、3B2)、排水料(3F)主要从C1、C3砂砾石料场开采。

2、C1料场复勘结果

C1砂砾石料场位于坝址区下游大通河右岸出山口的门源县苏吉滩乡燕麦图呼村一带Ⅰ~Ⅲ阶地,呈长条形沿大通河右岸展布,最大宽度约0.96km,最大长度约1.3km。距坝址区最远距离约1.9km。C1料场按由上游至下游,由外向里,由近及远分为A、B、C、D、E、F六个区。复勘时对料场6个料区布置了14个探坑,进行了37组试验。实验结果说明如下:

2.1C1料场整体料源级配连续,曲线平滑,超粒径料较少。

2.2通过对料场复勘试验检测资料分析,A、B、C、D、E、F区料源级配相差不大,D<5mm的颗粒含量在18~31%,0.075mm颗粒含量为0.1~0.3%,均满足砂砾料3B1、3B2级配包络曲线的范围,通过业主、监理沟通,确定3B1、3B2料开采料源为E区和F区,即3B1、3B2料开采过程中均在E、F区同区开采;A、B、C、D区主要开采排水料、垫层料,并布置排水料、垫层料加工系统及筛分料堆放场地。

2.3根据探坑的剖面及现场实际地形,经测算:无用层厚度0.30~1.6m,有用层开采厚度0.9~6.0m,减去料场内小河道、水坑以及垫层料和排水料加工堆放占地面积,砂砾石储量650.41 万m3,其中水上砂砾石501.03万m3,水下砂砾石149.38万m3。

3、料场规划原则

经对C1料场复勘后依据施工图纸工程量、料场资料、施工进度计划等进行土石方填筑坝料平衡计算。并根据本工程坝料开采、料源布置的特点综合平衡和充分利用;充分考虑各料场的运距、容量及其它标段直接上坝料等因素,安排各料场的开采量。同时在料场规划时遵循少占耕地、保护环境、统筹安排、减少干扰、全面规划、统一布置、就近取料、料尽其用的原则。

4 料场开采

4.1开采程序

砂砾料开采用挖装设备在C1砂砾石料场直接开采拉运,先清除表层覆盖层,经试验合格后开采上坝。开采程序:测量放线开采施工道路修筑覆盖层揭除分区砂砾石料开采自卸车运输上坝。

开采时垂直于开采主干道按条带状向河岸方向推进开采。条带宽度拟定为200m,填筑高峰时,可同时进行几个条带同步开采,开采条带间隔错开,以便于相邻未开采条带堆放覆盖层。待一个条带开采完毕后,将相邻条带堆放的覆盖及该条带覆盖一同回填至已开采条带内。

砂砾料开采前,首先由反铲配合自卸车将表层覆盖层挖至相邻条带区,清表主要是将料场区表层50cm~200cm 的多年沉积物及表层有机土质进行清除。砂砾石料开采主要由1.6m3 反铲挖掘机立面开采为主,20t自卸汽车拉运至填筑区,平均运距1.4km,开采深度3m~8m。若开挖的砂砾料含水量较大则需进行堆放脱水,由现场技术人员根据实际情况进行控制;若开挖料含水量较小,则通过洒水进行调整。在运输和填筑过程中含水量有损失,所以料场调整含水量时使含水量略大于填筑时的含水量,所超出含水量百分比按现场施工试验和实际天气情况确定,保证大坝填筑时砂砾料的含水量为最优含水量。

4.2施工方法

根据对C1进行地质复勘,得出以下结论C1料场砂砾石颗粒组成以卵砾石为主,其中400~300mm占6.84%,300~150mm占10.96%,150~5mm占60.72%,5~0.075mm占18.88%,粒径<0.075mm占2.6%。该料场碾压后渗透系数为10-2cm/s,可直接开采上坝作主堆石料。

开采施工方法:砂砾料开采主要采用1.6m3和1.2m3液压反铲挖料装车,40t自卸汽车直接拉运上坝,对于局部开采粒径不合格的砂砾石料,挖装时进行剔除。开采厚度按2m分层开采,第一层(2m)采用平采方式,利用现有1#主干道运至坝面,2m以下采用立面开采,利用一级阶地以下的2#主干道运输至坝面。几个条状带开采过程中,可错开开采层深(时间),以满足开采过程中料源均衡开采。在开采过程中,应尽可能地照顾到各个时段的级配平衡。当在施工过程中,有雨天开采料时,应先开采堆存,经自然脱水满足要求时,再倒运上坝。

5 C1料场施工质量控制

5.1施工前测量人员根据设计提供的控制点和施工图控制坐标,做好各料场的施工规划。

5.2应加强开采料场分区先后施工顺序的控制,严格上坝料级配的质量控制,颗粒的级配应符合规定,砂砾石的最大粒径不应超过设计规定值。

5.3装车时应控制每车料的数量相等,避免料不够或过多,并也要按安全文明施工要求,装料不得超过车厢板,以免沿途洒落;2A、2B料装车每车方量应接进,以便等距卸料;施工时应严格按施工技术要求执行。

5.4开采中有明确的划分条带,使条带开挖边界清晰、明确,严防开挖混杂和失控。

5.5拉运料物的车辆相对固定,并且时常保持车厢及车体的干净;不同坝料应在车前驾驶室玻璃处做牌标识。

6 结束语

C1料场通过合理的规划开采,在施工期间间极大的保证了大坝填筑的质量及进度,同同时通过对C1料场的合理开采最大限度的提高了砂砾料的开采效率及其利用率,通过填筑后的测算纳子峡水电站大坝填筑骨料利用率达到97%以上,并且为业主节约征地350亩,得到了建设各方的一直肯定,同时也为类似工程的料场开采积累了宝贵的经验。

作者简介:

第3篇

1资料与方法

本组接受颧弓切线位X线摄影检查者共60例,男42例,女18例,年龄6-65岁。传统屏胶系统与CR、DR三种摄影方法各取20例,每个病例只使用一种摄影方式,为随机选取。分别记录每个病例摄影方法、投照次数、照片质量、成像时间。

应用设备:传统X线摄影系统为日本SHIMADZUED150L型500mAX光机,中国虎丘洗片机。CR系统为美国KodakDirectViewCR950计算机X线成像系统,日本SonyDF500激光打印机,美国Kodak影像板(IP板),大小为8英寸x10英寸(1英寸=2.54cm)。DR系统为美国GEDefinium6000直接数字化X线摄像系统,Kodak8200激光打印机。

投照方法:患者俯卧在摄影床上,双臂放于身旁,头部尽量后仰,颏部前伸,下颌放于暗盒中心上方5cm处,头部向健侧倾斜15°,即头部矢状面与台面成75°。X线管球向足侧倾斜,使X线管球中心线与听眶线垂直,对准颧弓中点或眼角后外方约4cm处,射入暗盒中心。

2结果

颧弓切线位分别应用3种摄影方式的一次拍摄成功率比较接近,为70%左右。第2次拍摄DR系统98%可以做到基本全部成功;而传统屏胶系统与CR系统的二次成功率相似且明显偏低,需要拍摄2次以上的达15%左右。照片质量以CR,DR明显高于传统屏胶系统。DR曝光后成像的速度最快,只要3s左右,可以对投照成功与否迅速做出判断;CR曝光后经激光扫描到显示图像需半分钟,屏胶系统费时最长,约3min左右。

3讨论

数字化X线设备是指把X线透射图像数字化并进行图像处理,再变换成模拟图像显示的一种X线设备。根据成像原理的不同,这类设备可分为计算机X线摄影(computedradiography,CR)和数字X线摄影(digitalradiography,DR)、数字减影血管造影(DSA)、数字荧光摄影(DF)。目前我国约70%的医用X光机仍是使用传统屏胶系统。

3.1CR成像系统是将透过人体的剩余X线记录在IP板上,使IP板感光形成潜影,再经过激光扫描使存储在光晶体内的潜影信息化为荧光,由光电转换器变为电信号,输入计算机工作站处理后,形成图像。IP板是CR成像系统的关键,作为采集影像信息的载体,代替传统的胶片,其特点是可以重复使用,但不具备图像显示功能。CR的成像要经过影像信息的记录、读取、数字化处理和图像显示等几个步骤。

3.2DR是指在专用的计算机控制下,直接读取感应介质记录到的X线信息,并以数字化图像方式重放和记录。它与传统放射成像方式不同的是用平板探测器FDP代替了传统的增感屏-胶片来接受X线管球发射出的穿透人体的X线,该成像系统是采用直接非晶硒为基础直接转换平板探测器。DR通常由电子暗盒、图像采集工作站、图像后处理工作站、系统控制器以及影像监视器等部分组成,是直接将X光子通过电子暗盒转换为数字化图像的装置。DR成像速度快,采集时间在10ms以下,数秒后即可传送至后处理工作站,根据需要打印出激光胶片。

3.3数字化X线成像与传统的增感屏-胶片成像比较有以下优点:①数字影像可使用计算机处理,利用光盘存储,进入图像储存和传输系统(PACS)网络,高效、低耗、省时、省空间地实现图像的储存、传输和诊断;②辐射剂量小,比常规方式降低30%-70%,曝光剂量宽容度大于普通平片,量子检出效率(DQE)高达60%以上,X线剂量利用率高;③对比度分辨力高,图像密度分辨率高成像质量好,诊断信息量大,可以充分发挥计算机对图像的后处理功能,通过窗技术调节更精细地观察感兴趣区域的细节,从而提高诊断信息的使用效率。

第4篇

共同推进长吉图开发开放先导区规划实施合作备忘录

本刊讯(记者马钰 郑玮报道)3月11日,国土资源部与吉林省政府在北京签署共同推进长吉图开发开放先导区规划实施合作备忘录。国土资源部部长徐绍史、吉林省省委书记孙政才、省长王儒林出席签字仪式。吉林省副省长王守臣和国土资源部副部长鹿心社代表双方在备忘录上签字。

此次签署规划实施合作备忘录,将合力推动长吉图开发开放先导区建设,同时也将部省合作推向新阶段。合作备忘录涉及长吉图区域建设用地统筹、耕地保护机制构建、节约集约用地等国土资源管理的许多重要方面,针对性强,内容丰富。双方表示将加强沟通协作,抓好备忘录各项任务的落实,坚持改革创新和规范管理,促进长吉图地区又好又快发展,进而带动吉林全面振兴。

《水库大坝与生态环境保护论坛》在北京隆重召开

本刊讯(记者吉吉吉报道) 2月27日,由中国大坝协会、中国水力发电工程学会和中国互联网协会网络科普联盟共同组织的《水库大坝与生态环境保护论坛》在北京隆重召开。本次论坛以“节能减排及气候变化形势下的新要求”为主题,是以往举办的《绿色能源论坛》系列的延续。

论坛旨在根据中国在联合国2009年根本哈根气候大会上承诺的减排目标,探讨水库大坝水电建设在节能减排及改善气候变化等方面的作用和影响,寻求我国的水库大坝以及水电建设适应新形势,遵循国家政策导向,与时俱进的发展道路。论坛由中国水利水电科学研究院副院长胡春宏主持。原水利部汪恕诚部长、国家能源咨询专家委员会主任徐锭明、国家能源局可再生能源处处长熊敏峰以及来自中国水利水电科学研究院、水电水利规划设计总院、中国社会科学院可持续发展研究中心、环境保护部环境工程评价中心、中国水力发电工程学会、中国互联网协会网络科普联盟、光华科普教育基金会等单位的专家代表出席了论坛。

针对论坛上一些专家记者们关于我国水利水电建设的速度是过快,还是太慢了的不同看法。汪恕诚在论坛的总结讲话中指出,水电建设需要较长的周期才能见效,要完成我国的政府在2020年非化石能源达到15%的目标,我们从现在起必须要加快水电开发的速度,否则,就要来不及了。对于会议上某些具体的水电站对生态环境的利大弊还是弊大于利的争论,汪恕诚强调,根据我国目前的发展和能源需求现状,水电的生态环境影响只是对流域范围的,但如果不开发建设水电影响破坏的将是全球的生态环境。某些关于水电生态环境的争论完全不是一个层次上的问题。国家发展的现状和国际社会的减排压力要求我们必须要大力开发水电,任何人、任何组织也不可能阻挡和改变这个大趋势。

经过交流探讨,到会的专家代表们建议,应该扭转我国舆论宣传中妖魔化水电的倾向,尽快改变当前我国大型水电站建设被各种各样争论所搁置的现状。站在保护全球生态环境的高度上,加速水利水电的开发,减少温室气体排放,实现我国政府的庄严承诺,保护好全球的生态环境。

T5升级:可持续发展的照明布局

本刊讯(记者苏云峰报道) 近日,全球照明业的著名公司飞利浦在江苏省仪征市的生产基地举办了全新一代T5荧光灯的上市仪式。据主办方介绍,预计今年该基地的T5光源产量将达到新纪录的3000万支,同时,这也标志着飞利浦这一在华投资达到6亿元的新工厂进入了成熟的发展阶段:产能在得到充分释放的同时,产品的性能和流水线的整体水平都已与世界先进水平同列。据记者了解,在节能减排成为全球趋势和基本国策的前提下,飞利浦作为照明行业的领导者,希望进一步推动低能效照明向节能照明的绿色转换和加速变革。以节能照明的发展为先声,加快低碳建筑的发展,也将成为全行业实现结构转型的可行性选择。

第5篇

【关键词】数字化工厂工艺规划仿真优化

中图分类号:S220文献标识码: A

1引言

围绕激烈的市场竞争,制造企业已经意识到他们正面临着巨大的时间、成本、质量、产品差异化等压力。如何快速适应市场的变化,实现从“以产定销”到“按订单生产”模式转变?数字化工厂提供了较为理想的解决方案。

2 数字化工厂概述

数字化工厂是BIM(建筑信息模型)技术、现代数字制造技术与计算机仿真技术相结合的产物,同时具有其鲜明的特征。

2.1数字化工厂

2.1.1数字化工厂的概念

数字化工厂是以产品全生命周期的相关数据为基础,根据虚拟制造原理,在虚拟环境中,对整个生产过程进行仿真、优化和重组的新的生产组织方式。它是在设计建造阶段,建立全面、详实的信息,包括材料、工艺、设备运行管理等全生命周期的信息档案数据库,利用BIM(建筑信息模型)技术指导建筑物、构筑物及设备的科学使用和维护,为信息化、标准化管理提供数据基础平台,加上CAD、EEP、MEP等应用管理系统,实现工厂控制系统内部数字化信息的有效传递,既链接了生产过程的各个环节,又与企业经营管理相互联系,进而把整个企业数字化的资金信息、物流信息、生产装置状态信息、生产效率信息、生产能力信息、市场信息、采购信息以及企业所必须的控制目标都实时、准确、全面、系统地提供给决策者和管理者,帮助企业决策者和管理者提高决策的实时性和准确性以及管理者的效率,从而实现管理和控制数字化、一体化的目标。

2.1.2数字化工厂的优势

数字化工厂利用其工厂布局、工艺规划和仿真优化等功能手段,改变了传统工业生产的理念,给现代化工业带来了新的技术革命,其优势作用较为明显。

预规划和灵活性生产:利用数字化工厂技术,整个企业在设计之初就可以对工厂布局、产品生产水平与能力等进行预规划,帮助企业进行评估与检验。同时,数字化工厂技术的应用使得工厂设计不再是各部门单一地流水作业,各部门成为一个紧密联系的有机整体,有助于工厂建设过程中的灵活协调与并行处理。此外,在工厂生产过程中能够最大程度地关联产业链上的各节点,增强生产、物流、管理过程中的灵活性和自动化水平。

缩短产品上市时间、提高产品竞争力:数字化工厂能够根据市场需求的变化,快速、方便地对新产品进行虚拟化仿真设计,加快了新产品设计成形的进度。同时,通过对新产品的生产工艺、生产过程进行模拟仿真与优化,保证了新产品生产过程的顺利性与产品质量的可靠性,加快了产品的上市时间,在企业间的竞争中占得先机。

节约资源、降低成本、提高资金效益:通过数字化工厂技术方便地进行产品的虚拟设计与验证,最大程度地降低了物理原型的生产与更改,从而有效地减少资源浪费、降低产品开发成本。同时,充分利用现有的数据资料(客户需求、生产原料、设备状况等)进行生产仿真与预测,对生产过程进行预先判断与决策,从而提高生产收益与资金使用效益。

提升产品质量水平:利用数字化工厂技术,能够对产品设计、产品原料、生产过程等进行严格把关与统筹安排,降低设计与生产制造之间的不确定性,从而提高产品数据的统一性,方便地进行质量规划,提升质量水平。

2.2数字化工厂的差异性

“数字化工厂”贯穿整个工艺设计、规划、验证、直至车间生产工艺整个制造过程,在实施过程需要注意系统集成方面的问题,“数字化工厂”不是一个独立的系统,规划时,需要与设计部门的CAD/PDM系统进行数据交换,并对设计产品进行可制造性验证(工艺评审),同时,所有规划还需要考虑工厂资源情况。所以,“数字化工厂”与设计系统CAD/PDM和企业资源管理系统ERP的集成是必须的。同时,“数字化工厂”还有必要把企业已有的规划“知识”(如工时卡、焊接规范等)集成起来,整个集成的底部是PLM构架。

同时,类似于PDM系统和ERP系统,每个企业都有自己的流程和规范,考虑到很多人都在一个环境中协同工作(工艺工程师、设计工程师、零件和工具制造者、外包商、供应商以及生产工程师等),随时会创建大量的数据,所以,“数字化工厂”规划系统也存在客户化定制的要求,如操作界面、流程规范、输出等,主要是便于使用和存取等。

3 数字化工厂的实现与应用

数字化工厂以突出的功能优点,在工业生产,尤其是制造业生产中具有广泛的应用,但其实现过程也涉及多种关键技术。

3.1数字化工厂的关键技术

数字化工厂涉及的关键技术主要有:数字化建模技术、虚拟现实技术、优化仿真技术、应用生产技术。

数字化建模技术:数字化工厂是建立在数字化模型基础上的虚拟仿真系统,输入数字化工厂的各种制造资源、工艺数据、CAD数据等要求建立离散化数学模型,才能在数字化工厂软件系统内进行各种数字仿真与分析。数字化模型的准确性关系到对实际系统真实反映的精度,对于后续的产品设计、工艺设计以及生产过程的模拟仿真具有较大的影响。因此,数字化建模技术作为数字化工厂的技术基础,其作用十分关键

虚拟现实技术:虚拟现实技术能够提供一种具有沉浸性、交互性和构想性的多维信息空间,方便实现人机交互,使用户能身临其境地感受开发的产品,具有很好地直观性,在数字化工厂中具有广泛的应用前景。虚拟技术的实现水平,很大程度上影响着数字化工厂系统的可操作性,同时也影响着用户对产品设计以及生产过程判断的正确性。

优化仿真技术:优化仿真技术是数字化工厂的价值所在,根据建立的数字化模型与仿真系统给出的仿真结果及其各种预测数据,分析虚拟生产过程中的可能存在的各种问题和潜在的优化方案等,进而优化生产过程、提高生产的可靠性与产品质量,最终提高企业的效益。由此可见,优化仿真技术水平对于能否最大限度地发挥企业效益、提升企业竞争力具有十分重要的作用,其优化技术的自动化、智能化水平尤为关键。

应用生产技术:数字化工厂通过建模仿真提供一整套较为完善的产品设计、工艺开发与生产流程,但是作为生产自动化的需要,数字化工厂系统要求能够提供各种可以直接应用于实际生产的设备控制程序以及各种是生产需要的工序、报表文件等。各种友好、优良的应用接口,能够加快数字化设计向实际生产应用的转化进程。

3.2常见数字化工厂软件

由于数字化工厂技术在工业生产过程中的优越性,各知名企业竞相开发各种数字化工厂软件,其中较为常见、应用最为广泛的数字化工厂软件主要有eM-Power和Demia等。

eM-Power是由美国的Tecnomatix技术公司开发的数字化工厂软件,它在工业生产中应用十分广泛。该软件架构是建立在Oracle数据库之上的三层结构,它为企业用户提供零件制造解决方案、装配规划、工厂及生产线设计和优化、产品质量和人员绩效等主要功能。这些主要的功能模块建立在统一的数据库eM_Server中,实现整个生产制造过程的信息共享。2007年以来,西门子公司在收购了UGS(UGS于2004年收购了Tecnomatix)的基础上,推出了功能更为强大的Teamcenter 8和Tecnomatix 9,提供工厂设计及优化、制造工艺管理、装配规划与验证、开发、仿真和调试自动的制造过程和质量管理等功能,在各大企业具有广泛应用。

Delmia是由法国的Dassault公司开发的数字化工厂解决方案,该解决方案是构建在Dassault公司的PLM结构的顶层,由其专用数据库(PPR-Hub)统一管理。Delmia的体系结构主要包括:面向制造过程设计的(DPE)、面向物流过程分析的(QUEST)、面向装配过程分析的(DPM)、面向人机分析的(Human)、面向虚拟现实仿真的(Envision)、面向机器人仿真的(Robotics)、面向虚拟数控加工方针的(VNC)、面向系统数据集成的(PPR Navigato)等。它主要由面向数字化工艺规划模块、数字化仿真平台工具集以及车间现场制造执行系统的集成模块等组成。

3.3数字化工厂的应用

数字化工厂是信息化技术发展过程中出现的一种新的企业组织形式,是促进企业现代化发展的新兴技术,目前主要应用在汽车制造、航空航天等大型制造企业。

3.3.1数字化工厂技术在汽车行业的应用。

目前,数字化工厂技术在国内外汽车制造业中得到了广泛应用。在国外,如通用汽车公司使用Tecnmatix eMPower的解决方案,大大缩短了通用公司从新产品设计、制造到投放市场的时间,同时提升了其产品质量。奥迪公司使用eM-Plant进行物流规划仿真,如A3 Sportback项目。通过物流规划仿真不仅使得整个生产物流供应链之间建立起了紧密有序的联系,同时也方便对物流方案进行先期评估和可行性分析。在国内,如一汽大众在车身主拼线工艺设计中采用数字化工厂技术,改善了车身焊接工艺,提高车身焊接质量。上海大众在发动机设计和产品总装领域采用数字化工厂技术,大幅提升了公司的制造技术和产品质量。目前,华晨金杯公司引进西门子的Tecnomatix软件,对产品的总装工艺进行数字化改造。

3.3.2数字化工厂技术在飞机制造业的应用。

在飞机制造业,数字化工厂技术的先进性也得到了充分体现。如美国的洛克希德马丁公司在F35研制过程中,采用数字化工厂技术缩短了2/3的研制周期,降低了50%的研制成本,开创了航空数字化制造的先河。有如波音787飞机在研制过程中采用基于Delmia的数字化工厂技术,实现其产品的虚拟样机。空客A380飞机采用虚拟装配方案,实现整机的三维虚拟装配仿真和验证。不仅国外飞机制造企业在其产品的研制、生产过程中使用数字化工厂技术,国内的飞机制造企业也是如此。如上海飞机制造厂利用数字化工厂技术在三维环境中进行人工装配操作的数字化模拟,提高了人工操作的标准化。而西安航空动力控制公司则采用Tecnomatix的数字化工厂软件对其异型件生产线进行仿真和优化,进行技术改造探索。

3.3.3数字化工厂在铸造行业的探索

共享铸钢团《数字化工厂示范工程》拟运用先进制造理念(如虚拟制造、智能制造、绿色制造、柔性制造等)和先进铸造技术、方法,结合共享集团在铸造行业内领先的制造、技术和管理经验,全面融合先进信息化技术,建设数字化模样生产线、数字化柔性造型生产线、智能化熔炼控制系统、智能体联合控制的铸件精整线、数字化在线检测等综合集成的数字化铸造工厂,在“多品种、小批量、快捷”铸造生产方面达到同行业领先水平,建成一座在铸造行业领先的“数字化、柔性化、绿色、高效”铸造工厂,集成并创造数字化铸造新模式。

4结束语

随着计算机技术、网络技术的飞速发展,数字化工厂技术不断与现代企业相结合,已成为提升企业竞争力的新动力。在当前企业发展的新形势下,数字化工厂技术出现了新的趋势。首先,现场总线技术在数字化工厂中的应用,提升数字化工厂的现场可操作性;其次,应用网络技术,拓展数字化工厂网络互联能力;最后,数字化工厂的智能化发展,实现虚拟仿真与企业真实生产的无缝链接,打造真正的智能数字化工厂。

作者简介

郭兆祥(1976-)男,硕士研究生,从事技术质量管理工作。

参考文献.

[1]李险峰.DELMIA让数字化工厂成为现实[J].CAD/CAM与制造业信息化,2006,(9):48-50.

第6篇

【关键词】数字化工厂;仿真;虚拟制造

1.引言

在市场竞争日趋激烈,新产品上市周期越来越短,生产设备和制造系统日趋复杂、昂贵的情况下,为了获取最佳利润和保持市场占有率,制造企业必须从传统制造模式向数字化制造模式转变,实现产品的多元化,缩短产品上市时间,缩短生产准备时间,并进一步提高产品的质量。由此,数字化工厂作为优化生产过程的解决方案也越来越成为研究的热点。

2.数字化工厂含义

数字化工厂(Digital Factory,简称DF)是基于仿真技术和虚拟现实技术的发展而产生的,是以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式,通过对生产过程进行分析和优化,保证产品在可制造的前提下,实现快速、低成本和高质量的制造,从而实现柔性制造和并行工程[1]。

3.数字化工厂平台架构

数字化工厂软件是虚拟制造平台,对于缩短新产品的开发周期、提高产品质量、减少制造成本和降低项目决策风险都具有重大意义。

数字化工厂软件还是实现并行工程的工具。产品设计部门和制造工艺部门可以在产品的制造特征(焊点、定位点、装配位置等)领域紧密协作,在产品设计的早期阶段进行工程制造的仿真,在新产品的制造中尽量对标准化的工艺和工装卡具重复利用,从而实现产品设计和产品制造的并行互动的工作方式,缩短新产品的开发周期、降低制造成本和加快新产品投放市场[2]。

数字化工厂在工艺层面的主要应用包括工厂布局仿真优化、工艺流程规划及仿真验证、虚拟装配设计与验证、物流仿真。工厂布局仿真优化是建立车间厂房、物流通道、制造资源等的三维数字模型,为工艺、装配、物流仿真建立基础。是工艺流程规划及仿真验证在三维数字环境下对产品的工艺进行规划,制定工艺路线,如NC编程、流程排序、资源分配、工时定额,成本核算等,并对加工工艺过程进行三维仿真,仿真工艺路线,刀具切换,装夹过程等。虚拟装配设计与验证是提供一个虚拟制造环境来规划验证和评价产品的装配制造过程和装配制造方法,检验装配过程是否存在错误,零件装配时是否存在碰撞。它把产品、资源和工艺操作结合起来来分析产品装配的顺序和工序的流程,并且在装配制造模型下进行装配工装的验证、仿真夹具的动作、仿真产品的装配流程,验证产品装配的工艺性,达到尽早发现问题、解决问题的目的。物流仿真是工厂布局规划与仿真的辅助工具之一,在三维环境下对物流仿真逻辑进行建模,主要分析工位装配任务分配的合理性,物流路径规划的合理性,物流设备的分配以及利用率等,从而评价和优化物流规划方案;基于建立的物流仿真模型,可以调整参数和物流方案,实时获得仿真结果。

数字化工厂平台在制造层面的主要应用为MES系统,包括制造数据管理、计划排程、生产调度执行、现场数据采集及归档、产品跟踪等功能。

4.数字化工厂收益

一个制造企业完善的企业信息平台应由三大块构成,即:PDM/CAD系统,为企业提品数据结构和数学模型,进行产品数据管理;ERP系统,为企业提供物质资源、资金资源和信息资源集成信息,进行企业资源管理;数字化工厂平台,即制造过程管理系统,为企业提供数字化的制造信息平台,进行制造工艺规划设计,工程仿真和生产过程管理。成为数字化工厂,首先要做到柔性制造,即通过自动化的理念把产品的工艺设计与自动化设计集成到一个平台上。系统能够根据加工对象的变化或原材料的变化而确定相应的工艺流程。第二点,也是比较关键的部分,即虚拟投产,即借助虚拟化过程来检验整个生产过程,验证产品。

国内制造企业通过利用数字化工厂技术能够带来的收益包括:

(1)在3D的环境下进行制造工艺过程的设计,提高工艺设计、现场工人、数控测量的效率;

(2)用数字化的手段验证产品的制造工艺可行性,避免工艺制造与设计脱节,提高工艺设计质量;

(3)现场的工艺问题在数字化仿真环境下提前得到分析,避免在后期对产品和流程进行改变返工,避免规划的失误,对风险可进行精确掌控;

(4)掌握产品和流程的复杂性,提高产品的变种及对流程影响的透明度,建立典型工艺,经验库,减少重复工作;

(5)缩短产品工艺准备周期,缩短新产品投放市场时间(6)结合MES现场数据的及时采集、反馈,实现成本的及时统计、工艺的持续改进,支持产品的后期维修。

5.实施关键因素

数字化工厂平台涉及多层仿真层次,不同仿真目的,需要对物流,装配,加工等进行独立仿真,并在统一的可视化环境下进行结果分析。数字化工厂贯穿整个工艺设计、规划、验证、直至车间生产工艺整个制造过程,不是一个独立的系统,需要与设计部门的CAD/PDM系统进行数据交换,并对设计产品进行可制造性验证(工艺评审),同时,所有规划还需要考虑工厂资源情况数字化工厂与设计系统CAD/PDM和企业资源管理系统ERP的集成是必须的。同时,数字化工厂还有必要把企业已有的规划知识(如工时卡、焊接规范等)集成起来,整个集成的底部是PLM构架。所以,需要与其他部门的信息系统进行数据交换,并在PLM体系框架的指引下开展实施工作。

6.小结

数字化工厂涉及生产,设计,工艺、物流,管理,IT部门等业务单位以及多领域的技术人员,需要相关专业部门的全力配合,需要对整个生产链的数据进行整理和整合(包括产品,工艺,车间等)。对企业各方面的影响巨大,可能需要流程重组。因此,企业在具体的实施过程中,需根据自己的生产制造的实际过程和企业资源条件来决定,即需要在设计、工艺规划、加工、装配、物流的哪一部分加强,进而采取先点后面、循序渐进的实施策略,不要一下铺得太大。

参考文献

[1]张浩,樊留群,马玉敏,等.数字化工厂技术与应用[M].北京:机械工业出版社,2003:5-12.

第7篇

关键词:数字化工厂;关键技术;制造数字化

数字化工厂是以制造产品和提供服务的企业为核心,由核心企业以及一切相关联的成员构成,使所有运营信息数字化的动态“组织”。通过数字化工厂信息系统有效地组织控制人流、物流、资金流和信息流,实现组织内部所有成员之间的高度协作和资源共享,为客户提供满意的产品和服务。而数字化工厂工作流管理系统作为数字化工厂信息系统的基础,是协调数字化工厂成员内部、成员相互间的各项活动的具体执行者。数字化工厂是指以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造技术与计算机仿真技术相结合的产物,同时具有其鲜明的特征。它的出现给基础制造业注入了新的活力,主要作为沟通产品设计和产品制造之间的桥梁。

一、数字化工厂概述

数字化工厂(DF)以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。在设计部分,CAD和PDM系统的应用已相当普及;在生产部分,ERP等相关的信息系统也获得了相当的普及,但在解决“如何制造工艺设计”这一关键环节上,大部分国内企业还没有实现有效的计算机辅助治理机制,“数字化工厂”技术与系统作为新型的制造系统,紧承着虚拟样机(VP)和虚拟制造(VM)的数字化辅助工程,提供了一个制造工艺信息平台,能够对整个制造过程进行设计规划,模拟仿真和治理,并将制造信息及时地与相关部分、供应商共享,从而实现虚拟制造和并行工程,保障生产的顺利进行。“数字化工厂”规划系统通过同一的数据平台,通过具体的规划设计和验证预见所有的制造任务,在进步质量的同时减少设计时间,加速产品开发周期,消除浪费,减少为了完成某项任务所需的资源数目等,实现主机厂内部、生产线供给商、工装夹具供给商等的并行工程。数字化工厂(DF)是企业数字化辅助工程新的发展阶段,包括产品开发数字化、生产准备数字化、制造数字化、管理数字化、营销数字化。除了要对产品开发过程进行建模与仿真外,还要根据产品的变化对生产系统的重组和运行进行仿真,使生产系统在投入运行前就了解系统的使用性能,分析其可靠性、经济性、质量、工期等,为生产过程优化和网络制造提供支持。

二、数字化工厂的关键技术

通常研究的制造系统是非线性离散化系统,需要建立产品模型、资源模型制造设备、材料、能源、工夹具、生产人员和制造环境等、工艺模型工艺规则、制造路线等以及生产管理模型系统的限制和约束关系。数字化工厂是建立在模型基础上的优化仿真系统,所数字化建模技术是数字化工厂的基础。随着虚拟设计技术的发展,在计算机中进行产品零件的三维造型、装配分析和数控加模拟技术以及以上程分析技术不断发展和完善,这种技术进一步向制造过程领域发展。数字化建模的基础上,对制造系统进行运动学、动力学、加工能力等各方面进行动态仿真优化。随着三维造型技术发展,三维实体造型技术已得到普遍的应用。具有沉浸性的虚拟现实技术,使用户能身临其境地感受产品的设计过程和制造过程,使仿真的旁观者成为虚拟环境的组成部分。数字化工,软件模块之间以及和其他软件模块之间的信息交换和集成。虚拟环境的下具集、各种数据转换工具、设备控制程序的生成器、各种报表的输出工具等。

三、数字化工厂的解决方案

(一)产品研发的数字化和虚拟化

数字化工厂通过使用CAX等软件,建立产品的逻辑、几何、功能、性能和关联等模型,实现基于模型的产品定义与关联设计,在虚拟的数字世界中完成多学科优化、协同设计、优化分析、制造试验仿真及模拟产品的制造和运营过程(包括虚拟工厂、生产线布局、物流等)。同时,通过PLM与ERP/MES等集成,实现三维模型、数字化工艺指令等信息向生产现场的推送,并与质量、采购、物流等部门进行共享。各部门依据这些共享信息即可开展相应的零部件生产、原材料采购、产品验收和产品确认等工作。

(二)生产过程的精益化和标准化

数字化工厂是按照精益思想建设的,通过对生产过程进行优化整合,并制定相应的标准化操作规程,确保车间生产节奏更加紧凑和有序。它使用ERP统一管理和下达生产指令,使用MES和数据采集与监控系统实现对生产计划调度、物料追踪、数据采集、生产设备状态监控、工位操作、包装发货等生产运营全过程的管理,并将检测结果与PLM中设计模型进行快速对比,形成从虚拟产品设计到实际生产制造的闭环产品质量控制,实现从原料进厂到产品出厂的生产过程自动化、装备制造信息化和智能化、生产过程的高度透明化。

(三)车间生产的自动化和集成化

数字化工厂车间生产自动化是在统一通信、统一编程以及统一IT架构的基础上,通过高运行可靠性和可用性的数据链路(物联网及工业网等),把生产制造过程中众多独立的产品、工具与关联的服务进行集成,支持自动化控制、制造执行和企业资源管理等系统的完美整合。并将网络与通信、传感器与感知、自动检测、人机交互与专家系统等智能化技术加入车间制造单元与生产线中,实现系统自优化、自重构、自诊断,形成高度的柔性生产方式,达到信息技术和制造技术深度融合的目的,使得高度智能的快速生产成为可能。

四、结束语

绿色和人文是数字化工厂的重要特征,所以数字化工厂的建设不仅要求体现数字化、自动化和智能化元素,还要符合绿色人文的需求。它一方面用自动化设备来减轻人员的体力消耗和精神压力,以及用持续的职业发展规划来延长员工的工作寿命和工作质量。

参考文献: