欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

航空航天发展方向范文

时间:2023-08-21 16:58:05

序论:在您撰写航空航天发展方向时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

航空航天发展方向

第1篇

【关键词】航空发动机燃油系统控制系统研究进展

随着我国航空航天的不断进步,航空发动机技术的发展也不断的提高,燃油和控制系统由原来的简单系统发展到现在的复杂技术,由原来的液压机械操作发展到现在由全权限数字电子控制(FADEC)进行操作。原有的军用航空发动机中燃油和控制系统的特点是多变几何控制能力,而现在的FADEC技术将发动机的故障诊断和监视系统归入到发动机的控制系统中。在航空航天发展速度较快的今天,防喘控制也受到航天专家的重视。因此,本文将对航空发动机燃油和控制系统的发展进行阐释,为我国的航空航天发展提供理论依据。

1我国现阶段航空发动机的发展现状

1.1燃油控制系统的发展现状

燃油控制系统是航空发动机的核心控制系统,其主要性能直接影响整个发动机的控制系统,而燃油泵是燃油系统的重要组成部分。燃油泵包括燃油增压泵和主燃油泵,目前全球各国研制的军用航空发动机中的燃油增压泵是采用离心式独立转动模式,其增压能力可达到0.4-0.8 MPa;而主燃油泵一般采用的是齿轮泵,主要是由于齿轮泵的体积较小、流量较大。还有一种比较合理的选择是采用高压柱塞泵,它既可以作为主燃油泵还可以作为喷口油泵,据调查显示,该泵使用情况较为普遍,在英国生产的发动机中就采用了高压柱塞泵作为主燃油泵,最大的出口压力可达21 MPa,最大的流量也可达每小时10000kg,而近期俄罗斯也研发出了高压燃油柱塞泵。而通过大量的实验和应用显示,在泵油系统中还是应该采用离心泵作为发动机的主燃油泵,其主要特点是制造结构简单、质地较轻、燃油温升较少,且质量达到了要求。离心泵在设计上较为简单,其控制操作也极为方便,但在小流量的启动过程中其性能较低,因此需要再单独配置一个启动泵,这样将发动机的转数和流量变为可调控的模式。

1.2喷管控制系统的发展现状

发动机的喷管控制系统在航空发动机中也占有举足轻重的位置,对于发动机尾喷管的介质,我国目前采用液压油、燃油和滑油,但由于滑油和液压油的性较好,可导致喷管油源泵在工作时压力达到最高。在发动机中使用液压油系统则可以无需设立独立的油源系统,但在这样共同使用液压油源时,可对飞机的动态操作系统产生不利的影响,还会导致飞机的液压系统遭到污染。有调查显示,英国曾采用发动机尾喷管的独立滑油系统,虽然对喷管的控制得到了灵敏的提升,但在油源系统中增加了油箱和油泵等装置,使得控制系统的结构更为复杂。目前在我国的军用发动机中,使用较多的喷管控制系统是以燃油为介质,与此同时,在喷管油源泵的选择上多以高压柱塞泵为主。该泵的最大出口压力可达23 MPa,最大流量可达每小时3600L。

1.3FADEC技术系统的发展现状

FADEC技术是新研发的全权限数字电子控制系统,其主要包括传感器、执行结构、微处理机以及数据的通讯。数据传感器的使用数量在不断的增加,致使军用发动机电缆的质量也有进步,在发动机的燃油和控制系统中,传感器的质量占有不可或缺的位置。我国对传感器的研发方向是制造出光纤和智能的传感器,这将是迎合光纤通信的最大亮点。与此同时,微电子技术也给FADEC的发展提供了电子硬件,随着电子技术的蓬勃发展,微处理机也越来越受到航空专家的关注。在发动机的数据通讯过程中,通过高速的光纤数据把发动机的智能传感器和执行机构有效的连接起来,取代了原有的点到点式的串行通讯方式,这样提高了数据传输系统的安全性。在发动机未来的研发过程中,要注重防喘控制等相结合的应用,要做到同监视系统、飞控系统以及火控系统共同结合。FADEC技术可以实施较复杂的控制计划,用自适应控制系统进行对发动机的综合控制。

1.4防喘系统的发展现状

防喘系统在军用航空发动机中的主要作用是防止飞机飞行或发射武器时发动机出现喘振和熄火。美国和俄罗斯等国家在军用发动机上都使用了防喘和消喘的控制系统,同样的在我国的军用航空发动机中也应用了数字化的防喘控制系统,并取得了较大的研究进展。我国军用发动机中防喘控制系统的设计理念是采用有静压传感器的喘振信号器和高响应压力传感器,其设计可以利用数字滤波准确的判断出喘振的征候。不同类型的发动机其采用的防喘控制系统也是不尽相同的。在发动机的研发过程中,进口温度在90-100℃之内方可保证发动机工作的稳定性,若超过140℃时,发动机会出现瞬间的喘振现象,但发动机自身的防喘控制系统会将其回复到原始的稳定状态。

1.5监视系统的发展现状

在我国军用发动机中均配置了不同模式的监视控制系统,根据飞机功能的不同配置不同模式的监视控制系统,有的配置专用的监视系统,有的同飞行记录系统相兼容。我国研制的军用发动机中的监视控制系统,为了监视发动机在使用过程中关键参数的变化情况,监视系统可记录发动机的工作时间、工作温度、涡轮叶片的使用寿命系数以及高压转子的主、次循环等参数。监视系统在正常工作时,有两个机构在执行着相应的职责,一个机构执行控制系统,另一个机构执行状态监视系统,当监控系统出现故障时,就由状态监视系统进行对发动机的控制,在控制系统出现故障的时间里对飞行的数据和存储的监视参数进行记录,以便对监视故障的诊断提供帮助。

2我国未来燃油和控制系统的发展趋势

2.1供油系统的加强

我国研发的军用发动机主要是以燃油和控制系统为主导地位,采用新型的燃油泵控制系统同科学的电子硬件相结合,共同提高FADEC系统的工作性能。运用科学的控制系统和合理的控制算法可提高发动机的控制指令,不仅可以提高控制系统的使用寿命,同时还可以降低研发控制系统的成本。而降低供油系统的成本也成为学者的研究目标,研究表明当燃油的温升在20-30℃之间时,供油系统的质量便可减轻一半,这就大大的提高了供油系统的使用寿命。为了降低燃油系统对污染的增加,我国研制的军用发动机多采用离心式油泵,进而取代原有的齿轮泵和柱塞泵。但离心泵在工作过程中有弊端,即在小流量时效率较低,便会造成燃油温度的升高,因此,专家研发得出通过调节泵的工作转速来调节燃油泵的供油量。目前我国军用的航空发动机的燃油系统是应用电子技术进行控制,这就需要应用高集成度和耐高温的电子元件和器件,独立的燃油泵转动装置便成了发动机自我监视和诊断的保证。

2.2先进技术和科技的应用

我国军用发动机的燃油和控制系统中,应用了先进的技术和科技,采用耐高温的半导体元件可耐高温350℃、应用最先进的高温光电技术测量装置、采用砷化镓材质作为集成电路、高速处理器可达每秒一亿次以及高性能的复合材料。在军用航空发动机控制系统的设计上运用先进的分析和检测软件。在发动机研制过程中,应加强计算机辅助的设计理念,在燃油附件中利用先进技术进行改造,从发动机的工装设计、产品设计、工艺设计以及编程等发面共同发展,提高发动机的质量,节省研制时间。要利用先进的技术积极展开对控制系统和综合控制系统的研发工作,加强对FADEC技术的研发,利用智能传感器、数字执行机构、数据通讯、网络技术等进行发动机的研发。

3结语

在我国航空航天行业迅速发展的今天,军用航空发动机燃油和控制系统的研究取得了较大的进步。随着我国科研人员的不断研究,中国航空发动机的燃油和控制系统也达到了较高的水平。为能研制出更高质量的航空发动机燃油和控制系统,研究人员应继续加大对FADEC系统的研发工作,增加试验的准确性和应用性,要注重软件系统的编程,结合实践中发动机的型号进行研究,加快FADEC系统的研发。本文通过阐释燃油控制系统、喷管控制系统、FADEC技术系统、防喘系统以及监视系统的发展现状,进而提出了我国要加强供油系统,同时采用先进技术和科技来提高我国未来燃油和控制系统的蓬勃发展。为我国军用航空发动机的研制提供理论依据,与此同时,也为我国的航空航天发展指明了方向。

参考文献:

[1]张绍基.航空发动机燃油与控制系统的研究与展望[J].航空发动机,2003,03:1-5+10.

第2篇

【关键词】应变电测 传感器 发展应用

随着社会的不断发展,科技对于人们生活的影响越来越大,已经逐步的走入了人们日常环境以及工业化生产中。在大型工业、机械化工以及航空航天等领域中,新的科技应用使得各种大型设备结构复杂、精密度高,为工业化、机械化发展提供重要技术保障。因此,各种设备的正常运行是保证工业化发展的基础,是安全生产以及产品经济的前提,而对设备的应变测试是检测设备正常运行的重要手段之一。应力应变测试以及传感器技术的应用可以精确的对设备或者产品的结构、各种零部件以及工作时的受力、传热等状况进行准确的测试,保证设备运行时有着正确的位移、应变、受力、受热等力学基础参数,保证机械设备在合适的范围运行,避免由于结构问题或者受力、强度等问题导致的运行故障。所以说,应变电测与传感器技术对我国工业生活的发展建设是人类社会未来发展的必然选择。借助一定的设备检测节点来处理一定的信息,从而来监控和检测设备运行的实时环境,有利于大大的推动、保护设备的正常运行以及人们的生命财产安全,展示了广阔的发展前景。

1 技术原理与发展现状

应变电测的原理是将被测物品产生的应变反应到电阻片上,然后采集电阻应变片上由于电阻变化产生的阻值。由于电阻应变片较为敏感,属于敏感性元件,因此在电阻应变片设计以及测量过程中需要注意应变片的连接方式、温度影响、电阻片厚度和敏感度等因素的影响。在应变测量时,需要把电阻应变片连接在被测物件的表面,当被测物表面产生受力变形时,表面的电阻应变片会敏感的捕捉到电阻片基底感应获取的应力信息,从而将信息由基地传到应变片的敏感栅位置,敏感栅根据被测件的变形情况计算出实际的变形量,最终使得电阻应变片产生相应的阻值,转换为阻值数字表达出来。在信息技术的不断推进发展中,应变电测也逐渐走向 了数字化以及网络化,自动采集数据大大增加了电测技术的工作效率以及工作精度,有效促进了应变电测技术发展。

传感器目前主流的有多种类型,例如感光传感器、温度传感器、应变传感器、湿度传感器以及热红外传感器等等,一般在工业系统中常用的传感器是应变计式传感器。在工业系统中,传感器与各个网络的节点密切实时连接,不同的节点之间可以借助一定的协议来实现连接,进而保证在一定的环境信息基础之上进行协同工作,共同完成了数据采集护工作。恰恰传感器凭借着其自身的优越性,例如网络容量大、数据量较小、灵敏度高、实时性好等,进而来发挥出整个网络在传输数据信息的可靠性和安全性,体现了工业系统的优势。

当前,应变电测与传感器技术正在我国各个行业发挥重要的作用,而该技术的发展仍然需要进一步提高,应变电测与传感器技术的水平以及精度必须要达到具有一定的功能使用性标准,达到国际一流水平,以满足我国现代工业发展的需求。总而言之,当前形势下我国应变电测与传感器技术工作的主要目标具体如下:

(1)要能够实现科学的、系统的、精确的且快速的对于工业设备的工作状况进行数据性的描述, 针对未来的工业设备的发展变化趋势,特别是那些我国政府十分重视的行业设备进行重点关注,并根据设备进行技术革新,不断满足发展需求。

(2)要能够更加精确的给出应变阻值,提高技术的精度,根据反馈值保证设备在安全使用范围内。

(3)进一步完善应变电测技术的采集功能,实现多种传感器技术的融合,加强技术创新,不断适应日益发展的科学化生产水平。

2 应变电测与传感器技术的发展应用

2.1 新型设备的产生

越来越先进的工业技术使得工业系统对新技术的要求也越来越高,这也同样刺激了应变电测计的品种以及技术规格都有了突飞猛进的发展。在使用的应力值范围、应用温度、环境复杂程度等方面都有了^大的进步,一些针对特殊环境下使用的应变计也逐渐被推出,如高温应变计、防水应变计等。除此之外,在应用范围上也有了较大的革新,除了常用的温度、应力应变外 ,还包括加速度、称重、超小型、沉降计等新型应变计,在使用精度上有了较大的提高,一些应变计还可以多次重复使用,节约资源,提高 利用率。同时,针对各种应变电测设备,相应的开发出了很多对设备进行物理量测试的技术方法,包括对各种形式的传感器进行数据采集、处理的专门软件,可以实现对应变计以及传感器的自动化测量与分析。新型数字动态应变电测计的使用也是一种技术革新,能够实现应变电测计和 计算机的对接,大大提高了对设备结构、试验进行分析的工作效率,保证了工作质量。

2.2 航空航天领域的应用

近年来,我国航空航天技术得到了长足的发展,同样的,应变电测与传感器技术在其中也起到了不可小觑的作用,是航空航天发展中重要的技术支持。在飞机发动机中,涡轮转子以及涡轮风扇的工作需要很高的温度,发动机转动时温度最高可以达到900℃,要想在这种工作环境下检测发动机叶片的应变变化,所用的应变电阻片必须要能够耐高温,对此,新开发的应变测量计可以实现长时间的高温使用,成功解决了这一难题并取得了良好的效果。此外,在飞机发动机摇臂上采用的动态应变仪取得突出的效果;飞机发动机导管采用的应力检测试片很好的减小了飞机发动机导管 的动应力;发动机矢量喷管采用的载荷测量技术实现了发动机的减重并为发动机优化设计提供数据 理论支持;在返回舱的模拟中采用的应力测试以及动态应变仪保障了返回舱的强度,由此可见,应变电测技术以及传感器技术在航空航天领域有着至关重要的作用。

3 结束语

随着工业化系统的飞速发展,科技化技术水平不断推动着应变电测技术的不断进步,工业设备的应变测试有了更多、更好的选择,为航空航天、铁路运输等工业领域的产品发展提供了有利的技术保障,是计算结构强度、应力应变、温度变化等测试的有效手段,为工业试验以及工业数据分析提供了较为准确的数据资料。

参考文献

[1]李炳生,李斌,曹文清.电阻应变式传感器在结构试验中的应用新技术[J].结构工程师,2011(51).

[2]沈观林.应变电测与传感器技术的新发展及应用[J].中国测试,2011(02).

[3]刘九卿.应变式称重传感器技术发展概况[A].称重科技暨第八届全国称重技术研讨会论文集[C].2009.

第3篇

世界航天工业经过五十多年的发展,目前规模已相当可观。在不同程度上建立了航天工业的国家和地区已有20多个,但在能力与水平上,各国的相互差距仍然很大。目前,世界航天工业主要分布在一些发达国家和大国,以美国最为发达,俄罗斯、欧洲和日本的航天工业也相当发达,发展中国家中,中国、印度、巴西等国的航天工业都有一定的能力和水平。

一、美国的航天工业

美国的航天工业经过数十年的发展已形成了庞大的科研生产体系,从事航天工业的员工人数近百万人,其中科研和工程技术人员约占到总数的近80%。美国从事与航天有关的研究与咨询活动的研究机构及学会等约有200多家。按照航天产品和导弹的总体、动力系统和电子设备三大部分的主要承包商统计,约有370多家公司;如果将有关设备、仪器仪表、地面设备、电子元器件及原材料企业也计算在内,则为航天产品配套的公司有1000多家。美国大型航天和导弹公司大多从事航空航天业务,同时经营多种业务,有雄厚的技术开发设计能力。

美国将空间开发与利用作为综合国力新的增长点,确立了发展空间能力为基本国策,不断加强国家对航天工业的协调,实施商业化空间政策,对民用和军用航天计划在技术开发、发射和服务支持方面进行最大限度的协作,并广泛参与世界范围的竞争。美国已形成了一套比较完善的航天与导弹工业管理体制。总统与国会为决策层,总统负责航天和导弹工业发展的战略决策和方针政策,国会进行航天和工业管理的立法,监督政府有关部门的航天和导弹工业管理工作,并通过预算拨款和政策对航天和导弹工业进行宏观调控。国防部与国家航空航天局(NASA)为计划层,国防部是军用航天和导弹的主管部门,NASA是美国民用航天活动的政府主要管理部门,并承担部分军用航空航天计划,NASA还与其它政府部门负责商业航天规划的实施。承包商(工业界)、科研部门、大学等为实施层。

美国在航天工业上的投资远远超出其它国家,2001年达到288亿美元,约占世界所有国家航天预算总和的75%。

到目前为止,美国不仅形成了庞大的航天和导弹研发、生产和管理体系,而且不论是航天运载工具和航天器、还是各类导弹,均形成种类齐全、型号繁多的体系。美国具有世界上最强大的航天运载能力,拥有重型、大、中、小型等多种系列运载火箭,目前只有美国的航天飞机是世界上唯一投入使用的可重复使用的运载器,在研的及预研的可重复使用的运载器数量最多时达到十几种;美国载人航天和空间探测技术发展成熟,目前领导和管理着庞大而复杂的国际空间站工程,数十个空间探测器探测了月球、行星和星际,各类在轨的卫星门类齐全。自人类发射第一颗人造地球卫星以来,各国发射了5000余颗卫星,其中美国占了将近一半。

美国的航天和导弹技术始终处于世界领先地位,这与其长期保持雄厚的航天工业基础和持续的创新能力分不开。航天与导弹技术属于综合技术和系统工程技术,需要以各专业技术为基础。美国十分重视国防技术基础的发展,国防部制订的15项国防关键技术,其中12项都用于航天和导弹的研发。而这些关键技术的绝大多数在世界居领先地位。

二、俄罗斯航天工业

俄罗斯继承了苏联大部分航天与导弹工业的科研设计机构和工业企业,保留了规模巨大航天与导弹工业的基础,以及雄厚的科研、生产、试验和应用能力。独立后,俄联邦政府给航天与导弹工业的财政拨款锐减,许多已列入航天与导弹计划的研制和生产项目被取消或推迟,航天与导弹工业受到巨大的影响。但由于苏联航天与导弹工业的庞大规模和坚实的基础,使俄罗斯至今仍然保持着一个实力仅次于美国、许多领域可以与美国并驾齐驱的航天与导弹工业强国的地位。

俄罗斯非常重视航天工业的发展,在经费有限,航天与导弹发展规模缩小的情况下,突出保证国家航天与导弹重点项目的实施和发展,继续保持重点航天与导弹技术在世界的领先地位。俄罗斯将核威摄力量做为国家安全的基石,保持和发展包括新型战略导弹在内的战略核力量,确保独立研制、生产先进战略导弹系统的能力。鼓励航天与战术导弹产品的出口,积极开展国际航天合作。

目前,俄罗斯航空航天局直接管理着从事航天与导弹系统及相关部件研制的研究设计机构和生产企业一百多家,另有航空航天局内外的45家企业通过合作参与航天器与导弹的研制生产,还有一些俄罗斯与国外合资的航天企业。从事航天与导弹研制与生产的雇员近30万。从独立后的1992年至2000年底,俄罗斯共进行了316次航天发射,先后发射了454个各种轨道的航天器。近5年来,俄罗斯平均每年约进行20~30次航天发射,发射数量大约是苏联时期的1/3。俄罗斯的航天产品包括各种航天运载器、卫星和深空探测器、载人飞船与空间站,建立了完整的航天飞行控制与测量系统,开展了全面的航天应用与丰富空间科学研究活动,是美国之外全球航天产品最齐全、设施最配套的国家。俄罗斯已经形成种类齐全、产品配套的导弹武器系统。总体上说,在许多领域俄罗斯导弹武器系统在品种、技战术水平上都可与美国匹敌。

三、欧洲航天工业

法国是西欧第一航天大国,也是美国和俄罗斯之后的世界第三航天大国。它拥有强大的运载火箭与航天器制造能力和类型较齐全、规模较庞大的导弹研制生产能力。法国航天和导弹工业的规模在西欧居第一位,从业人数和销售额均高居西欧各国之首。法国能独立或为主研制各种大型运载火箭,通信、侦察和对地观测卫星,较大型航天器以及各种类型的导弹,共研制过或正在研制约5个系列的运载火箭、约15种型号的卫星、3种型号的航天器和约60种型号的导弹,具备总体设计、推进、制导、结构、防热等分系统设计与研制以及电池、火工品等零部件研制能力。法国研制生产的各种运载火箭、卫星 、航天器和导弹具有较高的技术和应用水平。其中,通信和遥感卫星性能接近世界先进水平,并带头打破了美国对国际商业通信卫星研制市场的垄断,成为“阿拉伯卫星”和“土耳其卫星”的主承包商;反舰导弹、防空导弹、空空导弹的性能基本接近或达到美国同类武器系统的水平。法国航天大型企业的基础雄厚、设备精良、技术先进,如在“阿里安”火箭总装车间拥有现代化的机器人、加工中心、CAD/CAM、数学仿真、模拟仿真等设备,其设计、研制、管理手段均非常先进。

英国航天和导弹工业的规模,在西方国家中处于前列。英国有比较配套的航天工业产业结构和产品结构,研发、生产能力与水平在西方国家中处于前列。英国航天工业的研发和生产注重选择重点发展方向,主要是在对地观测卫星、小卫星和卫星软件等领域的研发、生产中具有很强的实力;在通信卫星技术领域的研发中处于世界先进水平;能独立研发、生产卫星整星和探空火箭,但不能独立研发、生产运载火箭。英国虽然缺乏战略导弹生产能力,但在战术导弹领域,除了不具备独立研制生产巡航导弹的能力外,其它战术导弹不仅可以独立研发和生产,而且其水平位居世界先进行列,至今已经生产了30多种型号的战术导弹。英国的航天与导弹产品在国际市场上具有一定的竞争力,其中每年战术导弹的出口贸易额达10多亿英镑。

德国近年来在航天器系统设计、制造、管理和工程总承包方面积累了丰富的经验,掌握了许多领域的关键先进技术。在单、双组元液体推进系统,硅太阳电池及复合材料电池板,卫星姿控系统,行波管放大器,光学仪器,电火箭发动机技术等领域拥有世界一流技术。在大型运载火箭第二级液体芯级、液体捆绑助推器、上面级液体火箭发动机、姿控发动机和火箭结构件的研制上具有丰富的经验。德国具有应用卫星和科学实验卫星整星研制的能力,并拥有很高卫星制造水平,尤其在卫星太阳电池系统、姿控系统、光学仪器、卫星通信有效载荷、卫星单组元和双组元推力器及电推进系统领域拥有先进水平。德国近年来积极参与了欧洲阿里安4、阿里安5运载火箭的研制和生产,并自己研制了哥白尼德国邮政卫星。德国不生产战略导弹产品,研制的导弹产品主要有地空导弹、空地导弹、空空导弹、反舰导弹、反坦克导弹等。

意大利航天与导弹工业规模在西欧排名第四位。意大利的航天工业在欧洲具有较先进的技术水平,能够独立开发卫星系统和轻型运载火箭。在大型运载火箭固体助推器、卫星平台、卫星通信高频技术、通信卫星有效载荷、卫星天线、远地点发动机领域位于欧洲前列。意大利作为主承包商研制的典型卫星型号有意大利卫星-1、-2通信卫星,阿蒂米斯先进中继和技术卫星,宇宙-昴星团卫星,米塔科学小卫星。与其他国家联合研制的航天器有多种型号。意大利目前作为主承包商正在研制维加轻型运载火箭;参加了国际空间站项目,承担了多功能增压后勤舱(MPLM)等重大项目的研制。在导弹领域,主要通过与法国、德国、英国和美国等国家合作的方式研制生产战术导弹,产品包括反舰导弹、防空导弹、空空导弹、空地(舰)导弹和反坦克导弹。

第4篇

1970年4月24日,我国第一颗人造地球卫星“东方红一号”发射成功,拉开了中国人探索宇宙奥秘、和平利用太空、造福人类的序幕。经过几代航天人的接续奋斗,我国航天事业创造了以“两弹一星”、载人航天、月球探y为代表的辉煌成就,走出了一条自力更生、自主创新的发展道路,积淀了深厚博大的航天精神。

2016年10月12日,国家国防科技工业局党组在《人民日报》刊文称,中国将力争在2020年左右实现重点突破,加速迈向航天强国;2030年左右实现整体跃升,跻身航天强国之列;2050年之前实现超越引领,全面建成航天强国。

工业和信息化部副部长、国家国防科技工业局局长、国家航天局局长许达哲说:“‘十三五’是中国航天发展的战略机遇期,发展航天事业,建设航天强国,是我们不懈追求的航天梦。”从航天大国到航天强国,我们还有多少路要走?

我国距离航天强国还有多远?

航天强国有哪些具体指标?中国航天科技集团董事长雷凡培曾在接受采访时表示,航天强国的指标包括100项产品技术指标和27项经济指标。

现在,我国能达到国际先进水平的指标有三分之一。产品技术指标中,载人航天工程、月球探测等一些主要指标上,已达到国际先进水平;经济指标中,有一半的经济规模指标已达到,但人均指标仍有差距。从目前来看,“十三五”乃至未来的一段时间,我国将从重大项目、工程落地和应用层面进行布局。

在重大项目上,围绕国家重大战略需求,我国将选择重点领域,启动实施天地一体化信息网络、深空探测及空间飞行器在轨服务与维护系统、重型运载火箭等一批新的重大科技项目和重大工程。

例如,载人航天工程建成长期有人照料的空间站,开展较大规模的空间应用;探月工程实现“三步走”战略目标,嫦娥五号实现特定区域软着陆及采样返回,嫦娥四号实现人类探测器首次月球背面软着陆;高分辨率对地观测系统全面建成,为形成高空间分辨率、高时间分辨率、高光谱分辨率的综合对地观测体系提供支撑;第二代北斗卫星导航系统覆盖全球,形成高质量定位、导航和授时的全球服务能力。

另一方面,加强空间科学研究,提高人类科学认知水平。充分发挥空间科学在创新、发现和技术牵引方面的重要作用,持续推进载人航天、月球探测以及空间科学先导专项等工程的科学探索,开展空间天文、空间物理、微重力、空间环境、空间生命等空间科学研究,建立可持续发展的空间科学计划,加强空间科学探索研究,在空间科学前沿领域取得重大发现和突破。

而在应用层面,商业航天发展和产业化应用是重要方向。我国将围绕国民经济建设和社会发展重大需求,完善卫星应用体系,拓展卫星应用领域,强化卫星在资源开发与环境保护、防灾减灾与应急反应、社会管理与公共服务、大众信息消费与服务等方面的综合应用。

此外,我国还将进行航天体系的体制改革。例如,推进航天科研院所分类改革和混合所有制企业改革,科学划分航天科研院所类别,坚持生产经营类院所企业化转制,推动建立现代企业制度。

构建航天新业态

雷凡培曾表示,从欧美航天产业发展历程来看,航天产业的直接投入产出比约为1:2,而相关产业的辐射则高达1:7至1:14。我国航天产业的直接投入产出比较欧美略低,相关产业的辐射可以达到1:7至1:10的区间范围。在航天的商业应用上仍有提升空间。

这样的辐射力正在吸引着地方布局商业航天产业。

2016年9月,我国首个国家级商业航天产业基地落户武汉。该基地将以发展商业航天为主导,以新一代航天发射及应用为核心,通过科技创新、商业模式创新和管理创新,打造航天运载火箭及发射服务、卫星平台及载荷、空间信息应用服务、航天地面设备及制造等四大主导产业。

复旦大学航空航天系教授孙刚认为,地方这样的探索尝试,是希望能够在航天商业发展上做出一些产品。但要想达到盈利目的,时间还比较长。

在他看来,国外之所以能出现像SpaceX公司的“猎鹰-9”完成世界首次海上回收火箭这样的实践项目,是因为技术基础较牢靠。“我们能做出一些产品,但后续的产品延保需要大量的技术保障。”

北京航空航天大学通用航空产业研究中心主任高远洋表示,从我国国情来看,吸引社会资本和减低民营企业进入航天领域门槛,也是难点和重点。因为航天航空领域往往自成体系,传统做法是进行体制内配套。未来,可以考虑在准入标准上,进行一些体制机制突破。

这也是今后的一个探索方向。例如,我国将探索推广政府与社会资本合作(PPP)等模式,鼓励和引导社会力量参与国家民用空间基础设施、卫星地面应用系统等建设运营,以及空间信息产品服务,培育“互联网+卫星应用”新业态,建立完善政府购买服务的模式,促进商业航天健康发展。空间站、探测器登月返回等国家重大航天工程将持续实施,服务经济社会发展的北斗导航、高分、海洋等众多卫星项目产生良好而广泛的经济和社会效益……当前和今后一个时期,作为产业链较全的航天大国,中国航天正迎来一个难得的发展机遇。如果能够抓住这个机遇并利用好,将加速实现我国从航天大国向航天强国的历史性跨越,包括具备全面的宇宙空间探索能力,建成完善的国家空间基础设施和航天装备体系,具备引领航天技术发展的自主创新能力,具备实力雄厚的航天国际竞争力和话语权等。

在机遇面前,一方面需要航天大型企业和研究机构不断创新,继续引领整个行业和领域发展:另一方面,也可以看到,一些新的研发机构和民营企业也对民用航天领域充满热情,并具备了跨入门槛的实力。如2015年发射的第一颗新一代北斗导航卫星,由中科院和上海市合作共建的上海微小卫星工程中心研制,采用了不同以往的卫星新平台和新技术,在性价比上比较有优势。如果能够让这些新生力量获得更多参与、成长的机会,整合到航天产业的生态链中,与大型航天企业一起合力构建起更为开放的民用航天创新生态,将为中国航天带来更广阔的创新空间。

此外,国家层面将加快推进航天法立法工作,研究制定民用航天管理条例、空间数据与应用管理条例、宇航产品与技术出口管理条例等行政法规,健全民用航天发射许可、空间物体登记等制度。研究制定国家航天政策,建立完善商业航天、国际合作、知识产权等配套政策,形成社会各类主体公平有序参与航天发展的军民融合开放局面,保障航天事业规范有序发展。

第5篇

【关键词】河北省廊坊市 航天战略 新兴产业

【中图分类号】F276.44 【文献标识码】A

我国社会主义现代化建设,经过改革开放多年努力,已经取得了重要实质性成果,尤其表现在我国社会经济快速增长。但是,随着全球经济和金融一体化趋势不断深入,我国各项产业正面临着严峻考验,2008年金融危机以来,国民生产总值和贸易出口额获得了进一步增加,这一结果主要还是以高额资源消费为代价。世界各国都更加关注高新科学技术和构建未来可持续发展的制高点,如何构建符合我国国情的产业结构和培植具有核心竞争力的新产业,已经成为国家宏观政策制定的主要方向和学术界研究的一个热点问题。

2012年,我国出台关于《“十二五”战略性新兴产业发展规划》,更加明确我国着力发展新兴产业的相关政策和指导方针,由于航天产业从自身建设和功能性外延等特征,更加成为我国战略新兴产业发展的关键性支撑石。2011年,河北省政府与中国航天科技集团公司签署区域地方和航天产业系统发展战略框架协议,在“十二五”期间,共同促进河北省社会经济和航天产协同发展,主要包括:运载火箭制造及实验、战略性新兴产业等五个主要内容。而廊坊市在河北省具有得天独厚的位置优势,廊坊航天战略新兴产业建设,对于我国航天工业可持续发展、京津航天产业的拓展和延伸、地方传统产业调整和产业结构全面系统升级都有着关键性的实践性理论意义。

航天战略性新兴产业是基于高新技术和新兴产业相互融合,代表着我国科技创新和产业发展方向,近年来,河北省在推进产业结构调整和突出新兴战略产业方面,推出了一系列具有导向性政策措施,而这些实践性政策性策略,对于航天战略新兴产业长足进步起到关键性作用,并且取得一定的成效。但是不可回避的是,河北省产业调整和战略产业培育过程中,受到理论和经验等多维度影响,以及实际客观条件局部限制,产生很多新问题。

河北省航天产业发展的必要性

航天产业发展将会直接带动一系列战略新兴产业培育和学科技术的融合式发展,我国经过几十年的航天工业的探索和建设,已经构建出我国航天产业体系结构,并且航天产业的发展迈入了一个新发展阶段和历史时期。

航天产业具有重要的战略导向性。航天产业的发展直接关系到我国高端装备制造建设和发展,是我国众多行业中具有高新科学技术应用产业之一,同时对于我国企业产业发展,起到战略导向性作用。①航天产业技术创新和应用,对于我国社会经济的发展起着重要的技术支撑和推进性作用效果,在提升我国人民生活质量、国际地位和综合国力方面,更加强调其战略性影响意义,一方面代表着我国在国际航天发展领域地位,另一方面也能够表示我国核心国防实力。例如美国航天协会关于航空航天技术的相关说明,②即该技术是否领先于世界水平,直接关系到国家各个方面战略性安危,发展航空航天技术是现在乃至未来长期投入和建设国家安全战略。可见,航天产业在我国社会经济和军事中占据核心地位,河北省航天战略性新兴产业建设,将会直接关系到我国航天产业整体规划和可持续发展。

航天产业的技术多样性和链条可扩性。航天产业建设和发展具有战略现代性作用,主要体现在航天产业技术的构成技术多样性和链条可扩展性,一是技术多样性,航空航天产品制造和生产是一项高精端、多学科技术融合而成,从某种程度上讲,航空航天产业发展水平能够直接代表我国先进科学生产力的基础建设情况。由于航天产品生产工艺的复杂性要求,制造生产需要在特定环境下完成,涉及多个学科和技术领域的协调配合,例如要求航空航天材料具有高可靠性新材料、新工艺和新技术,这也能够进一步说明航天产业在我国各产业领域前瞻性地位。同时技术多样性还体现在,生产航天产品需要小批量和多零件构成,这也要求在加工工艺选择和技术上,呈现出明显柔性生产力。二是链条可扩性,据有关部门相关数据统计,③航天战略新兴产业发展带动我国80%的新材料研发,促进多产业链条企业之间融合式发展,技术能够直接提升企业核心市场竞争力,能够更加有效促进其他产业结构的有效调整。未来10年,一个航天项目与产业效益的比值为1:180,推进国民生产总值增长值为 0.714%。

河北省航天产业发展存在的问题

河北省在航天性战略产业培育和发展方面,具有独特发展优势。一是区域位置属于京津经济的三角区域,符合产业延伸和资源互相渗透互补的要求,河北省航天产业的发展,将带动区域多元新兴产业发展,并且能够具有影响和被影响的区域经济发展优势;二是河北省的产业优势,2012年底,河北省物流产业呈现出快速增长趋势,同比2011年增加23.4%,物流产业已经成为河北省现代服务性的优势性产业,这也为航天战略新兴产业全国协同发展,提供重要基础性保障,同时河北省在推动我国“十二五”新兴产业方面,具有明显的发展成果,尤其是先进制造、新材料和高科技电子信息技术等;三是河北省航天产业政策性优势,主要体现在“十二五”纲要中明确指出进一步促进和实现河北省沿海地区发展,这也为河北省航天产业发展,提供上层政策性保证。由于河北省航天产业建设过程中基本无样本参照,属于探索性发展模式,目前,河北省航天产业发展的过程中,依然存在两个重要问题。

航天战略新兴产业集群模式偏低。从国家统计据的相关数据分析可知,④河北省是我国一个重要经济型大省,但是从河北省国内生产总值产业分布情况看,不属于一个以新兴产业为主导经济强省。主要体现在河北省的基础性还是以粗放式、高资源消耗为主的,例如钢铁等传统产业,企业规模虽有所增加,但是系统化归类集成程度不明显,低水平生产现象还很明显,这也是河北省产业发展过程中一个基础性问题。河北省航天产业有其自身特有发展模式,航天战略性新兴产业需要从布局上,充分考虑集中性,并通过相应产业集群模式,进行统筹式发展,构建出航天产业企业之间协调、多赢和技术互补促进融合的创新发展模式,并积极带动与之相关辅产业发展,初步形成以廊坊市为主的新兴航天产业集群,而对比河北省其他产业来说,还是属于较小规模产业集群,并且还需要进一步完善系统框架上的组织协调发展,形成航天战略新兴产业的协同发展机制,形成大产业链条下的规模性循环经济,从而形成以河北廊坊为中心的航天产业集群基地。

缺失高新核心支持性技术。全球范围内已经掀起了新一轮航空航天产业发展新时期,我国航空航天产业虽然在一些关键性技术领域,例如载人和火箭技术,已经达到国际航空航天的世界领先技术,但是从整个航天产业发展上,却具有明显的缺点和不足,主要体现在两个方面:一是航天产业原始创新能力还存在着明显的差距性,尤其是一些关键性核心支撑技术,不能满足我国社会经济发展要求,例如民用和军用飞机在我国社会生产生活中需求量急剧增加,而我国大型航空工业,还承接一些国外外包业务,严重影响航空科技技术创新资源。同时航天产业相关技术研发过多关注于数量而不是质量,2012年航天制造产业的申请专利数达到908件,但是具有整个行业高新技术比例不足2%,美国申请8654项,核心技术占26%,这一数据显示,我国航天产业原始创新能力和驱动力存在着较为严重问题,这也是河北省航天战略新兴产业发展的一个关键性问题。二是创新体制上存在着一定问题,尤其是在航天产业高新技术研发和市场结合方面的问题,河北省政府与中国航天科技集团具有战略性协同发展关系,在航天战略新兴产业发展过程中,已经感觉到中国航天科技集团具有明显的计划经济体制形态,企业之间管理上还存在行政领导关系,各个企业的自主经营权受到了重要限制,这也是导致原始创新动力不足的一个重要原因,同时,中航集团强调科研是主要,直接影响科研成果的市场性技术转化,导致与河北省航天战略新兴产业发展中的资源浪费和技术搁置情况,这也是河北省以及廊坊市航天战略新兴产业发展过程中的一个关键性抑制性问题。

促进航天战略性新兴产业发展的对策和建议

河北省航天产业发展是一项多技术、多企业相互融合,协同发展的高新技术产业模式,在河北省产业结构调整和新兴产业配置中,具有特殊的重要作用和意义。

地处京津两大城市之间的廊坊市其地理位置优越,并且具有较好的航天产业发展基础和条件,已建成的固安航天科技城正在成为对接北京、借势发展的契合点,预计在未来几年,固安航天科技城将形成航天技术研发、应用、服务一条龙的完整产业链,抢占战略性新兴产业发展的制高点。此外,廊坊市还拥有较好的科学研究平台,“河北省航天产业发展软科学研究基地”和“河北省航天遥感信息处理与应用协同创新中心”均设在廊坊市北华航天工业学院,这将为我省航天产业发展提供高质量的研究成果。在我国“十二五”规划的指导推动下,廊坊市航天产业必然会成为河北省社会经济发展的新的增长点。因此,在促进河北省及廊坊市航天战略新兴产业发展过程中,可以以廊坊市航天产业发展为着眼点,集中一切优势资源,制定符合区域经济发展可行性政策引导和支持,完善航天产业链条发展支持性渠道,运用多维度协同共进机制和手段,加大培养和促进航天战略性新兴产业发展。具体建议及对策如下:

促进廊坊航天产业集群模式和产业链条协同创新。航天产业自身特点是一个大型复杂、多技术、多产业组合,要实现国家航天战略创新导向目标,不断创造和提升航天战略新兴产业发展增长点,就要更加关注和强调航天产业集群模式合理化构建和产业链条中各个相互企业之间协同创新能力。廊坊市航天战略性新兴产业可持续发展,需要产业系统良好外界政策性环境和产业链条中各个企业创新,两者直接相互协调,直接影响航天产业发展实质性效率,也制约着航天产业价值链条各企业均衡性发展。因此,河北省及廊坊市航天新兴产业发展,就要不断完善和优化航天产业各企业外部发展环境,即给予政策性的引导和税收支持,构建出符合产业发展航天产业链条各个企业协同创新和共生平台,加大对于产业关键性核心共性产业技术研发突破,作为其他产业发展的技术导向和配套支持,从而更好服务于河北省传统产业结构转型和新兴战略产业发展。

实现廊坊特色航天产业核心技术创新。河北省航天战略新兴产业发展要充分和依靠自身,地理、科研和政策性优势,强调和突出以廊坊市为产业中心,支持和培养企业核心技术发展。核心技术企业发展是航天产业链条中心脏组成部门,直接代表着航天产业专业化和高信息技术性,这也直接需要政府政策性导向和引入社会资本进行长期可持续建设和发展。例如,国际上航天产业的一些核心技术都是由寡头企业垄断,由于利益驱使,其更加注重核心技术保护,使得其他国家难以获取。而我国在掌握航天产业关键技术中,具有较好产业发展优势,核心技术研究就是要依靠企业原创性,要耐得住长期投入和风险,建议河北省构建出航天产业核心技术创新保障平台,增加航天产业核心技术研发抗风险能力,关注国外航天同类技术反向工程求解、结合我国本土技术,进行核心技术再创新。在实现以河北省廊坊市为代表的航天产业核心技术创新的过程中,要始终明确两个支持问题:一是结合国内外航天产业发展新形势,解决关键性技术核心问题,以点盖面,充分把握住航天产业发展必要性和特殊性,建立廊坊市航天战略新兴产业良性发展合理化机制,形成一种产业优势发展稳定环境。二是以中央国企混合制改革为背景,不断整合河北省航天战略新兴产业链条,推进航天产业军用和民用相结合模式,更好地实现航天产业研发性向服务性模式转化,促进河北省及廊坊市区域社会经济航天新兴产业和其他产业的联动协调发展。

结语

航天战略性新兴产业的可持续发展,直接关系到我国社会经济发展和国际地位,航天产业发展的必要性,主要体现在航天产业具有先天的战略导向性和航天产业的技术多样性和链条可扩性,战略导向性是航天产业发展的必要前提,而产业技术多样性和链条可扩性是航天产业推进自身和促进其他产业建设的着眼点,可见构建我国大战略背景下的航天产业航母,促进河北省航天战略新兴产业发展具有现实客观需求。河北省在产业结构调整和培育新兴战略产业上,具有更加突出的京津翼黄金三角区地域优势、更加完备的产业配套服务保障体系和航天战略新兴产业发展的政策性扶持导向优势。

近几年,河北省航天战略性产业发展取得一定成绩的同时,也暴露出一些明显不足和问题,主要是航天战略新兴产业集群模式偏低和缺失高新核心支持性技术,而产业集群模式是航天战略新兴产业价值链条协同发展的保障性措施,高新核心技术支持是航天战略性新兴产业发展基础,也是推进河北省其他产业模式创新发展推动力。对于当前所存在的问题,文中建设性提出促进航天战略性新兴产业发展的对策和建议,主要包括,航天产业集群模式和产业链条的协同创新,及河北省具有特色航天产业核心技术创新。河北省航天战略产业发展需要来自各方面的多维度创新,只有创新才能走出一条符合我国实际情况的航天产业发展之路。我国航天战略新兴产业发展,是一项理论和实践反复结合的工作,需要更多机构和学者,进行系统性和关键问题研究,希望笔者文章关于河北省廊坊市航天战略性新兴产业发展问题探究,能起到抛砖引玉之作用,更加有利于航天战略新兴产业可持续发展的进一步探讨和研究。

(作者单位:北华航天工业学院;本文系2013年度北华航天工业学院科研基金项目“加速廊坊战略性新兴高端产业发展,助推绿色崛起”阶段性成果并受“河北省航天产业发展软科学研究基地”资助,项目编号:KY―2013―24)

【注释】

①傅培瑜:《我国战略性新兴产业发展的研究》,东北财经大学硕士学位论文,2010年,第6~9页。

②张春玲:“加快培育我国战略性新兴产业的对策研究“,《生态经济》,2013年第3期,第30页。

③王新新:“战略性新兴产业的培育与发展策略研究“,《生产力研究》,2011年第8期,第155~157页。

第6篇

发令枪已响,一场空天领域的竞赛正在激烈上演。近日,欧洲航天局宣布重返月球计划,将建造首个月球永久性基地,美国宇航局2016年则瞄准太空旅行和深空探测,实施一系列火星计划,并计划于2030年实现宇航员登陆火星的目标。各大国动作频频,剑指苍穹,那么作为军事强国的俄罗斯有着怎样的举动和战略考量呢?在这场激烈的角逐中,俄罗斯空天力量体系的实力又到底如何呢? 俄罗斯空天领域既有优势

作为老牌世界军事强国,俄罗斯的航天实力不容小觑。在苏联的光环下,俄罗斯航天业有着得天独厚的既有条件,使得其在诸多航天领域独具优势。

航天基础设施体系完善 莫斯科郊外的航天中心内,用于宇航员模拟太空练习的离心机正在工作。

20世纪美苏的“星球大战”推进了苏联航天业的快速发展,催生了强大完善的航天力量体系。苏联解体后,俄罗斯继承了苏联85%以上的航天工业,这使得俄在航空航天领域的起点较高,起步较快。诸如航天与导弹工业的科研机构、空天武器装备的生产制造单位、航天器的发射及监测基地等一整套完整的基础设施体系为俄罗斯航天业的发展铺平了道路。

空天核心技术较为成熟 1961年4月12日,苏联航天员尤里・加加林搭乘“东方”号载人航天飞船遨游太空,书写了人类探索太空的新篇章。苏联时期的叱咤雄风并未随苏联的解体而消散,其领先的核心技术在俄得以继承。目前,在运载火箭、反导武器方面,俄可以说独领。自1995年以来,美国军方一直使用俄制RD-180火箭发动机来发射军事和间谍卫星。迄今为止,“质子”-M大型运载火箭也运载了50多颗美国商用卫星。另外,俄正在发展的S-500防空反导系统,可拦截500千米外以5千米/秒速度高速飞行的弹道导弹或战略弹道导弹,以及大气层外的各种高速飞行器,其整体作战效能远远超过全球任何一种现役的防空系统。 追梦路上困难重重

虽然俄罗斯在空天领域占有一定优势,但较苏联来说,却一直在走下坡路,体制机制上的诟病积重难返,基础设施上的损耗也日益严重,这无形中给俄航天业的发展增加了巨大的阻力。

资金不足成为“拖油瓶” 此前,俄总统普京曾痛心疾首地指出,俄航天事业有沦为“航天马车夫”的危险。现在看来,这种形势依然不容乐观。从俄罗斯航天集团公司在2016年1月公布的2016~2025年俄联邦航天计划草案来看,俄未来10年的航天预算将比此前计划大幅缩水。受国际经济形势低迷和卢布汇率持续下跌影响,2016~2025年俄联邦航天预算将由此前计划的2万亿卢布降至1.4万亿卢布,降幅达30%。由此,俄未来10年的航天计划将被迫大幅“瘦身”。例如通过重型运载火箭实施“绕月”探测的时间,将从此前计划的2025年推迟到2025~2030年间实施;首次载人上月球的飞行时间将从2030年推迟至2035年;未来10年研制和发射的航天器数量也由此前计划的185个降至150个;此外,还有数个研究计划被从太空计划中砍掉。由于经费问题,俄空天领域老化的旧武器系统得不到有效改进,先进的新装备也无法列装部队。可以说,资金的短缺已经严重阻碍了俄航天工业的发展。

腐败问题成为“拦路虎” 近年来,俄航天工业效率低下,航天事故频发,多枚火箭发射失败,俄目前在建的大型航天发射场―所谓的“东方航天港”也屡次因为资金问题而导致工程陷入停滞。在2014年,根据俄罗斯相关监管机构的调查结果,联邦航天局内部被发现的金额竟超过18亿美元。俄副总理罗戈津也直言:“在这样的道德腐化程度之下,我们的航天发射屡屡发生事故也就不足为奇了。”所以,俄高层决心根除航天部门久治不愈的顽疾,俄航天集团公司也由此应运而生。

人才流失成为“绊脚石” 近年来,由于在政治、经济等方面的保障及待遇不完善,使得俄国防科技人才大量外流。俄罗斯齐奥尔科夫斯基航天科学院专家卡拉什表示,许多一流专家没有在一线工作,他们的兴趣点也不在加速俄航天技术发展方面,而更关注自己的职位和薪水。虽然政府最近几年在航空航天产业投入了大量资金支持其发展,但这些费用大都投给了新的研发项目,而投入到人才培养上的资金相对不足,造成了目前俄罗斯大部分掌握尖端技术的科学家仍都是年过半百的老科学家,年轻科学家和技术人员的比例越来越低,甚至出现“断崖”。 砥砺前行,只为空天梦

俄罗斯曾是雄霸一时的世界大国,自然不甘愿沦当“航天马车夫”。同时,俄罗斯也清楚,随着新时期战争形态的深刻变革,空天领域将是未来敌我较量的主要战场。因此,俄罗斯十分重视空天力量的发展,不断采取措施以实现孜孜以求的空天梦。

整合结构,聚焦精干 未来作战是体系间的作战,构建完善的空天作战防御体系显得十分必要。俄罗斯从1993年就已经开始着手筹建太空作战、预警和侦察系统,并于1997年合并完成了火箭部队、军事航天部队和导弹防御部队建设,到2001年已正式创建了“天军”―航天部队。2006年4月5日,俄罗斯总统批准了新的《空天防御构想》,明确了俄军空天防御体系的建设原则、结构组成、作战目标、建设步骤、未来发展方向等一系列重要的事宜。近年来,乘着“新面貌”军改的浪潮,俄在2011年开始建立“集防空、反导和太空防御为一体”的“国家空天防御系统”,组建空天防御兵,并于2015年8月正式成立空天军,整合了战略预警、导弹防御、要地防空、外空监控、航天支援保障等力量,大大提升了空天作战能力,实现了防空、反导、太空防御“三位一体”的目标要求。在2016年1月,俄又将国家航天局改为俄罗斯国家航天集团公司,旨在进一步精简组织编制、改善指挥能力、增强作战能力,加速落实“空天一体”的战略构想。这一路走来,俄罗斯披荆斩棘,乘风破浪,不断朝着精简、高效的空天作战防御体系迈进,大大推动了航天事业的发展。

防御为主,瞄准打赢 现今武装斗争的重心已转向空天领域,未来武装冲突的结局将主要由空天领域的对抗决定。2001年,美国单方面退出《反导条约》,在外空攻防对抗中采取“先发制人”的进攻战略原则。近年来,美国不断试飞X-37B空天飞机,使得全球快速打击不再遥不可及,隐身飞机、精确制导武器的广泛应用又给各国空天安全带来严重挑战。面对来自美国及其盟友咄咄逼人的空天威胁,俄罗斯结合目前的政治经济现状,认为优先发展空天防御、避免陷入军备竞赛、保证国家安全是当下的首要任务。为此,根据俄航天10年计划,反卫星武器将是重点发展对象,积极推进反卫星武器的研究和部署,压制和削弱美国的反导体系成为了工作的主要目标。目前,俄罗斯航天导弹防御部队可监视8500个太空目标,能对美国全境内所有洲际弹道导弹发射场进行全天候监视,已建成15个快速反低轨道卫星系统发射台,拥有100部导弹发射装置。在武器系统上,俄罗斯主攻的“白杨”-M导弹及主守的S-400“凯旋”反导系统提供了尖锐的利器和坚实的盾牌,让美国精心部署的空天攻防武器显得“力不从心”。

合作共赢,谋于发展 优势互补,合作共赢可以说是俄罗斯目前不得不采取的一项举措。由于巨大的经济下行压力,导致俄罗斯投在航天工业上的资金一缩再缩,不得不从其他方向上获取部分经济来源。另外,由于俄国防科技人才的流失及技术上的短板,使得加强国际交流合作非常必要。在商业领域,俄罗斯瞄准太空潜在的商业价值,不断开发挖掘,早在1999年8月俄罗斯空间联盟公司就开始与安德森的太空冒险旅行公司合作开发“太空游”项目,获得巨大利润;在太空探索领域,俄美两国合作已久,美国主力运载火箭“宇宙神”-5的第一级发动机就是引进俄制的RD-180,且在国际空间站的合作上,美国每向国际空间站运送1名宇航员,需向俄支付近7100万美元的“船票”。不管怎样,以国际交流与合作为跳板,将助力航天工业的迅速发展,给俄罗斯空天事业打开一条光明大道。因此,航天领域的交流与合作仍将是未来俄航天产业的重要工作方向。 俄罗斯S-400防空导系统

第7篇

关键词:增材制造技术;金属快速成型;工程应用;发展趋势

中图分类号:TB47 文献标志码:A

增材制造技术又称快速成型技术(RapidPro-totyping,RP),是20世纪80年代中期发展起来的一种利用材料堆积法制造实物产品的一项高新技术.该技术借助计算机、激光、精密传动和数控等手段,将计算机辅助设计(CAD)和计算机辅助制造(CAM)集成于一体,以逐层累积的建造方式在短时间内直接制造产品样品,无需传统的机械加工设备和工艺,显著地缩短了产品开发的周期,增强了企业的竞争能力[1].相比传统机械制造方法,增材制造技术可以实现任意复杂结构模具等的快速制造,在单件或小批量生产用机械制造过程中,具有制造成本低,周期短的优势,因此广泛应用于机械制造业[2].

1增材制造技术发展现状

1.1增材制造技术在国外的发展

增材制造技术最早出现在1892年,美国Blan-ther用分层制造法构成地形图并申请了专利,开启了该技术发展的序幕.20世纪80年代,RP技术经历了快速及根本性的发展,仅在1986~1998年期间注册的美国专利就有274个[3].美国的3DSystems公司于1988年生产出了世界上第一台液态光敏树脂选择性固化快速成型机(SLA-250).20世纪90年代后期,出现了3DP、SDM、SGC、FDM等十几种不同的快速成型技术.2012年美国总统奥巴马为重振美国制造业提出一系列计划,将3D打印技术列为11项重要技术之一.英国技术战略委员会“未来的高附加值制造技术展望”中,把增材制造技术列为提升国家竞争力,应对未来挑战的22个应优先发展技术之一[4].目前,美国Ford汽车公司和DuPont公司已经在他们的生产线上采用RP技术,美国Pratt&Whitney公司已应用RP技术制造铸造熔模.欧洲和日本等国家也不甘落后,纷纷进行RP技术及设备研制等方面的研究工作,如德国的EOS公司、以色列的Cubital公司以及日本的CMET公司等[3].近年来,采用RP设备最积极的地区是东亚,尤其是韩国、香港、新加坡[5].国外RP技术在航天航空、汽车交通、医疗器械、艺术创作等多个领域得到应用.

1.2增材制造技术在国内的发展

我国于90年代初才开始增材制造技术研究,虽短短20余年时间,却得到了工业界的高度重视,发展迅速.2013年,国内媒体纷纷报道,将RP技术称为“3D打印—无所不能的未来”[6]、“几乎颠覆传统的制造模式”[7]等.我国已拟定增材制造技术路线图和中长期发展战略,中国工程院2012年1号文件内容即为进行“增材制造技术工程科技发展战略的研究”,成立了由华中科技大学、西安交通大学、清华大学、北京航天航空大学、西北工业大学和国防科工委625所等专家组成的工作组,并已在2013年3月提交相关咨询研究报告[4].目前,我国已初步形成增材制造设备和材料的制造体系.部分国产设备已接近或达到美国公司同类产品的水平,设备及材料价格便宜.在国家科学技术部的支持下,我国已在深圳、天津、上海、西安等地建立一批向企业提供快速成形技术的服务机构,推动了增材制造技术在我国的广泛应用.另外,我国的部分科研院所和企业已研发出光固化、金属熔敷、生物制造、陶瓷成形、激光烧结、金属烧结、生物制造等类型的增材制造装备和材料[8],取得了很好的效果.但与工业化国家相比,我国RP技术的研究和应用尚存在一定的差距.

2增材制造技术基本成型原理与工艺

2.1增材制造技术的原理

增材制造技术是采用离散∕堆积成型的原理,通过离散获得堆积的路径、限制和方式,经过材料堆积叠加形成三维实体的一种前沿材料成型技术[9].其过程为:对具有CAD构造的产品三维模型进行分层切片,得到各层界面的轮廓,按照这些轮廓,激光束选择性地切割一层层的纸(或树脂固化、粉末烧结等),形成各界面并逐步叠加成三维产品[10].由于增材制造技术把复杂的三维制造转化为一系列二维制造的叠加,因而可以在没有模具和工具的条件下生成任意复杂的零部件,极大地提高了生产效率和制造柔性[11].增材制造技术体系可分解为几个彼此联系的基本环节:三维模型构造、近似处理、切片处理、堆积成形、后处理等.增材制造过程如图1所示.

2.2增材制造技术的制造工艺

随着CAD建模和光机电一体化技术的发展,增材制造技术的工艺发展很快,按照所用材料和建造技术的不同,目前投入应用的已有十余种工艺方法.其中发展较为成熟的主要有光固化立体成型、分层实体制造、选择性激光烧结等.上述工艺发展较为成熟,在此不再赘述.金属直接成形法可以实现具有较高致密度和力学性能产品的快速制造,但工艺难度大,因此整体还处于技术研究阶段[2].现将发展潜力较大、较前沿的金属直接成型工艺进行重点介绍.2.2.1激光立体成形技术激光立体成形技术(LSF)是在快速成形技术和大功率激光熔覆技术蓬勃发展的基础上迅速发展起来的一项新的先进制造技术[12].该技术综合了激光技术、材料技术、计算机辅助设计、计算机辅助制造技术和数控技术等先进制造技术,通过逐层熔化、堆积金属粉末,能够直接从数据生成三维实体零件,具有无模具、短周期、近净成形、组织均匀致密、无宏观偏析等优点[13].这项技术尤其适用于大型复杂结构零件的整体制造,在航空航天等高技术领域具有广阔的发展前景.目前,LSF的研究不断取得突破性进展,发展迅速.如西北工业大学凝固技术国家重点实验室,在国内率先提出LSF发展构思,并研发一套完整的高性能致密金属零件的激光立体成形理论、技术与装备,荣获陕西省科学技术一等奖[14].近年来,LSF在大型钛合金构件的研究方面取得重大突破,解决了其变形控制、几何尺寸控制、冶金质量控制、系统装备等方面的一系列难题[4],如试制成功C9飞机翼肋TC4上下缘条构件.另外,LSF在一些理论研究方面也取得一些进展,如激光成形凝固组织的理论分析;TC4合金的α+β两相组织控制、断裂韧性、疲劳性能的研究;激光立体成形镍基合金室温拉伸和高温持久性能研究等.LSF在航空航天领域的设备修复、激光组合制造、现场维修和再制造以及医用植入体应用等领域已得到广泛应用.其中,航空航天领域研究进展显著,如航空航天高性能薄壁零件的成形、挽救常规技术不可修复的航空发动机零件、修复高推重比航空发动机整体叶盘、尾气能量处理透平机0Cr17Ni4Cu4Nb叶轮修复[4]等.LSF发展较快,已在国内外获得广泛应用,还须在工艺研究进一步系统化、理论研究继续深化、发展激光涂覆过程的实时观测技术、开发适用于该技术的合金材料、成形精度与成形速率如何达到最佳匹配[15]等方面加大研究力度.2.2.2激光选区熔化工艺激光选区熔化工艺(SLM)是激光选区烧结技术的一种升级和衍生,是直接进行金属打印的最新前沿技术之一.该技术为将零部件CAD模型分层切片,采用预铺粉的方式,扫描镜带动激光束在计算机控制下沿图形轨迹扫描选定区域的合金粉末层,使其熔化并沉积出与切片厚度一致、形状为零件某个横截面的金属薄层,直到制造出与构件CAD模型一致的金属零件[16].其工艺原理图如图2所示,SLM制造激光功率一般在数百瓦级,精度高(最高可达0.05mm),质量好,加工余量小.除精密的配合面之外,制造的产品一般经喷砂或抛光等后续简单处理就可直接使用.该技术烧结速度快,成型件质量精度高,适合中、小型复杂结构件,尤其是复杂薄壁型腔结构件的高精度整体快速制造[16].SLM可为生产高精密、复杂器件提供全新的制造方法,应用前景广阔.如:美国GE公司在各大型企业中率先成立金属材料激光熔化增材制造研发团队,并在LEAP喷气发动机中采用SLM制造燃油喷嘴;美国NASA马歇尔航天飞行中心于2012年采用激光选区熔化成形技术制造了复杂结构金属零部件样件,用于“太空发射系统”重型运载火箭;2013年8月,NASA对SLM制造的J-2X发动机喷注器样件进行了热试车试验并获得成功;美国加利福尼亚大学圣迭戈分校太空发展探索团队用3D打印方法制造火箭发动机推力室组件等[16].在设备开发方面,早在2004年,华南理工大学与北京隆源合作,在国内选区激光烧结设备的基础上首先开发出选区激光熔化快速制造设备Dimetal-240.2012年,华南理工大学研发出最新精密型Dimetal-100成型机[17].目前,各研究机构一直致力于高(变)致密度、成型角度、薄壁、力学性能等基础研究,适用于该技术的各种金属材料及工艺研究有待开发.

3增材制造技术的应用典型

3.1设计验证方面的应用

增材制造技术在设计验证方面应用广泛,可应用于航天系统功能性风扇组装、进行功能性和声响测试,使得模拟实际旋转速度达15000r/min,遴选出问题解决方案,节约成本[18].保时捷将其用于功能性测试,以便分析冷冻液流动特性,改变设计以减少紊流.另外,美国GE公司采用增材制造技术用1个零件代替原设计20个零件组成的飞机发动机喷嘴,减重25%,增效15%,制造成本大幅度降低,已大批量生产;美国公司还采用增材制造技术,成形了能耐热3300°C的复合材料航天发动机零件,使其成为“龙飞船2号推力达到龙飞船1号推力的200倍”技术的关键[19].增材制造技术还可应用于机器人表面映射反馈辅助原型设计[20]、光弹应力分析等.光弹应力分析时,需将作用于激光快速原型工件上的应力可视化,以识别设计不足的区域.图3为增材制造技术设计验证的部分应用.

3.2模具制造方面的应用

增材制造技术在模具制造方面的应用广泛,主要分为软模具制造和硬模具制造.利用真空浇注软硅胶模翻模技术,可生产小批量的类似工程塑料、聚氨酯等产件.快速铸造方面,光敏树脂消失法铸造可一次完成铸造成型,周期短,机械性能好[21].嘉陵集团利用该技术用于摩托车发动机缸头研制,获得了巨大的经济效益.光固化原型与砂型结合铸造技术应用也较为广泛,如研发新型四缸柴油发动机缸盖[18]、开发汽车零部件[22]等.快速成形原型直接制造蜡型模具可用于小批量精铸,大大提高铸件寿命,节约成本.另外,西安交通大学研发出的陶瓷型铸造,铸型外壳、内芯和浆料包裹层一体化设计,使航空叶片铸件合格率由15%提升至85%.东方气轮机厂利用该技术已研发出空心涡轮叶片,大大提高了叶片机械力学性能[18].目前,最为先进的快速模具制造方法有树脂基复合材料快速制模方法、中或低熔点合金铸造制模、金属电弧喷涂制模等.其中,金属电弧喷涂成型快速制模技术[18]在模具成本、寿命、制造周期、精度等方面具有综合优势,并且模具工作表面具有较好的强度、硬度和耐磨性,模具表面摩擦学特性更接近于钢质模具,是一种较为理想的快速制模方法.其技术原理、设备及制模应用如图4、5所示.快速模具技术可节约成本3/4,缩短生产周期约2/3.提高模具制造精度、开发新材料新工艺、直接制造高强度金属模具等是该技术的重要发展方向.

3.3个性化医疗方面的应用

增材制造技术在医疗模型制造和体外医疗器械[23]、个性化永久植入物制造、组织工程支架制造、细胞打印、器官打印方面应用广泛,现已取得较大进展.如利用增材制造技术制造出高精度连体骨骼模型,成功实现连体婴儿分离[24]等.西安交通大学与第四军医大学联合开展骨替代物制造、定制化人工胫骨半关节大段骨重建术、定制化钛合金半膝关节假体复合大段骨移植、定制下颌骨原型设计[25]等研究,并成功实现中国首例“下颌骨溶解修复”手术[18].另外,西安交通大学与昆明军区医院联合进行了脊椎手术导航模板制作等研究,进一步扩展了个性化永久植入物的应用领域.采用TCP材料,西安交通大学积极开展基于光固化原型的支架制作人工活性骨支架研究,取得一定的科研进展.图6所示为利用3D打印技术制作的脊椎手术导航模板.

4增材制造技术的发展趋势

目前,增材制造技术存在许多问题,如材料方面限制、成形精度与成形速度的矛盾、设备及材料的价格昂贵等.在未来的发展中,该技术将会在新材料及创新工艺[26]、装备与关键器件、与传统工艺相结合等方面展开更深入的研究.另外,增材制造技术要克服一些技术瓶颈,实现关键技术环节上的突破,如:与传统制造结构保持同样的强度;减小成型过程中的变形,细化光斑、优化材料和工艺[27],以提高制造精度;进行工艺创新与优化,提高光束能量以提高制造效率[18]等.现阶段,该技术将重点研究陶瓷零件制造、复合材料制造、聚合物喷射快速原型制造[28]、金属直接制造等,如:利用光固化原型技术,使支撑结构中组织发生变化制作碳化硅复合材料零件;使用高介电陶瓷材料,构造复杂型腔结构实现微波负折射功能,进行光子晶体制造,完成传统制造技术难以制作的内外形结构;深入研究金属直接成形自愈合原理,进行高温合金叶片制作实现金属直接制造[18]等.增材制造技术在工艺研究方面,存在许多具有潜力的研究方向.如:建立多层激光直接成形的自稳定机制并利用粉末负离焦技术制造薄壁,使工件侧面平均粗糙度达到10.04μm;充分研究叶片制造中的曲率效应,实验发现曲率大处熔化严重;进行空心叶片扫描路径设计与实验研究,以轮廓、光栅(方向优化)、分区的路径选择扫描复杂空心叶片,减少空行程,节约粉末;依据液氮控制冷却梯度,对空心叶片定向晶组织进行控制[18]等.在生物组织制造方面,增材制造技术潜力巨大,应用前景广阔,如:进行肝组织支架制造,通过仿生流道和定向多孔结构促进肝细胞向支架内生长,研究支架/细胞复合体用于修复肝缺损的有效性[29];对细胞打印和器官打印等生物医学前沿领域研究探索[18]等.另外,将增材制造技术与传统工艺相结合,进行小批量制造,可发挥倍增效益,是该技术发展的一大趋势.

5结语