欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

化学成分论文范文

时间:2023-02-02 03:09:48

序论:在您撰写化学成分论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

化学成分论文

第1篇

作者:曾德芬 李小兰 陈志燕 徐雪芹 单位:广西中烟工业有限责任公司

中部烟叶为20.59%,上部烟叶为20.00%,说明氯含量较不稳定,中部和上部烟叶钾的变异系数小,分别为3.64%和6.48%,说明中上部烟叶钾含量相对较稳定;但下部烟叶钾的变异系数为17.78%,说明下部烟叶钾含量存在一定的波动。从以上分析可以看出,中部烟叶总糖、烟碱、总氮、钾含量较稳定,上部烟叶次之,下部烟叶质量变幅较大。不同年份广西烤烟烟叶化学成分的变化烤烟烟叶的化学成分决定烤烟的风格和内在品质质量。有研究认为[4],优质烤烟的化学成分都存在一个特定的适宜质量分数范围。如:总糖20%~26%、还原糖16%~22%、总植物碱1.5%~3.5%、总氮1.5%~3.5%、氯0.4%~0.8%、钾≥2%。

选取烟叶化学成分的关键指标(总糖、总植物碱、糖碱比、总氮、氮碱比、钾氯比、糖氮比),按部位和年份分别计算了平均值和比值(表略)。不同年份广西各部位烟叶的总糖含量均保持在较高的水平,其中2009年下部烟叶的总糖含量为37.83%,2009年中部烟叶的总糖含量为35.48%,2010年上部烟叶的总糖含量为26.22%。烟碱是影响烟草品质最重要的化学成分,烟碱含量过低,劲头小,吸食淡而无味;烟碱含量过高,则劲头大,刺激性增强,产生辛辣味。可以看出,不同年份广西烤烟下部和中部烟叶烟碱含量均在优质烤烟标准范围内,上部烟叶近2年烟碱含量偏高,最大值达到了4.06%,应采取措施控制其含量。各部位烟叶钾和氮的含量都在优质烤烟的适宜质量分数范围。下部和中部烟叶氯年间平均值与优质烟叶质量分数相比略偏小,而上部烟叶氯含量较适宜。平均数反映了数据集中性的特性,就这一指标而言,广西烟叶的总植物碱、总氮、钾均达到了优质烟叶的水平,总糖和还原糖的平均含量略偏高,氯的平均含量略偏低。化学成分含量的高低与烟草的质量有关,但烟草的质量还在于一系列有关成分的相对比例及彼此间的协调,因此很早就有人研究各种化学成分之间的比值和品质关系[5]。一般而言,质量好的烤烟要求主要化学成分含量及其间比值要协调,比如:糖碱比即还原糖/烟碱,比值通常在6~10,接近10最好;总氮/烟碱,以1或略小于1为宜;钾/氯以≥4为宜;糖/氮以6~10为宜。分析结果表明,近5年广西中部和上部烟叶糖碱比值基本处于优质烟叶范围,较协调且比值也相对稳定,但2009和2010年下部烟比值偏大,分别为21.09和17.88。各部位烟叶氮碱比值较接近优质烟叶标准值范围,说明烟叶中的氮碱协调性较好。各部位烟叶钾氯比值也都处于优质烟叶标准范围,说明烟叶中的钾氯比较协调。下部和中部烟叶糖/氮比值偏大,说明下部和中部烟叶糖氮比例欠失调;而上部烟叶糖氮比值较接近优质烤烟标准范围,烟叶中糖氮比例较协调。

从2006~2010年广西烤烟主要化学成分分析,中部烟叶总糖、烟碱、总氮、钾含量较稳定,上部烟叶次之,下部烟叶质量变幅较大。从2006~2010年广西烤烟主要化学成分比值及协调性分析,中上部烟叶糖碱比值基本处于优质烟叶范围,协调性较好;各部位烟叶氮碱比值、钾氯比值适宜。从数据分析结果还可以看出,2006~2010年广西烤烟烟叶氯含量较不稳定,中下部烟叶糖氮比例欠协调,上部烟叶近2年烟碱含量偏高。因此,协调各部位烟叶主要化学成分之间的比值,采取生产措施有效控制上部烟叶的烟碱含量在优质烟叶的范围,这将是今后广西烟叶品质改良的一个主攻方向。

第2篇

苯乙醇苷为肉苁蓉的主要化学成分,是一类由苯乙醇苷元与糖基结合而成的苷类化合物。由于多数化合物糖上都连有咖啡酰基或阿魏酰基,因此又称其为苯丙素类化合物。日本学者小林弘美〔3,4〕等人先后对我国内蒙产肉苁蓉(C.salsa)进行了比较系统的研究,共分离得到了15个苯乙醇苷类化合物,分别为肉苁蓉苷A(CistanosideA)、肉苁蓉苷B(Cistano-sideB)、肉苁蓉苷C(CistanosideC)、肉苁蓉苷D(CistanosideD)、肉苁蓉苷E(CistanosideE)、肉苁蓉苷F(CistanosideF)、肉苁蓉苷G(CistanosideG)、肉苁蓉苷H(CistanosideH)、肉苁蓉苷I(CistanosideI)、松果菊苷(Echinacoside)、2'-乙酰基类叶升麻苷(Acetylacteoside)类叶升麻苷(Acteoside)、红景天苷(Salidroside)、OsmanthusideB和Decaffeoylacteoside。随后,小林弘美〔5〕等人又从巴基斯坦卡拉奇产C.tubulosa中分得5个新化合物,分别为:TubulosideA、TubulosideB、TubulosideC、TubulosideD和异类叶升麻苷(Acteosideisomer)。FumioYo-shizawa〔6〕等人从C.tubulosa中得到新化合物TubulosideE、Sy-ringalideA-3'-α-L-rhamnopyranoside、Isosyringalide3'-α-L-rh-amnopyranoside。后来,PanY〔7〕等人又从肉苁蓉中分离鉴定出4个苯乙醇苷类成分,分别是kankanosidesJ1、J2、K1和K2。国内学者对肉苁蓉的研究也较多。堵年生〔8〕等人从肉苁蓉中分离得到了海胆苷、肉苁蓉苷A、麦角甾苷、2'-乙酰基麦角甾苷。徐文豪〔9〕等人从中药肉苁蓉的正品原植物肉苁蓉CistanchedeserticolaMa的干燥肉质茎中分离得到7个苯乙醇苷类成分,分别为麦角甾苷、2'-乙酰基麦角甾苷、海胆苷及肉苁蓉苷A、B、C、H。徐朝晖〔10〕等人从肉苁蓉中分得红景天苷。宋志宏〔11〕等人采用HPLC法,从95%乙醇提取物的正丁醇萃取部分分离得到了7个苯乙醇苷类化合物,根据理化性质和波谱数据鉴定它们的结构为2'-乙酰基类叶升麻苷(2'-Acetylacteoside)、类叶升麻苷(Acteoside)、Crenatoside、丁香苷A3'-α-L-吡喃鼠李糖苷(SyringalideA3'-α-L-rhamnopyr-anoside)、异类叶升麻苷(Isoacteoside)、去咖啡酰基类叶升麻苷(Decaffeoylacteoside)和红景天苷(Rhodioloside)。刘晓明〔12〕等人利用多种色谱技术,从肉苁蓉干燥肉质茎的70%乙醇提取物中,分离鉴定了12个苯乙醇苷类化合物,分别为毛蕊花糖苷、2-乙酰基毛蕊花糖苷、肉苁蓉苷C、肉苁蓉苷D、异毛蕊花糖苷、管花苷B、管花苷E、盐生肉苁蓉苷D、盐生肉苁蓉苷E、PlantainosideC、OsmanthusideB6(Z/E)和松果菊苷。

2环烯醚萜及其苷类成分

环烯醚萜类化合物是肉苁蓉属植物又一主要化学成分类别。日本学者小林弘美〔13~15〕等人对我国内蒙产的肉苁蓉进行了系统研究,从中分离得到8-表马钱子酸(8-Epiloganicacid)、8-表去氧马钱子酸酸(8-Epideoxyloganicacid)、京尼平酸(Geniposidicacid)、苁蓉素(Cistanin)、苁蓉氯素(Cistan-chlorin)、益母草苷(Leonurid)、玉叶金花苷酸(Mussaenosideacid)、6-去氧梓醇(6-Deoxycatalpol)、Gluroside、Bartsioside等化合物。罗尚夙〔16〕、徐文豪〔9〕等人从中药肉苁蓉的正品原植物肉苁蓉CistanchedeserticolaMa的干燥肉质茎中分离得到8-表马钱子苷酸。宋志宏〔17〕等人为阐明国产管花肉苁蓉的化学成分,对其进行了研究,采用各种色谱技术包括HPLC,从95%乙醇提取物的正丁醇萃取部分分离得到4个环烯醚萜苷,分别为五福花苷酸(Adoxasidicacid),8-表马钱子酸(8-Epiloganicacid),京尼平苷酸(Geniposidicacid),玉叶金花苷酸(Mussaenosidicacid)。徐朝晖〔10〕等人从肉苁蓉中分得梓醇。

3木脂素及其苷类成分

日本学者小林弘美〔18,19,4,5〕等人从C.salsa中分得(+)-Syringaresinol-O-β-D-glucopyranoside、Liriodendrin、松脂醇(Pi-noresinol)粉末、(+)-Pinoresinol-O-β-D-glucopyranoside和松脂酸。从C.tubulosa中分得新木脂素类成分Dehydrodiconifer-ylalcohol-γ-O-β-D-glucopyranoside及Dehydrodiconiferylalco-hol-4'-O-β-D-glucopyranoside。宋志宏〔17〕等人从95%乙醇提取物的正丁醇萃取部分分离得到1个木脂素苷:丁香树脂酚葡萄糖苷(+)-syringaresinol-O-β-D-glucopyranoside。4多糖类成分A.Ebringemva〔20〕等人从荒漠肉苁蓉中分离得到CistanA。该多糖主要由L-阿拉伯糖,D-半乳糖,L-鼠李糖和半乳糖醛酸组成,其摩尔比为6.3:10.0:1.0:0.8,并含有微量的D-木糖和D-葡萄糖。董群〔21〕等人从荒漠肉苁蓉中提取分离得到2个主要的均一多糖CDA-1A和CDA-3B。吴向美〔22~25〕等人从荒漠肉苁蓉中分离得到6个均一多糖。赵伟〔26,27〕等人从荒漠肉苁蓉的茎中分离得到均一组分SPA,是以葡萄糖和半乳糖为主兼有阿拉伯糖、鼠李糖和甘露糖的中性杂多糖。

5挥发性成分

马熙中〔28〕等人使用分析型超临界流体萃取技术(SFE),以超临界二氧化碳作为流体,首次从肉苁蓉中分析出36个挥发性组分,通过气相色谱分离,将这30多个组分大致可分为以下3类:第一类为C16到C28的直链烷烃,第二类为酯类化合物,其中3个最主要的组分为邻苯二甲酸二丁酯、葵二酸二丁酯和邻苯二甲酸二异酯,第三类组分是低相对分子质量的含氧含氮的化合物,如香草醛等。乔海莉〔29〕等人利用动态项空套袋吸附法和气质联用(GC/MS)分析方法对肉苁蓉花序挥发油的种类和相对含量进行了研究,共鉴定出40种挥发性化合物。回瑞华〔30〕等人利用GC/MS分析方法分离指认出24种挥发性化学成分,并通过峰面积归一法说明了丁香酚为其主要成分。焦勇〔31〕等人报道用GC-MS-DS联用技术对新疆产的肉苁蓉(CistanchedeserticolaY.C.Ma)脂溶性成分进行分析,共鉴定了24个组分。

6其它类成分

除上述结构类型化合物外,肉苁蓉中还含有酚苷、单萜苷、生物碱、黄酮、糖类、糖醇、甾醇等成分。薛德钧〔32〕报道从管花肉苁蓉中分离和鉴定了6种化学成分β-谷甾醇、D-甘露醇、胡萝卜苷、琥珀酸、D-葡萄糖和D-果糖。陈妙华〔33〕等人对肉苁蓉CistanchedeserticolaY.C.Ma进行了化学及药理方面的研究,从其乙醇提取物中分得D-甘露醇、β-谷甾醇、胡萝卜苷、丁二酸、三十烷醇、甜菜碱、咖啡酸糖酯等化台物。杨建华〔34〕等人对在新疆原生态环境下人工种植的盐生肉苁蓉药材进行了化学成分的研究,除分得苯乙醇苷类化合物外,还从70%的乙醇提取物中分离得到7个化合物,根据薄层层析、理化性质和波谱数据鉴定结构分别为β-谷甾醇、胡萝卜苷、β-谷甾醇葡萄糖-3'-O-十七酸酯、8-OH-香叶醇-1-β-D-葡萄糖苷、2-羟甲基-5-OH-吡啶、甜菜碱、半乳糖醇。罗尚夙〔16〕等人从中药肉苁蓉的正品原植物肉苁蓉CistanchedeserticolaMa的干燥肉质茎中分离得到甘露醇,并测定出肉苁蓉中含有15种游离氨基酸,分别为天门冬氨酸、丝氨酸、谷氨酸、甘氨酸、丙氨酸、蛋氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、精氨酸、羟基脯氨酸、脯氨酸、缬氨酸和赖氨酸。日本学者小林弘美〔3〕从C.salsa中分得8-羟基牦牛儿醇-1-β-D-吡喃葡萄糖苷(8-Hydroxygeraniol-1-β-D-glucopyranoside);D-甘露醇(D-man-nitol);β-谷甾醇(β-sitosterol);琥珀酸;β-谷甾醇-β-D-吡喃葡萄糖苷。日本学者大仓多美子〔35〕等人从肉苁蓉脂溶性部分分离得到2-二十九烷酮,二-(2-乙基-己基)-邻苯二甲酸盐,1-三十烷醇,三十烷酸,β-谷甾醇,β-谷甾醇-β-D-葡萄糖苷,琥珀酸以及D-甘露醇等一系列化合物。徐文豪〔9〕等人从中药肉苁蓉的正品原植物肉苁蓉CistanchedeserticolaMa的干燥肉质茎中分离得到葡萄糖、蔗糖、甜菜碱、甘露醇、琥珀酸、β-谷甾醇和胡萝卜苷。徐朝晖〔10〕等人从肉苁蓉中分得2,5-二氧-4-咪唑烷基-氨基甲酸、甘露醇、硬脂酸、β-谷甾醇、胡萝卜苷和甜菜碱。刘晓明〔12〕等人利用多种色谱技术,从肉苁蓉干燥肉质茎的70%乙醇提取物中,除分离鉴定了12个苯乙醇苷类化合物和2个环烯醚萜苷类化合物外还得到了芒柄花苷、尿囊素和半乳糖醇。宋志宏〔17〕等人从95%乙醇提取物的正丁醇萃取部分分离得到1个单萜类化合物:8-羟基香叶醇(8-hydroxygeraniol)。雷丽〔36〕等人从盐生肉苁蓉中分离得到了7个化合物,分别为:β-谷甾醇、香草酸、丁二酰亚胺、丁二酸(琥珀酸)、胡萝卜苷、2,5-二氧4-咪唑烷基-氨基甲酸和半乳糖醇,其中香草酸和丁二酰亚胺为肉苁蓉属中首次分得。陈晓东〔37〕等人还分析了其中所含的Ca、Mg、Zn、Cu、Mo、Po和P,其中铁、铜、锌、锰的含量比一般中药均高。此外,早年还报道从肉苁蓉中分得了肉苁蓉碱〔38〕。焦勇〔31〕等人对新疆产的肉苁蓉(CistanchedeserticolaY.C.Ma)水溶性成分进行分析,得到两种白色晶体,经鉴定为N,N-二甲基甘氨酸甲酯和甜菜碱。

第3篇

BrukerAV-300,AV-500型核磁共振光谱仪;X4型数字显示显微熔点测定仪(温度未校正);Agilent1100LC/MSDSL;LABCONCO冷冻干燥仪;JASCOP-1020旋光测定仪半制备型高效液相色谱仪Waters600型;检测器Waters2487紫外双波长检测器;Agilent-1100高效液相色谱仪;柱色谱材料为硅胶(200-300目)、RP-C18(YMC;12nm)及SephadexLH-20(AmershamBiosciences);柱色谱试剂均为分析纯,高效液相色谱试剂均为色谱纯。

白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。

2提取与分离

白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。

3结构鉴定

3.1化合物1

白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)

3.2化合物2

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。

3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)

3.4化合物4

白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。

3.5化合物5

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。

4结果与讨论

前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。

前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。

日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。

化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。

【参考文献】

[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.

[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.

[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.

[4]Komissarenko.N.F,Derkach.A.I,Komissarenko.A.N.CoumarinsofAesculushippocastanumL[J].FitochemistryRastitel''''nyeResursy,1994,30(3):53.

[5]Warashina.Tsutomu,Nagatani.Yoshimi,Noro,Tadataka.ConstituentsfromthebarkofTabebuiaimpetiginosa[J].ChemicalPharmaceuticalBulletin,2006,54(1):14.

[6]S.Sibanda,B.Ndengu,G.Multari.ACoumaringlucosidesfromXeromphisobav-ata[J].Phytochemistry,1989,28(5):1550.

第4篇

【关键词】川芎;化学成分;结构鉴定

Abstract:ObjectiveTostudythechemicalconstituentsfromLigusticumchuanxiongaimingatsearchingforbioactivenaturalproducts.MethodsAllcompoundswereisolatedandpurifiedbychromatographicmethods.Theirstructuresweredeterminedbyvariousspectralmethods.ResultsSixteencompoundswereisolatedfromLigusticumchuanxiongandtheirstructureswereidentifiedbymeansofspectroscopicanalysisas:sinapicacid(Ⅰ);βsistosterol(Ⅱ);Z6,8’,7,3’–diligustilide(Ⅲ);ferulicacid(Ⅳ);4hydroxy3butylphthalide(Ⅴ);pregnenolone(Ⅵ).ConclusionCompoundsⅠandⅥarefoundinLigusticumchuanxiongforthefirsttime.

Keywords:LigusticumchuanxiongHort.;Chemicalconstituents;Structureidentification

川芎为《中国药典》2005年版(Ⅰ部)收载品种,为伞形科植物川芎LigusticumchuanxiongHort.的干燥根茎,味辛、性温,归肝、胆、心包经,具有活血行气、祛风止痛的功效,常用于月经不调,经闭痛经,癥瘕腹痛,胸胁刺痛,跌扑肿痛,头痛,风湿痹痛[1]。川芎含有多种内酯类、生物碱类、酚类、以及挥发油类等多种化合物。

笔者对川芎进行了化学成分研究,从中分离得到了6个化合物,经鉴定为芥子酸(sinapicacid,Ⅰ)、β谷甾醇(βsistosterol,Ⅱ)、Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide,Ⅲ)、阿魏酸(ferulicacid,Ⅳ)、4-羟基3丁基苯酞(4hydroxy3butylphthalide,Ⅴ)、孕烯醇酮(pregnenolone,Ⅵ),其中化合物Ⅰ、Ⅵ为首次从该植物中分离得到。

1仪器与材料

X4熔点测定仪(温度未校正);BrukerAvance600型核磁共振仪(TMS为内标),测定溶剂为CDCl3;BioTOFQ型质谱仪;柱层析硅胶(200~300目):青岛海洋化工厂生产;川芎药材购自成都市五块石药材市场,经成都中医药大学炮制制剂教研室胡昌江教授鉴定为川芎LigusticumChuanxiongHort.的干燥根茎。

2提取分离

川芎粗粉(10kg),经乙醇回流提取,乙醇提取液减压浓缩至无醇味,氯仿萃取,回收氯仿,氯仿萃取物经硅胶(200~300目)柱层析,以石油醚醋酸乙酯混合溶剂进行梯度洗脱,TLC检查合并相似流份,各组分进行反复硅胶柱层析分离,先后得到6个化合物。

3结构鉴定

化合物Ⅰ:无色针状结晶,mp143~145℃,FeCl3反应呈阳性,显示其具有酚羟基。溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCl3)δ:3.93(6H,d,J=18.24,OCH3),6.28(1H,d,J=9.48,H7),6.85(2H,d,J=4.44,H2,H6),7.61(1H,d,J=9.48,H8),参照文献[2],可确定该化合物Ⅰ为芥子酸(sinapicacid)。

化合物Ⅱ:无色针状结晶,mp137~139℃,LibermannBerchard反应呈阳性,提示分子中具有甾体母核,10%硫酸乙醇溶液显色为紫红色。1HNMR(CDCl3)数据与文献β谷甾醇标准图谱[3]一致,且与对照品β-谷甾醇的薄层具有相同的Rf值,与β谷甾醇对照品混合测熔点不下降,故鉴定化合物Ⅱ为β谷甾醇(βsistosterol)。

化合物Ⅲ:无色片状结晶,mp106~108℃,ESIMS给出分子量为380,结合元素分析确定分子式为C24H28O4,1H-NMR(CDCl3)δ:2.02(3H,m,H4),2.57(4H,m,H4),2.02(3H,m,H5),2.17(3H,m,H5),2.58(5H,m,H6),3.47(1H,d,J=7.24,H7),5.21(1H,t,J=7.8,H8),2.33(3H,m,H9),1.47(6H,m,H10),0.95(4H,t,J=7.6,H11),2.74(1H,m,H4’),2.45(1H,m,H5’),2.75(1H,m,H5’),5.93(1H,dt,J=9.6,4.1,H6’),6.17(1H,dt,J=9.6,1.8,H7’),2.94(1H,q,J=7.8,H8’),1.47(6H,m,H9’),1.14(3H,m,H10’),0.86(4H,t,J=7.6,H11’),ESIMS,1HNMR光谱数据与文献报道Z6,8’,7,3’-二聚藁本内酯相符[4]。故鉴定化合物Ⅲ为Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide)。

化合物Ⅳ:淡黄色针状结晶,mp174~176℃,溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCL3)δ:3.94(3H,s,OCH3),6.30(1H,d,J=15.84,H3),6.93(1H,d,J=8.10,H8),7.11(1H,dd,J=8.22,1.8,H9),7.05(1H,d,J=1.92,H5),7.71(1H,d,J=15.84,H2),与阿魏酸光谱数据基本一致[4],且与对照品阿魏酸薄层具有相同的Rf值,故鉴定化合物Ⅳ为阿魏酸(ferulicacid)。

化合物Ⅴ:无色片状结晶,mp188~190℃,1HNMR(CDCl3)δ:5.55(1H,dd,J=7.98,3.06,H3),7.36(1H,t,J=7.65,H6),7.47(1H,d,J=7.62,H5),7.01(1H,d,J=7.92,H7),2.31,1.77(各1H,m,H8),1.39(4H,m,H9,H10),0.90(3H,t,J=7.08,H11),5.72(1H,s,4OH)。13CNMR(CDCl3)δ:170.7(C1),80.7(C3),136.1(C3a),150.4(C4),120.0(C5),130.6(C6),117.8(C7),128.5(C7a),32.4(C8),26.8(C9),22.4(C10),13.9(C11)。以上物理常数及光谱数据与文献报道4-羟基3丁基苯酞相符[4]。故鉴定化合物Ⅴ为4羟基3丁基苯酞(4hydroxy3butylphthalide)。

化合物Ⅵ:无色片状结晶,mp191193℃,1HNMR(CDCl3),13CNMR(CDCl3),二维谱数据与文献孕烯醇酮标准图谱[5]一致,且与对照品孕烯醇酮的薄层具有相同的Rf值,与对照品孕烯醇酮混合测熔点不下降,故确定化合物Ⅵ为孕烯醇酮(pregnenolone)。

【参考文献】

[1]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:28.

[2]孙凯,李铣.南葶苈子的化学成分[J].沈阳药科大学学报,2003,20(6):419.

[3]SadlterR,Lablnc.StandardInfraredCratingSpectra[M].Philadelphia:SadlterRcsearchLaboratoricsDivisionofBio-RadLaboratoriesInc,Researchers1984:Vol75-76,July361.

第5篇

【关键词】菝葜化学成分

Abstract:ObjectiveTostudythechemicalcompositionofRhizomaSmilacisChina.MethodsThecompoundswereisolatedbychromatographyonsilicagelcolumnandtoyopearlgelcolumnandidentifiedonthebasisofphysicochemicalconstantsandspectralanalysis.ResultsFourcompoundswereisolatedas:3,5,4’trihydroxystibene(Ⅰ)、3,5,2’,4’tetrahydroxstilbene(Ⅱ),Querceetin4’OβDglucoside(Ⅲ),Protecatechuicacid(Ⅳ).ConclusionThecompoundⅣisobtainedfromthisplantforthefirsttime.

Keywords:RhizomaSmilacisChina;Chemicalconsitutents

菝葜为百合科植物菝葜SmilaxchinaL.的根茎,在我国主要分布于长江以南地区,资源丰富,《中国药典》2005年版Ⅰ部有收载,为较常用中药材,具有祛风利湿,解毒散瘀之功效,主要用于妇科多种炎症,疗效显著。作者对其化学成分进行了研究,从其根茎的乙醇提取物中分离得到了4个化合物,根据理化常数和光谱分析,分别鉴定为3,5,4’三羟基芪(3,5,4’trihydroxystibene,Ⅰ)、3,5,2’,4’四羟基芪(3,5,2’,4’tetrahydroxstilbene,Ⅱ)、槲皮素4’OβD葡萄糖苷(querceetin4’OβDglucoside,Ⅲ)、原儿茶酸(protecatechuicacid,Ⅳ)。化合物Ⅳ为首次从菝葜中分离得到。

1仪器与材料

1H-NMR:VarianMercuryVX-300/600型核磁共振仪,13C-NMR:VarianINOVA-150型核磁共振仪,EI-MS:VGZAB-3F型高分辨多级有机质谱仪,FT-IR:NICOLET670型红外光谱仪(NicoletIR-6.0数据处理系统),UV:UV-2401型可见-紫外分光分光光度仪,ToyopearlHW-40F为Toyosh公司生产,薄层层析硅胶及柱层析硅胶为青岛海洋化工厂生产,试剂均为分析纯,菝葜药材由湖北福人药业公司提供,经湖北中医学院鉴定教研室鉴定。

2提取分离

取菝葜药材饮片5kg,用70%乙醇加热回流提取3次,2h/次,减压回收溶剂,浓缩后的药液依次用醋酸乙酯,正丁醇萃取,醋酸乙酯提取物经反复硅胶柱色谱,分别用不同比例的氯仿-甲醇梯度洗脱,ToyopealHW-40柱色谱纯化,反复重结晶处理,得到化合物Ⅰ(30mg),Ⅱ(17mg),Ⅲ(45mg),Ⅳ(13mg)。

3结构鉴定

化合物Ⅰ:浅黄色针晶,mp247~249℃。EI-MS:227(M+H)。IR(KBr)cm-1:3292,1606,1587,1512,1450,1380,1330,1260,1160,965,830,810,662。1HNMR(CDCl3)δPPm:9.51(1H,s),9.16(2H,s),7.39(2H,d,H-2'''',6''''),6.94(1H,d,J=16.3HZ,H7''''),6.82(1H,d,J=16.3HZ,H8''''),6.75(2H,d,J=8.5HZ,H3'''',5''''),6.37(2H,d,J=2.0HZ,H2,6),6.11(1H,d,J=2.0HZ,H4)。13C-NMR(CDCl3)δPPm:158.4(C3,5),157.1(C4''''),139.2(C1),128.0(C2'''',6'''',8''''),127.8(C1''''),125.6(C7''''),115.5(C3'''',5''''),104.2(C2,6),101.9(C4)。波谱数据与文献[1]报道的3,5,4''''三羟基芪数据一致,故确定该化合物为3,5,4''''三羟基芪(3,5,4''''trihydroxystibene)。

化合物Ⅱ:淡黄色针晶,mp94~97℃。EI-MS:243(M+H);IR(KBr)cm-1:3229,1616,1593,1520。1HNMR(CDCl3)δPPm:9.57(1H,s),9.38(1H,s),9.14(2H,s),7.36(2H,d,J=8.5HZ,H-6''''),7.17(1H,d,J=16.5HZ,H7''''),6.78(1H,d,J=16.3HZ,H8''''),6.35(2H,d,J=2.0HZ,H2,6),6.32(2H,d,J=2.3HZ,H3''''),6.26(1H,dd,J=8.5HZ,2.3HZ,H5''''),6.08(1H,d,J=2.1HZ,H4)。13CNMR(CDCl3)δPPm:158.5(C3,5),158.1(C4''''),160.0(C2''''),140.0(C1),127.1(C6''''),124.6(C8''''),123.2(C7''''),115.2(C1''''),107.2(C5''''),104.0(C2,6),102.6(C3''''),101.3(C4)。波谱数据与文献报道[2]的3,5,2'''',4''''四羟基芪数据一致,故确定该化合物为3,5,2'''',4''''四羟基芪(3,5,2'''',4''''tetrahydroxstilbene)。

化合物Ⅲ:黄色针晶,盐酸-镁粉反应和Molish反应均呈阳性。EI-MS:302(M-glc)。酸水解产物用TLC法检识有槲皮素,用PC法检识有D葡萄糖。IR(KBr)cm-1:3302,1657,1628,1602,1502。1HNMR(CDCl3)δPPm:12.45,10.78,9.20,9.10(each1H,s,OH),9.97(1H,d,J=2.0HZ,H2''''),7.86(1H,dd,J=8.5HZ,2.0HZH-6''''),6.96(1H,d,J=8.5HZ,H5''''),6.48(1H,d,J=2.0HZ,H8),6.19(1H,d,J=2.0HZ,H6),4.78(1H,d,J=7.0HZ,H1''''''''),3.4~4.78(6H,m)。13CNMR(CDCl3)δPPm:175.9(C4),163.9(C7),160.6(C5),156.1(C9),148.8(C4''''),146.2(C2),145.2(C3''''),135.9(C3),123.5(C1''''),122.1(C6''''),115.9(C5''''),115.8(C2''''),102.9(C10),102.4(C1''''''''),98.2(C6),93.6(C8),77.2~60.6(3''''''''~6'''''''')。波谱数据与文献[3]报道的槲皮素4''''OβD葡萄糖苷一致,故鉴定该化合物为槲皮素4''''OβD葡萄糖苷(quercetin4''''OβDglucoside)。

化合物Ⅵ:白色针晶,mp195~197℃。FeCl3反应阳性。薄层检识与原儿茶酸一致。EI-MS(m/z):154(M+)。IR(KBr)cm-1:3274,1677,1604,1530,1437,1381。1HNMRδPPm:7.43(1H,d,J=2.0HZ,H2),7.42(1H,dd,J=2.0,8.5HZ,H6),6.78(1H,d,J=8.5HZ,H5)。波谱数据与文献[4]报道的原儿茶酸数据一致,因此可确定该化合物为原儿茶酸(protecatechuicacid)。

【参考文献】

[1]陈广耀,沈连生,江佩芬.土茯苓化学成分的研究[J].北京中医药大学学报,1996,19(1):44.

[2]ChristensenLP,JorgenL.Excelsaoctaphenol,astilbenedimmerfromChlorophoraexcelsa[J].Phytochemistry,1989,28(3):917.

第6篇

1.1关于绿色化学的反应技术

所谓的绿化化学主要指的就是能够对环境不会造成污染,同时也能够十分有利于保护环境的化学工程。简单的一点来说主要是采用化学的技术以及方法来有效的减少或者是消除一些对于人类有害以及防治社会安全发展的不利的因素。绿色化学主要就是将污染从源头进行有效的消除,其中也包括了含有原子经济性以及高选择性的一些反应,同时绿化化学能够生产出来对于环境有利的一些材料,并且也能够经过回收废物进行循环利用的科学。

1.2关于新的分离技术

从广义的角度来看,所谓的分离强化首先就是要对设备进行不断的强化,然而在对生产的工艺进行强化,进而从整体上来说就是只要能够将设备变小以及能量转化效率提高的技术变为化学的分离技术强化的结果。这样做不仅仅能够更好的有利于可持续发展的理念,同时也是化学分离技术的发展趋势之一。但是,传统的化工分离技术主要是根据沸点的不同,把一些不同组成成分的物质进行分析,然而随着科学技术的不断发展以及对于该项工作的不断研究,进而得出该项技术具有着十分广阔的发展前景,但是在应用的过程中还是存在着很多的问题,主要是这项技术的研究对分子蒸馏的基础理论研究相对来说还是比较少,并且在理论方面也没有能够得到充分的说明。但是随着科学技术的不断发展,分解技术也得到了不断深入的研究,并且也取得了不错的效果,并且也渐渐的把信息技术引入到了分离技术的研究以及开发当中,进而在对热力学以及传递的性质进行的研究,对于分子模拟大大的提高了预测热力学的平衡等,因此在进行研究以及开发的过程中对于分离技术具有着十分深远的意义。

2在热传导过程中的研究进展以及方向

2.1关于微细尺度传热的研究

所谓的微细尺度主要是从空间尺度以及时间尺度微细的研究以及对传热学规律的研究,目前在传热学当中已经是成立了一个分支,并且其发展的前景也是十分的广阔。在物体的特征尺寸要大于载体离子的平均尺寸的时候,就是连续的介质便依然是成立的,然而因为尺度是微细的,并且以前的假设影响因素也将会随着发生着改变,进而将会导致流动以及传热的规律出现一定程度的改变。当前随着纳米以及微米的技术得到了不断的发展,并且已经是受到了人们十分广泛的关注,在很多的领域当中也都在是围绕着微细尺度传热学进行不断的研究,并且已经是在不少的领域当中取得了不错的成果,比如在微型热管以及高集成的电子设备当中。

2.2关于强化传热过程中的研究

对于这项研究主要是从改进换热器的设备方面进行入手的,其研究开始的目的主要是为了能够更好的提高传热的效率,同时也是为了能够改进设备的持续对外放热,对于这项研究的改进主要是包括了传热材料以及生产工艺的改进,同时将传统的设计进度优化等内容。

2.3关于传热的理论研究

在最近的几年来,该项工作的研究人员主要是在滴状冷凝在生产中的应用进行研究,但是一直到目前也没有能够得到实现。其主要的问题便是怎样的获得实现的滴状冷凝,以及如何的是冷凝的表面寿命得到延长。目前其主要的问题就是如何改变冷凝界面的性质,以及怎样才能够将冷凝应用到工业当中进行传染改造。在沸腾传热的过程中,其传热的方式不仅仅在机械以及石油化工行业当中得到了十分广泛的应用,同时也在航天行业当中得到了十分广泛的应用。长期以来人们也一直对于液体出现核态沸腾的主要原因进行着不断的研究。

3结语

第7篇

【关键词】伞形科白芷化学成分

Abstract:ObjectiveTostudythechemicalconstituentsofAngelicadahurica.MethodsTheconstituentswereisolatedandpurifiedbysilicagel,RP-18,andSephadexLH-20columnchromatography.Theirstructureswereidentifiedbyphysiochemicalpropertiesandspectralanalysis.ResultsFivecompoundswereisolatedandidentifiedas7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin①,aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside②,tomenin③,isoscopolin④,OsmanthusideH⑤.ConclusionCompound1to5wereobtainedfromUmbeliferaeforthefirsttime.

Keywords:Umbeliferae;Angelicadahurica;Chemicalconstituent

白芷Angelicadahurica(Fisch.exHoffm.)Benth.EtHook.f.var.formosana(Boiss.)ShanetYuan为伞形科(Umbeliferae)当归属(Angelica)植物。白芷以根入药,始载于《神农本草经》,列为中品。《中国药典》各个版本均有收载。白芷具有散风除湿、通窍止痛、消肿排脓之功效,用于感冒头痛、鼻塞、鼻渊、牙痛、白带异常、疮疡肿痛等病症。白芷中的香豆素具有抗肿瘤、抗氧化、抗微生物、降压等多种生物活性。前人已经对白芷中脂溶性的香豆素类做了大量而深入的研究,但对其水溶性的化学成分研究甚少。本文通过对白芷水溶性部分的分离得到了6个苷类成分,通过多种理化方法及光谱学手段鉴定为①7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin;②aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside;③tomenin;④isoscopolin;⑤OsmanthusideH。化合物1~5均为首次从伞形科中分离得到。

1器材

BrukerAV-300,AV-500型核磁共振光谱仪;X4型数字显示显微熔点测定仪(温度未校正);Agilent1100LC/MSDSL;LABCONCO冷冻干燥仪;JASCOP-1020旋光测定仪半制备型高效液相色谱仪Waters600型;检测器Waters2487紫外双波长检测器;Agilent-1100高效液相色谱仪;柱色谱材料为硅胶(200-300目)、RP-C18(YMC;12nm)及SephadexLH-20(AmershamBiosciences);柱色谱试剂均为分析纯,高效液相色谱试剂均为色谱纯。

白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。

2提取与分离

白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。

3结构鉴定

3.1化合物1

白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)

3.2化合物2

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。

3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)

3.4化合物4

白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。

3.5化合物5

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。

4结果与讨论

前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。

前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。

日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。

化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。

【参考文献】

[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.

[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.

[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.

[4]Komissarenko.N.F,Derkach.A.I,Komissarenko.A.N.CoumarinsofAesculushippocastanumL[J].FitochemistryRastitel''''nyeResursy,1994,30(3):53.