时间:2022-10-24 17:01:47
序论:在您撰写小学数学建模论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
学生的想象力是非常丰富的,这对数学建模来说是很有利的。所以教学时要充分发挥学生的想象力,让学生通过小组合作来进一步加深对问题的理解。我们要求的是两车相遇的时间,那么我们可以通过设一个未知数来代替它。根据速度×时间=路程,可以假设时间为x小时,根据题意列出方程:65x+55x=270
二、学生对简化的问题进行求解
第三步,就是要给刚才列出的方程,进行变形处理,变成学生熟悉的,易于解答的算式,如上题可以通过乘法分配律将等式写成120x=270,利用乘法算式各部分间的关系,积÷一个因数=另一个因数,得x=2.25。有的方程并不是通过一步就能解决,这时就显示了简化的重要性,需对方程进行一定的变形、转化。
三、展示和验证数学模型
当问题解决后,就要对建立的模型进行检验,看看得到的模型是否符合题意,是否符合实际生活。如上题检验需将x=2.25带入原式。左边=65×2.25+55×2.25=270,右边=270。左边=右边,所以等式成立。在这个过程中,可以体现出学生的数学思维过程与其建模的逻辑过程。教师对于学生的这方面应进行重点肯定,并鼓励学生对同学间的数学模式进行点评。一般而言,在点评时要求学生把相互间的模式优点与不足都要尽量说出来,这是一种提高学生对数学语言运用能力与表达能力的训练,也能让学生在相互探讨的过程中,得以开启思路,博采众长。
四、数学模型的应用
“学起于思,思源于疑。”疑问是思维的开端,创新的基石,是打开学生探究之门的钥匙。在建模教学中同样如此,一个巧妙的问题,不仅可以激发学生的学习热情,诱发学生探究动机,还可以将学生的思维引向深处,从而使学生的探究更有深度与广度,在学生的积极思考与主动探究来圆满地完成教学任务。为此在教学中,要尽量避免没有悬念的教学,而是要善于运用提问艺术,抛出富有启发性与探索性的问题,一石激起千层浪,这样更能引导学生展开主动探究。如在学习“平均数”时,我首先让学生思考,班内两个小组参加学校的比赛,其中第一小组5个人,第二小组8个人,哪个小组的水平高一些呢?这样的问题与学生的现实生活密切相关,与教学内容紧密相连,具有很强的趣味性与针对性,更能引发学生的学习热情与主动思考。通过思考后,学生提出了一些解决方法,比较总分的高低,看最高分在哪个小组等。但随后学生又发现这些方法存在一定的局限性,并不能客观反映各小组的实际情况。学生初步建模失败,此时就需要教师因势利导,给予必要的启发与诱导,进而引入“平均数”的建模,这样就可以实现学生的有效探究,更加利于学生对此知识点的本质性理解。
二、深入本质,深化理解
学生的认知规律是由形象到抽象再到形象,这一特点决定了在学生建模的过程中,要加强引导,深入本质。如植树问题是小学数学教学的一个重点也是难点,而要突出重点突破难点,就必须要让学生深入本质的理解,这样学生才能灵活地加以运用,才能掌握数学建模这一重要的数学思想。经过师生之间的互动探究得出不封闭路的植树棵数=间隔数+1后,再次提出问题引导学生思考:(1)道路长度是100米,每隔5米种1棵树,有多少个间隔?可以种多少棵树?(2)如果间隔数是30个,可种多少棵树?间隔数是n个,可种多少棵树?(3)如果路的长度改变,而其他条件不变,植树棵数=间隔数+1这个公式是否成立?(4)思考为什么植树棵数不等于间隔数而是等于间隔数+1?这样的几个问题层层递进,由特殊到一般,由抽象到弄错,步步深入,可以将学生的认知由形象引向抽象再到形象,从而达到学生对知识的深刻理解与灵活掌握,亲历数学建模全过程,实现对这一基本数学思想的真正内化。
三、回归生活,提升能力
数学学科源于生活,同时又服务于生活,与生活有着千丝万缕的联系。这一学科特征决定了在数学建模教学中不仅要重视从现实生活中来提炼与抽象出数学模型,同时还要注重将数学模型运用于生活实践中,回归生活,指导实践,这样才能真正实现学以致用,促进学生数学素养与能力的整体提高。如关于植树问题,在学生抽象出数学模型,总结出公式以后,为了提升学生的认知,促进学生将知识转化为能力,我们还要引导学生能够运用抽象出的模型来解决现实问题。如广场上的大钟6点敲响6下,所用时间是10秒,那么12点时敲响l2下所用的时间是多少?这样将学生所总结出的模型运用于现实生活问题的解决之中,将学生思维的全过程展现出来。这样就可以避免学生对模型的机械套用,而是遵循了学生从现实生活提取数学素材抽象出数学模型再到将数学模型还原于具体的生活问题。这样更能加深学生对数学模型的理解与认知,使学生已经建立的数学模型得以不断扩展与延伸,才能促进学生对模型的内化,实现学生的真正理解与灵活运用,提升学生的能力;更为重要的是可以让学生真切地感受到数学建模的实用性与必要性,促进学生掌握建模这一最基本、最重要的数学思想。
1.1数学模型应与现行教材相结合
教师应事先研究在各个章节中可以引入哪些相关模型问题,如:在讲到极限计算时,可以引入复利、连续复利和贴现模型,不仅可以让学生了解一些经济名词,而且还可以让他们深入理解这些经济名词背后的数学原理.对于没有线性代数基础的学生,若引入投入产出分析模型,很明显就不合适了.数学教师在教学的过程中要经常渗透建模意识,通过教师应用举例,学生可以从各种模型中领悟到数学建模使用的广泛性和数学学科的实用性.近几十年来,随着科学技术的发展和社会的进步,数学这一重要的基础学科迅速地向自然科学和社会科学的各个领域渗透,并在经济建设、工程技术及金融管理等方面发挥出越来越明显,甚至是举足轻重的作用.“高技术本质上是一种数学技术”的观念,已为越来越多的人所认识和接受.
1.2各种软件的使用
高校课堂教学过程中,现代教育技术以及各种数学软件已经广泛使用.首先,教师将多媒体教学与传统的板书教学有机结合,使其优势互补.利用多媒体制作一些动画,如旋转多面体的旋转过程、正态分布图像等,使学生对抽象的数学符号、数学概念有直观形象的认识.其次,模型的求解需要借助于一些软件,如LINGO、MATLAB、SPSS等.事实上,我们手中现有的软件也可以起到类似作用,例如,EXCEL软件,这是大家都比较熟悉的,在求解简单的统计学的检验模型时,完全可以使用EXCEL,而不需要专业的统计学软件.这就需要教师们会使用一些相关软件.
2数学建模思想对学生的促进
2.1数学建模思想有助于激发学生学习数学的兴趣
数学一门比较枯燥的基础学科.兴趣是学好数学的关键,有兴趣才有渴求,有渴求才有动力,有动力才有成功.尤其对于大一的学生来说,他们刚刚进入大学校门,对于大学的认知是全新的,对于知识是渴求的.他们大部分都是认真的,希望与老师一起走进数学的海洋,与老师一起学习、共同进步.因此,高校数学教师要善于发挥数学教师的特长、优势、气质来吸引学生,从而培养学生的学习兴趣.在数学教学过程中引入数学模型,不仅丰富了数学教学内容,还使数学与实际生活联系更加密切.如:人口增长预测、奥运公交路线设计、世博会效果评价、产品定价等实际问题,可以采用不同的教学形式,把实际问题转化成数学问题,建立了数学理论通向数学模型的桥梁,从而激发学生学习数学的兴趣.
2.2数学建模思想有助于培养学生多方面的能力
MATLAB应用软件是一种准确、较为可靠的科学计算标准软件,操作方便,方法简单易行,学生学习起来也较容易入手,是一种培养学生动手能力的数学学习方式,MATLAB软件适宜于数学实验的学习内容,MATLAB数学实验课程的学习,对于帮助学生提高动手实践能力、临场应变能力都有很好的帮助,并且对于学生使用先进的方法独立解决问题,进行独立思考能力的培养都有好处。同时培养学生的实践创新能力和动手能力,对于回答学生对于数学的应用领域的认识,并能够培养学生的应用意识,用以前所学的数学理论和计算机知识去发现问题和解决实际问题的能力。
二、应用数学建模思想解决实际问题
下面就数学建模中的一个常见实例问题,应用数学建模的思想,给出解决实际问题的思路和方法,以及数学建模的过程和步骤。把椅子放在一个不平整的地面上,一般情况只有三只脚着地,另一只脚或高或低,放不平稳,然而只需要稍微调整座椅的位置几次,并进行轻轻挪动,就可以使座椅的四只脚同时和地面接触,座椅放稳了。此问题在日常生活中很常见,同时在数学建模的时候,可以进行下面的假设:对于数学建模而言,一般都需要进行模型假设,因为实际生活中的例子,只有在特定假设的前提下,才能够划归为数学问题,进行求解。对椅子、地面和椅子的四只椅脚可以结合实际的进行必要的假设:
1.椅子本身而言,四条腿是一样长,椅脚与地面的接触处可看做一个点,四只脚与地面的接触所形成的四个点之间的连线构成一个正方形。
2.地面的高度的变换是连续不断的,沿任何方向延伸都不会出现间断(没有像阶梯那样的巨变情况),即地面可视为高等数学上的连续曲面。
3.其中假设椅子是放在一个硬的地面上的,不会放在海绵,或者是很厚的地毯上的。(接触点是只要接触就不能下压)
4.对于四个椅脚的间距和椅腿的长度而言,地面是相对平坦的,地面的坡度的高度相对于椅脚的间距和椅腿的长度是很小的,使椅子在任何位置至少有三只脚能够同时着地。现在对以上的假设情况进行分析,其中,假设1显然是合乎情理的,因为实际中,椅子的四条腿基本上都是一样长的,即使不一样长,其差距也是很小的,在这里是可以忽略不计的。假设2相当于给出了该建模的一个基本条件,给出了椅子能够放稳的条件,存在放稳的这种可能性。因为假设地面高度不连续,而是在有台阶的地方,是无法使椅子的四只脚同时着地的。对于假设3,是一个基于实际情况的假设,是一种特殊情况,在这里我们排除这种情况的假设。假设4也是要排除这样的情况发生:椅脚间距和椅腿的长度与地面上的高度的连续变化的尺寸在一致的范围内,不会有地面的高度比椅腿的长度大很多的情况,出现深沟或凸峰(即使是连续变化的),比如地面有凸峰,致使椅子的三只脚无法同时着地。在此假设的基础之上,该模型的问题也已经出来了,就是能够让椅子的四只脚同时和地面接触,把满足这种情况的条件和结论表述出来,并且构建一个能够利用数学知识解决的模型。首先需要用一个量来表示椅子的位置,并且这个位置是不确定的,而且随着挪动椅子的位置,这个量也应该随着变化,所以使用一个变量来进行表示。注意在前面的假设中,已经做了这样的假设,椅脚连线构成一个正方形,那么根据正方形,能够想到其以中心为对称点,正方形的四个顶点绕中心点的旋转恰好可以代表椅子位置的改变,于是我们可以使用旋转的角度这一个变量来表示椅子当前所在的位置。四个椅脚分别对应ABCD四点,四个点的连线就构成了正方形ABCD,正方形的对角线AC与x轴重合,AC的中点和O点重合,椅子绕中心点O旋转角度φ后,正方形ABCD转至任意一个位置,假设为转到A’B’C’D’的位置,所以对角线AC与x轴的夹角φ代表了椅子的位置。其次把椅脚着地用数学符号进行表示。如果用某个变量表示椅脚与地面的垂直距离,那么当这个距离为零时就是表示椅脚和地面接触了,椅脚着地了。椅子在不同位置时,椅脚与地面的距离不同,并且这个距离和旋转的角度有一定的关系,它是旋转角度的一个变量,因此在数学上这个距离就是椅子位置变量φ的一个函数,这样就可以把一个实际问题数学化。虽然椅子有四只脚,与之对应的就应该有四个距离,但是由于正方形的中心对称性,在这里,只要假设两个距离函数就可以了,分别是对称的两个脚与地面的距离之和,记A,C两脚与地面距离之和为u(φ),B,D两脚与地面距离之和为v(φ),根据实际情况可以得到两个函数的条件,(u(φ),v(φ)≥0)。由假设2可知,u和v都是连续变化的函数。由假设4,在任意时刻,任何位置椅子都有三只脚着地,只需调节另外一只椅脚。所以对于任意的φ,u(φ)和v(φ)中至少有一个为零。当φ=0时,假设v(φ)=0,u(φ)>0。这样,改变椅子的位置使四只脚同时着地的这个实际模型的问题,就归结为证明如下的一个数学命题:已知u(φ)和v(φ)是φ的连续函数,对任意φ,u(φ)·v(φ)=0,且v(0)=0,u(0)>0,证明存在φ0,使u(φ0)=v(φ0)=0。在上面讲实际问题的条件和需要解答的问题都构成数学问题,以下就是利用数学知识对建模模型的实例进行解答。对于该例子中的题目,有很多种解答方法,下面这种方法运用数学上的连续性的理论。将椅子向左或向右旋转90°(π/2),并且将对角线AC与BD互换。由v(0)=0和u(0)>0可知,v(π/2)>0和u(π/2)=0。令h(φ)=u(φ)-v(φ),则h(φ)和h(π/2)<0。由u和v的连续性,可以知道h也是连续函数。根据高等数学中关于连续函数的基本性质,必存在φ0(0<φ0<π/2)使h(φ0)=0,即u(φ0)=v(φ0)。最后,因为u(φ0)·v(φ0)=0,所以u(φ0)=v(φ0)=0。通过运用数学建模知识,解决了实际的问题,同时学生也学会了连续函数中的相关知识,而在实际的应用中,还可以运用MATLAB等软件,对数学模型进行解答和计算,提高学生的解题能力和软件的使用能力。
三、结论
数学本是对现实生活的一种抽象,而数学模型更是多次抽象后的结果,这就使之与学生有了一定距离。因此,教师要想方设法缩小学生起点与数学模型之间的距离或者搭起两者之间的桥梁,为学生的数学学习寻找实际生活的原型。比如,在教学《解决问题的策略——倒推》一课中,我从学生熟悉的故事——“小猫钓鱼”入手,激活学生的生活经验,让学生在解决类似“走迷宫”式的趣味问题中初步建立“顺”和“倒”的模型,初步感知顺向思考与逆向思考两种数学思维方式,为新课学习作好铺垫。“小猫钓鱼”的故事为学生找准了知识原型,当然这只是数学教学中的一种隐喻,教师在此基础上用方框加箭头的形式将故事加以提升,挖掘出更为深刻的“顺”和“倒”的模型,才是从真正意义上为学生找准了学习的起点,引导学生逐步走向数学抽象。
二、意义建构:创设促进思维抽象化的教学程序
引导学生建立数学模型的过程,实际上就是引导学生用数学的思维去观察、分析和表示事物之间的关系。因此,教师在教学中要努力创设能够促进学生思维抽象化的教学程序,层层递进,引导学生在学习的过程中,深深感悟到数学思维的抽象美,感悟到数学建模的文化价值所在,汲取到求真求知的力量。再以《解决问题的策略——倒推》一课的教学为例,教学例题1时,我引导学生在理解题意的基础上,将文字转化为框式图,然后再进一步引导学生将文字表达的框式图,舍弃次要因素,抽象出既简洁又准确的纯数学符号表达的框式图,初步建构起数学符号归纳的模式。这种纯数学符号的框式图,更利于学生厘清倒推的过程、方法,形成技能。学生在教学中亲身经历了框式图逐步抽象的过程,初步建立起倒推策略的模型。而教学例题2时,我引导学生主动探究两步倒推问题,让学生用自己喜欢的框式图整理信息,在汇报比较中进一步沟通文字和数学符号的联系,优化方法。此时,教学的重点转向倒推策略本身,我引导学生细细体会倒推的起点、顺序、方法,并在方法多样化的比较中,进一步体会倒推策略的基本特点,从而促使学生掌握基本方法。
三、举一反三:重视数学模型的解释与运用过程
在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。
二、数学建模教学的改革举措
1.加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。2.分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。3.优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。4.改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。
三、收获与体会
关键词:高校;数学;建模方法;教学;策略;研究
1高校数学建模方法的教学现状分析
1.1课堂教学尚未脱离传统思想
从我国高校数学课堂教学的现状来看,传统的教学理念始终束缚着老师们的思想,他们在数学建模课程的讲解中,仍旧以讲授为主,以理论化的学习为基础,给予高校学生最多的教学理念仍旧是灌输式教学,这种教学模式是当代大学生综合能力的培养与提高的枷锁,更让数学建模方法不能在实践中得到具体的应用。
1.2教学策略缺乏个性化选择
进行数学建模的方法多种多样,每一种方法都具有不同的应用范围,能解决不同的问题,只有对不同的建模方法采用不同的策略进行课堂教学,才能让学生更容易吸引和掌握。
2数学建模方法的教学策略
2.1建模方法的多重联合性
多重联合不仅可以让大学生把多种数学建模方法进行联系与融合,还能通过它们相互之间的关联性而进行有机的组合,在实际的问题解决中发挥出建模方法的最大效用。
2.2建模方法的阶级递进
虽然数学建模方法是一个实现数学知识与实践应用相结合的工具,是需要大学生们熟练掌握和娴熟运用的,但在实际的教学过程中,因为每个学生的资质不同,接受知识的快慢也不一样,再加上他们智力水平的差异性,对于数学建模方法接收的程度也会受到影响。而老师要想让每个学生都能达到数学建模合理运用的目的,就必须要掌握每一位学习的特点,从他们的数学实际出发,因材施教,阶级递进,这样才能让各个阶层的学生都能够得到锻炼和提高。而且数学建模的过程本身就是一个比较抽象的过程,对于初学者来说,会觉得非常的困难,只有掌握了建模的意义和过程,才能在实践应用中慢慢的去领会,继而达到实际运用的效果。
2.3建模方法的交叉设计
数学建模方法教学的目的就是要解决生活当中的实际性问题,所以在进行建模方法的学习时,一定要把现实情境与理论知识交叉进行学习,因为离开了实际问题的数学模型毫无用武之地,只有把模型知识应用到具体的问题情境当中,才能让它发挥作用,才能让大学生们对数学建模的学习更感兴趣,促进他们综合能力的提升。
2.4建模方法的实践应用