欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

铝合金论文范文

时间:2023-08-17 17:35:10

序论:在您撰写铝合金论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

铝合金论文

第1篇

1铝合金与氧的亲和力很强铝与氧的亲和力比较强,极易与氧结合生成致密而结实的氧化铝薄膜,厚度约为0.1μm,熔点高达2050℃,且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜严重阻碍金属之间的结合,形成夹渣。同时氧化膜还会吸附水分,焊接时会促使焊缝形成气孔。这些缺陷,都会降低焊接接头的性能。为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,同时防止在焊接过程中再次氧化。焊接时,一般采用直流反接气体保护焊,利用阴极清理来有效清理表面氧化膜,同时保护气体并对其实施保护。

2铝合金的导热率和比热大铝及铝合金的导热系数、比热容都很大,在焊接过程中大量的热能被迅速传导到金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源在较短时间内以精确实施焊接。特别是对于8mm及以上厚板,焊接前需采用预热等工艺措施。

3铝合金部件焊接时容易形成气孔铝及铝合金焊接时极易产生气孔,尤其是纯铝和防锈铝的焊接。焊接时产生的气孔主要是氢气孔,而氢气的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分。焊接时,液体熔池在高温下溶入大量气体,在凝固时,气体溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。

二铝合金焊接方法的选择

1焊接方法选择需要考虑的因素

1)根据焊接车间和焊接场地的可能性和焊接足够移动距离来选择焊接设备及方法;

2)焊接后零件的性能是否满足使用要求来选择焊接方法:如焊缝强度、冲击韧性、疲劳强度和抗腐蚀性能等;

3)焊接加热是否允许对焊缝附近的基体材料产生软化;

4)焊接方法是否满足焊缝的成形性要求;

5)焊接件的用途和工作环境以及焊接接头设计等。

2大截面铝合金焊接常用的焊接方法惰性气体保护焊(TIG与MIG)是应用最广泛的铝及铝合金熔焊方法。

1)装夹固定在大型截面铝型材焊接时,由于铝合金的热导率比较大,必须采用较大的热输入,焊接时很容易发生变形,这是铝合金焊接时要非常注意的问题。这里主要采用反变形法来控制变形。具体实施过程为:在选用合理的焊接顺序的同时,预先将具有插接口的工件拼接完好,并给工件施加反变形的力,装夹固定。从而达到焊后表光滑并能够恰好消除变形的措施。

2)焊前清理焊接前应对母材接头处的表面氧化物及其它油污等附着物进行打磨清理,并进行点焊固定。清理的方法一般采用有机溶剂进行表面去污,同时采用电动钢丝刷去除表面氧化物。选取有代表性的点进行点焊固定,同时为了焊缝美观,要及时打磨焊点。

3)焊接工艺规范焊条或焊丝一般在母材种类、板厚以及性能等要求的基础上,选用能够保证良好焊接质量的焊接材料。焊接电流和焊接速度根据焊接成型要求设定。焊缝坡口一般为对接接头。为了消除水汽并达到理想的熔深,选取合适的焊前预热温度。

三结语

第2篇

1.1铝合金轮毂的特点

随着科技的不断进步,汽车越来越多地使用铝合金轮毂。铝合金轮毂相比钢制车轮有如下4大特点:(1)节能。铝合金密度低,轮毂质量轻,加工精度高,高速转动时的阻力小、变形小,可提高汽车的行驶性能,减少油耗。(2)安全。铝合金的导热系数是钢的3倍,散热效果非常好,可增强制动性能,提高使用寿命,保障汽车行驶安全。(3)舒适。一般与铝合金轮毂配用的是扁平轮胎,其缓冲和吸震性能均优于普通轮胎,使汽车坎坷道路上或快速行驶时,舒适性提高。(4)美观。铝合金轮毂外观设计精美,造型多样化,可做到对比突出、车毂合一,提高整车的视觉效果。

1.2轮毂的结构特点

轮毂由轮辋、轮辐、轮芯及轮毂盖、附件等组成,如图1所示。轮毂一方面通过轮辋与轮胎配合,另一方面通过轮辐与车桥相连,发挥其承载、行驶、转向、驱动和制动等作用[2]。其中,轮辋的设计应按照标准规定选用与整车要求相配的轮辋规格,尤其是宽度和直径尺寸应严格按标准检测,以确认轮辋能否满足与轮胎的配合要求。轮芯的设计则根据轮毂与车桥车轴上的安装盘等安装定位要求进行。可见轮毂造型中最关键的是轮辐,其造型可随意变化,无标准和规律可循。轮辐作为轮辋与轮芯的中间连接件,主要起到支承和传递载荷的作用,在保证具有足够的承载、抗弯、抗冲击强度性能前提下,其造型应具有美观、动感和时尚性。而附件、轮毂盖对轮毂造型美观起衬托、辅助的作用,可根据情况适当添加。

1.3轮毂造型设计目标

轮毂造型设计应以轮毂的材质、轮毂造型数量、轮毂的尺寸、轮毂外观工艺的设定和输入为指导[2]。结合轮毂的结构特点、配套车型、目标客户群的审美特点和汽车品牌的文化特征,确定轮毂造型设计的目标:(1)满足结构性能要求;(2)按车型选定车轮结构尺寸;(3)结合品牌文化的美观造型;(4)彰显用户心理特征;(5)可制造加工性。

2造型与结构一体化设计

2.1性能要求

根据轮毂装配于整车后的功能,针对铸铝合金轮毂各国均有相应的标准,考虑轮毂使用中的功能需求,SAE,JASO及ISO等标准和我国标准主要对轮毂的强度及疲劳性能提出了具体要求[3],轮毂制造企业必须要对每一批制造出的产品进行如表1所示的性能试验。

2.2尺寸设计

汽车轮毂的主要参数有胎环直径、胎环宽度、螺栓孔节圆直径、偏距、中心孔等,一般常根据胎环直径和胎环宽度来划分不同尺寸型号。直径和宽度通常是在整车设计方案中确定的,综合考虑了汽车动力、自身质量及阻力等方面因素,选择使车辆性能最优的轮毂尺寸,轿车原车轮毂主要的直径尺寸为381mm(15inch),406.4mm(16inch)和431.8mm(17inch),也有越野型轿车的轮毂直径达到508mm(20inch),533.4mm(21inch)和558.8mm(22inch)。直径和宽度确定后,轮毂的轮辋部分便可根据标准进行造型设计。螺栓孔节圆直径、偏距及中心孔的尺寸亦由整车设计中轮毂的安装要求确定,从而决定了轮毂的轮芯部分的造型要求。因此,轮毂的造型以轮辐部分的设计为主。

2.3造型与结构一体化设计

随着计算机技术的飞速发展和广泛应用,有限元法已成为求解科学技术和工程问题的有力工具[4]。将有限元分析方法应用于工业产品设计,用仿真引领设计,改变传统仿照设计的方法,可增强产品设计的创新性。在轮毂的造型设计中,由于轮辐是造型的关键,也是承受载荷的关键部位,因此,非常适合将有限元分析的方法引入轮毂的造型设计中来,进行造型与结构的一体化设计。传统的轮毂造型设计,首先进行二维造型草图设计,设计中融入品牌文化及车型特征,经过反复在整车模型侧面上的贴图评审确定下来;其次进行三维模型的构建,根据车轮尺寸设计要求构建轮辋的三维模型,根据车轮的安装配合尺寸设计轮芯的三维造型,主要是根据评审确定下来的二维造型草图进行轮辐部分的三维模型设计,此阶段更多考虑的是外观造型;再次根据三维数据制作油泥模型,反复调整模型,更新三维数据,甚至在实车上评审造型;最后是制作硬质轮毂样件,通常用ABS工程塑料,进一步检验轮毂设计的细节,完成造型设计。之后整车厂会将以上完成的造型设计提供给轮毂供应商制作小批真实样件,通常这时轮毂制造厂在试制生产前会对客户提供的模型进行有限元分析以保证样件的试验通过率,避免直接开模、试制、试验不通过造成的报废、修模、重新试制等过程的浪费,主要是针对结构性能的分析。可见,传统设计中造型设计与结构设计是分开进行的,有限元分析并未发挥其最大的作用,没能用于指导造型设计,因此可能会导致后期有限元分析验证结构设计合理性时对前期造型设计方案的,或者独立的造型设计导致结构的安全裕度过大,造成材料的浪费,不能实现最优的轻量化设计。因此,将有限元分析提前到造型设计的过程中,一旦二维造型方案确定,构造出三维模型就对其进行有限元分析,将避免一些不必要的尝试,并带来更加创新优化的设计结果。造型与结构一体化设计方法的流程如图2所示。

3案例

以福特2015年新款Focus车型431.8mm×177.8mm(17inch×7.0inch)的轮毂设计为例,展示由于有限元分析方法的引入而形成的造型与结构一体化设计方法的应用。轮毂造型效果如图3所示。采用福特产品设计通用的I-DEAS有限元分析软件在轮毂造型设计的各阶段对其进行有限元分析,分析中采用10节点四面体单元进行网格划分,材料属性取铝合金材料的机械性能参数,弹性模量6.9×1010Pa,泊松比0.33。对13°冲击试验,根据前述试验条件,在轮毂安装盘面及5个PCD孔锥面上施加6个自由度的全约束,使车轮相对于水平o-xy平面旋转翘起13°,在最高轮辋边缘向轮芯偏移19mm的位置以外的轮辋上施加载荷,冲击试验的载荷是使质量为547kg的冲击锤自230mm高度落下。弯曲疲劳试验则根据前述试验条件,在无轮辐支撑侧的轮辋边缘施加固定约束,在轮芯的安装面及PCD孔上通过建模添加加载臂结构,加载臂长度为660mm,根据试验要求的载荷3587N•m计算出加载臂末端应施加的力为5435N,根据不同的轮型结构通常根据旋转一周的情况选定几个方向进行加载计算,取分析所得最危险的结果进行评判。径向载荷疲劳试验按前述试验条件,分析中对轮芯的安装盘面和PCD孔锥面分别进行全约束,在60°夹角范围内的轮辋两侧胎圈座上分别施加呈半正弦函数分布的径向载荷q1和q2,根据试验要求径向载荷15007N和轮毂尺寸参数由以下公式计算得到,并在整个外轮辋上施加充气压力300kPa,同弯曲疲劳试验,根据轮型结构选取几个位置分别加载分析,取最危险的分析结果进行评判。该型轮毂最终造型设计在三性能试验条件下的有限元分析结果分别如图4a,4b,4c所示。其中,图4a为在以上冲击试验约束和载荷条件下的vonMises应力分析结果,其最大值为56.8MPa,发生在冲击部位正对的辐条根部;图4b为以上弯曲试验约束和载荷条件下的vonMises应力分析结果,其最大值为105MPa,发生在辐条背面根部位置;图4c为以上径向载荷试验约束和载荷条件下的vonMises应力分析结果,其最大值为40.7MPa,发生在无辐条支撑侧的轮辋外缘处。铝合金材料的屈服强度为178MPa,根据文献[3]中通过实验验证建立的分析模型和评价标准,以上3个性能试验有限元分析的vonMises应力最大值分别小于70MPa,110MPa(30万转)和70MPa(100万转)为合格。从有限元分析的结果可以看出该设计可全部通过标准要求的轮毂性能试验,在达到造型设计的同时满足了结构设计的要求。在结合车型特点等因素确定初步的设计方向和设计尺寸后,首先根据标准要求的轮辋形状、尺寸进行轮辋造型设计,其次进行轮辐的造型设计,设计中通过以上有限元分析结果,逐步实现了轮毂的最终造型设计。

4结论

第3篇

关键词:铝合金;预处理;化学镀镍;附着力

1引言

化学镀Ni-P具有厚度均匀、硬度高、抗蚀性优异等特点,因此镀层广泛被应用于需耐磨的工件。但是,铝合金表面即使在空气中停留时间极短也会迅速地形成一层氧化膜,以致影响镀层质量,降低镀层与基体的结合力。

本项研究得出了比较好的预处理方案,从而得到结合力良好,表面比较光亮的Ni-P镀层。

2实验方法

2.1实验工艺流程

试样制备配制除油溶液化学除油水洗侵蚀水洗超声波水洗去离子水洗一次锓锌水洗退锌水洗超声波水洗去离子水洗二次锓锌水洗去离子水洗碱性镀水洗酸性镀去离子水洗吹干冷却

2.2除油配方及工艺

除油:Na3PO4•12H2O(30g/L)NaCO3(30g/L)温度(65℃)时间(3min)

2.3浸锌配方及工艺

ZnSO4(40g/l)NaOH(90g/l)NaF(1g/l)Fecl3(1g/l)KNaC4O4H406(10g/L)

温度(42℃)一次浸锌时间(90S)二次浸锌时间(18S)

2.4镀液配方与工艺

碱性预镀液NiSO4•6H2O(30g/l)NaH2PO2•H2O(25g/l)NH4C6H5O7•H2O(100g/l)温度(65℃)PH值(8.2)施镀时间(8min)

酸性镀液NiSO4•6H2O(30g/l)NaH2PO2•H2O(25g/l)NH4C6H5O7•H2O(10g/l)

乳酸C3H6O3(40ml/l)NaC2H302(10g/L)温度(85℃)PH值(4.8)施镀时间(120min)3实验结果与分析

3.1镀层表面形貌及硬度

镀层表面为致密的胞状、非晶态结构。小胞之间有明显的界线,界线基本为直线,说明小胞在长大的过程中相互受到挤压而发生了变形,镀层中存在应力。镀层的含磷量为13.1%,镀层硬度可达686HV。

温度是影响化学镀沉积速率的最重要因。化学镀的催化反应一般只能在加热条件下发生,温度升高,离子扩散速度加快,反应活性增强,当温度高于50℃时,基体表面才有少量气泡生成,化学镀镍磷合金才能进行,随温度升高基体表面可见明显镀层。反应温度低于80℃时,沉积速率较慢;温度高于80℃,基体表面有大量气泡生成,沉积速率变快;当温度高于95℃时,镀液发生分解,镀液迅速变黑,产生大量气泡,在烧杯底部出现黑色沉淀。

3.2pH值对镀速的影响

在酸性化学镀液中,pH是影响沉积速率的重要因素之一。在化学镀过程中,随着反应的进行,H+不断的生成,镀液的pH值不断降低,使沉积速率受到影响,因此在施镀过程中必须随时补充碱液来调整pH值在正常的工艺范围内。pH值升高使Ni2+的还原速度加快,沉积速率变快。

4结语

(1)通过实验研究得到比较适宜的铝合金基材化学镀镍的前处理工艺,并得出了一套完整的铝合金基材表面化学镀镍工艺条件及配方。

(2)温度和pH值是影响反应速度重要的因素,温度的最佳工艺范围为85~95℃,超过95℃,镀液自分解现象严重;pH值的最佳范围是4.5~5.5,pH值超过5.5沉积速度开始下降。

(3)通过性能检测表明此工艺获得的镀层,镀层硬度可达686hHV,含磷量为11.17%且表面光亮、均匀、结合力好。

参考文献

[1]齐晓全.化学镀Ni-P工艺在制药设备上的应用[J].电镀与涂饰,2006,25(7):15-16.

[2]ParkerK.ElectrolessNickle.StateoftheArtplatingandSurfaceFinishing,1992,34(3):29-33.

[3]ColaruotoloJF.TrendsInElectrolessNicklePlating.PlatingandSurfaceFinishing,1985,27(12):22-25.

第4篇

在铝合金焊接过程中,由于材料的种类、性质和焊接结构的不同,焊接接头中可以出现各种裂纹,裂纹的形态和分布特征都很复杂,根据其产生的部位可分为以下两种裂纹形式:

(1)焊缝金属中的裂纹:纵向裂纹、横向裂纹、弧坑裂纹、发状或弧状裂纹、焊根裂纹和显微裂纹(尤其在多层焊时)。

(2)热影响区的裂纹:焊趾裂纹、层状裂纹和熔合线附近的显微热裂纹。按裂纹产生的温度区间分为热裂纹和冷裂纹,热裂纹是在焊接时高温下产生的,它主要是由晶界上的合金元素偏析或低熔点物质的存在所引起的。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也各有不同,热裂纹又可分为结晶裂纹、液化裂纹和多边化裂纹3类。热裂纹中主要产生结晶裂纹,它是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足不能及时填充,在凝固收缩应力或外力的作用下发生沿晶开裂,这种裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝和某些铝合金;液化裂纹是在热影响区中被加热到高温的晶界凝固时的收缩应力作用下产生的。

在试验过程中发现,当填充材料表面清理不够充分时,焊接后焊缝中仍存在较多的夹杂和少量的气孔。在三组号试验中,由于焊接填充材料为铸造组织,其中夹杂为高熔点物质,焊接后在焊缝中仍将存在;又,铸造组织比较稀疏,孔洞较多,易于吸附含结晶水的成分和油质,它们将成为焊接过程中产生气孔的因素。当焊缝在拉伸应力作用下时,这些夹杂和气孔往往成为诱发微裂纹的关键部位。通过显微镜进一步观察发现,这些夹杂和气孔诱发的微观裂纹之间有明显的相互交汇的趋势。然而,对于夹杂物在此的有害作用究竟是主要表现为应力集中源从而诱发裂纹,还是主要表现为脆性相从而诱发裂纹,尚难以判断。此外,一般认为,铝镁合金焊缝中的气孔不会对焊缝金属的拉伸强度产生重大影响,而本研究试验中却发现焊缝拉伸试样中同时存在着由夹杂和气孔诱发微裂纹的现象。气孔诱发微裂纹的现象是否只是一种居次要地位的伴生现象,还是引起焊缝拉伸强度大幅度下降的主要因素之一,亦还有待进一步的研究。

2热裂纹产生的过程

目前关于焊接热裂纹理论,国内外认为较完善的是普洛霍洛夫理论。概括地讲,该理论认为结晶裂纹的产生与否主要取决于以下3方面:脆性温度区间的大小;在此温度区间内合金所具有的延性以及在脆性温度区间金属的变形率大小。

通常人们将脆性温度区间的大小及在此温度区间内具有的延性值称为产生焊接热裂纹的冶金因素,而把脆性温度区内金属的变形率大小称为力学因素。焊接过程是一系列不平衡的工艺过程的综合,这种特征从本质上与焊接接头金属断裂的冶金因素和力学因素发生重要的联系,如焊接工艺过程与冶金过程的产物即物理的、化学的与组织上的不均匀性、熔渣与夹杂物、气体元素与处于过饱和浓度的空位等。所有这些,都是与裂纹的萌生与发展有密切联系的冶金因素。从力学因素方面看,焊接热循环特定的温度梯度与冷却速度,在一定的拘束条件下,将使焊接接头处于复杂的应力-应变状态,从而为裂纹的萌生与发展提供必要的条件。

在焊接过程中,冶金因素和力学因素的综合作用将归结为两个方面,即是强化金属联系还是弱化金属联系。如果在冷却时,焊接接头金属中正在建立强度联系,在一定刚性拘束条件下能够顺从地应变,焊缝与近缝区金属能够承受外加拘束应力与内在残余应力的作用时,裂纹就不容易产生,焊接接头的金属裂纹敏感性低,反之,当承受不住应力作用时,金属中强度联系容易中断,就会产生裂纹。在这种情况下,焊接接头金属的裂纹敏感性较高。焊接接头金属从结晶凝固的温度开始,以一定的速度冷却到室温,其裂纹敏感性决定于变形能力和外加应变的对比以及变形抗力与外加应力的对比。然而在冷却过程中,在不同的温度阶段,由于晶间强度与晶粒强度增长的情况不同、变形在晶粒间和晶粒内部的情况分布不同、由应变所诱导的扩散行为不同、应力集中的条件以及导致金属脆化的因素不同,焊接接头具体的薄弱环节以及它弱化的因素和程度也是不同的。

导致焊接接头金属产生裂纹的冶金因素和力学因素有着较为密切的联系,力学因素中的应力梯度和热循环特征所确定的温度梯度有关,而后者与金属的导热性密切相关,如金属的热塑性变化特征、热膨胀性以及组织转变等构成的冶金因素,在很大程度上对焊接接头金属所处的应力-应变状态起到重要作用,此外,随着温度的降低与冷却速度的变化,冶金因素和力学因素也都是在变化着的,在不同的温度区间对焊接接头金属的强度联系作用各不相同,如结晶温度区间大,固相线温度低,在晶粒间残存的低熔液态金属处,更容易引起应力集中,导致固相金属产生裂纹;同样,随着温度降低,如果收缩量较大,特别是在快速冷却条件下,当收缩应变速率高,应力-应变状态比较苛刻时也容易产生裂纹等等。

在铝合金焊接时焊缝金属凝固结晶的后期,低熔共晶体被排挤在晶体交遇的中心部位,形成一种所谓的“液态薄膜”,此时由于在冷却时收缩量较大而得不到自由收缩产生较大的拉伸应力,这时候液态薄膜就形成了较为薄弱的环节,在拉伸应力的作用下就可能在薄弱地带开裂而形成裂纹。

3热裂纹产生的机理

为了研究铝合金焊接时那个时候最容易产生热裂纹,把铝合金焊接时焊接熔池的结晶分为3个阶段。

第一个阶段是液固阶段,焊接熔池从高温冷却开始结晶时,只有很少数量的晶核存在。随着温度的降低和冷却时间的延长,晶核逐渐长大,并且出现新的晶核,但是在这个过程中液相始终占有较多的数量,相邻晶粒之间不发生接触,对还未凝固的液态铝合金的自由流动不形成阻碍。在这种情况下,即使有拉伸应力存在,但被拉开的缝隙能及时地被流动着的铝合金液态金属所填满,因此在液固阶段产生裂纹的可能性很小。

第二阶段是固液阶段,在焊接熔池结晶继续进行时,熔池中固相不断增多,同时先前结晶的晶核不断长大,当温度降低到某一数值时,已经凝固的铝合金金属晶体相互彼此发生接触,并且不断倾轧在一起,这时候液态铝合金的流动受到阻碍,也就是说熔池结晶进入了固液阶段。在这种情况下,由于液态铝合金金属较少,晶体本身的变形可以强烈发展,晶体间残存的液相则不容易流动,在拉伸应力作用下产生的微小缝隙都无法填充,只要稍有拉伸应力的存在就有产生裂纹的可能性。因此,这个阶段叫做“脆性温度区”。

第三阶段是完全凝固阶段,熔池金属完全凝固之后所形成的焊缝,受到拉应力时,就会表现出较好的强度和塑性,在这一阶段产生裂纹的可能性相对来说较小。因此,当温度高于或者低于a-b之间的脆性温度区时,焊缝金属都有较大的抵抗结晶裂纹的能力,具有较小的裂纹倾向。在一般情况下,杂质较少的金属(包括母材和焊接材料),由于脆性温度区间较窄,拉应力在这个区间作用的时间比较短,使得焊缝的总应变量比较小,因此焊接时产生的裂纹倾向较小。如果焊缝中杂质比较多,则脆性温度区间范围比较宽,拉伸应力在这个区间的作用时间比较长,产生裂纹的倾向较大。

4铝合金焊接裂纹的防止措施

根据铝合金焊接时产生热裂纹的机理,可以从冶金因素和工艺因素两个方面进行改进,降低铝合金焊接热裂纹产生的机率。

在冶金因素方面,为了防止焊接时产生晶间热裂纹,主要通过调整焊缝合金系统或向填加金属中添加变质剂。调整焊缝合金系统的着眼点,从抗裂角度考虑,在于控制适量的易熔共晶并缩小结晶温度区间。由于铝合金属于典型的共晶型合金,最大裂纹倾向正好同合金的“最大”凝固温度区间相对应,少量易熔共晶的存在总是增大凝固裂纹倾向,所以,一般都是使主要合金元素含量超过裂纹倾向最大时的合金组元,以便能产生“愈合”作用。而作为变质剂向填加金属中加入Ti、Zr、V和B等微量元素,企图通过细化晶粒来改善塑性、韧性,并达到防止焊接热裂纹的目的尝试,在很早以前就开始了,并且取得了效果。图3给出刚性搭接角焊缝的条件下Al-4.5%Mg焊丝中加入变质剂的抗裂试验结果。试验中加入的Zr为0.15%,Ti+B为0.1%。可见,同时加入Ti和B可以显著提高抗裂性能。Ti、Zr、V、B及Ta等元素的共同特点,是都能同铝形成一系列包晶反应生成难熔金属化合物(Al3Ti、Al3Zr、Al7V、AlB2、Al3Ta等)。这种细小的难熔质点,可成为液体金属凝固时的非自发凝固的晶核,从而可以产生细化晶粒作用。

在工艺因素上,主要是焊接规范、预热、接头形式和焊接顺序,这些方法都是从焊接应力上着手来解决焊接裂纹。焊接工艺参数影响凝固过程的不平衡性和凝固的组织状态,也影响凝固过程中的应变增长速度,因而影响裂纹的产生。热能集中的焊接方法,有利于快速进行焊接过程,可防止形成方向性强的粗大柱状晶,因而可以改善抗裂性。采用小的焊接电流,减慢焊接速度,可减少熔池过热,也有利于改善抗裂性。而焊接速度的提高,促使增大焊接接头的应变速度,而增大热裂的倾向。可见,增大焊接速度和焊接电流,都促使增大裂纹倾向。在铝结构装配、施焊时不使焊缝承受很大的钢性,在工艺上可采取分段焊、预热或适当降低焊接速度等措施。通过预热,可以使得试件相对膨胀量较小,产生焊接应力相应降低,减小了在脆性温度区间的应力;尽量采用开坡口和留小间隙的对接焊,并避免采用十字形接头及不适当的定位、焊接顺序;焊接结束或中断时,应及时填满弧坑,然后再移去热源,否则易引起弧坑裂纹。对于5000系合金多层焊的焊接接头,往往由于晶间局部熔化而产生显微裂纹,因此必须控制后一层焊道焊接热输入量。

而根据本文试验所证明,对于铝合金的焊接,母材和填充材料的表面清理工作也相当重要。材料的夹杂在焊缝中将成为裂纹产生的源头,并成为引起焊缝性能下降的最主要原因。

参考文献

[1]阿荣.铝合金的搅拌摩擦焊接工艺研究[A].兰州理工大学硕士论文.2004

[2]付志红,黄明辉,周鹏展等.搅拌摩擦焊及其研究现状[J].焊接,2002,(11):6~7

第5篇

铝的化学性质活泼,表面易形成氧化膜,在焊接时容易形成未熔合及夹渣缺陷,使接头的性能降低;氧化膜对水分有很高的吸附能力,易产生气孔缺陷;另外,还出现裂纹、接头软化和耐蚀性降低等问题。

1.1气孔

铝合金焊接时主要产生的气孔是氢气孔,而氢的来源有三:空气中的水分侵入熔池;保护氩气中含水分大;坡口及焊丝清理不干净。因此,解决气孔的主要措施是:

a)适当预热,降低熔池的冷却速度,有利于气体逸出;

b)制定合理的焊接工艺,采用短弧焊接;

c)提高氩气的纯度;

d)清除焊丝和母材坡口及其两侧的氧化膜、水、油等污物。

1.2裂纹

铝合金焊接中产生的裂纹主要是热裂纹,其中大部分是产生在焊缝中的结晶裂纹,有时在热影响区也出现液化裂纹。除了接头中拘束力的影响之外,结晶裂纹的产生主要是受铝合金化学成分和高温物理性能的影响。当焊接线能量过大时,在铝合金多层焊的焊缝中,或与熔合线毗连的热影响区,常会产生显微液化裂纹。防止裂纹的主要途径是:

a)选配合适的焊丝和尽可能优选母材成分;

b)正确选择焊接方法和工艺参数,宜采用功率大、加热集中的热源;

c)应避免不合理的工艺和装配所引起的应力增大,尽量将焊接应力降低到最小;

d)避免接头在高温下受力,人为地造成裂纹。

1.3焊接接头软化

铝合金管焊接后会产生明显的软化现象,其主要原因是由于焊缝和热影响区的组织与性能变化引起的。防止焊接接头软化的主要方法是:

a)采用加热迅速、热量集中的焊接方法,以减小接头的强度损失;

b)选择合适的焊丝。

1.4焊接接头的耐蚀性

铝合金接头耐蚀性降低的原因,主要与接头的组织不均匀、焊接缺陷、焊缝铸造组织和焊接应力等有关。采取的措施有:

a)选用高纯度的焊丝;

b)调整焊接工艺可以减小热影响区,并防止过热,同时应尽可能减少工艺性焊接缺陷;

c)碾压或锤击焊缝有利于提高焊接接头的耐蚀性;

d)减少焊接应力。

2焊接工艺

2.1焊接方法

通过以上分析和结合现场实际情况,确定焊接方法采用交流钨极氩弧焊。其优点是:具有阴极破碎作用;设备结构和线路简单,不易出现故障;TIG保护性好,电弧稳定、热量集中、焊缝成形美观、强度和塑性高、管材变形小;现场地面施焊,管材可以转动,以平焊位为主,操作容易;可形成较大的熔池,有益于气体逸出,故焊缝中气孔极少。

2.2焊前准备

2.2.1焊接设备与焊材的选用:采用交直钨极氩弧焊机WSE-315,焊材选用HS5356,直径5mm。

2.2.2清理铝合金管母和衬管都有包装,保护比较好,为了避免碰损和油污,在组装焊接时才拆除包装。现场使用坡口机开坡口,用丙酮擦拭坡口及其附近处,然后用铜丝刷清理管母坡口及其内外壁30mm范围、衬管和加强孔附近,之后再用丙酮擦拭,如图1所示。焊丝用化学方法进行清理。管母、衬管、焊丝的清理应根据焊接进度完成,不要一次清理过多,以免造成再次氧化和污染。

2.2.3组装对口制作焊接支架如图2所示,要求管母的轴心线重合,安装可转动胶轮可使管母免受损伤,且焊接位置一直处于水平位置便于焊工施焊,减小了操作难度,保证了焊接质量。衬管的加工要求见图3。制作对口卡具如图4所示,便于定位焊和焊接过程中转动管子时,使高温的焊缝不受外力而产生缺陷。

2.3焊接工艺参数

铝合金管母焊接电流与加热温度的选择尤为重要,如果焊接电流过大,熔池形成速度较快,容易造成烧穿、塌陷等缺陷;如果焊接电流过小,母材较难熔化,熔深浅,易产生气孔、未焊透和熔合不良等缺陷。可通过适当提高预热温度来补偿焊接区热源不足,使焊接顺利进行。具体焊接工艺参数见附表。焊接Φ110mm×4mm铝合金管母线时,焊接电流可适当减小,为160~170A,焊加强孔选择电流200~210A。

3结束语

第6篇

随着我国汽车总量的不断增加,我国已经成为世界第三大汽车生产国,和世界第二大汽车消费国。铝合金汽车轮毂的年产量超过六千万件,有很大的出口额。为了满足市场的需求,铝合金汽车轮毂在结构和生产设计上都有很多形式。外观造型上有宽轮辐、窄轮辐、多轮辐、少轮辐等设计,外观式样有抛光涂透明漆、亮面涂透明漆、电镀等。涂抹的颜色也根据客户的要求有多重形式,不同的色彩、不同的设计、不同的外观是发展的趋势。

2铝合金汽车轮毂的优点

首先,铝合金汽车轮毂的重量比钢轮毂的重量轻,这样车整体的重量减少了,汽车的油耗也就相对的减少了。经计算铝轮毂的重要减轻在40%左右,90km/h到120km/h车速时,油耗可减少0.05L/100km,城市内行驶,可减少的油耗量略少些,如果按每十万公里节油计算,大约节约在40~50L。其次,铝合金汽车轮毂能够改善汽车的行驶性能,使行驶过程中的振动减小,让驾驶员驾车更加舒适。铝合金汽车轮毂采用数控设备进行加工,平衡性能比钢优越。车轮如果是钢车轮,平衡性比较差,高速性能不稳定,和铝轮毂相比较,还是铝轮毂的性能好。再次,铝合金汽车轮毂的散热性好,车轮的热源主要由刹车产生和车胎与路面的摩擦产生。在汽车高速行驶中,车轮如果温度持续过高,就会有出现爆胎的可能性。因为铝的导热性能比钢的导热性能好,而且铝合金汽车轮毂表面的设计也有利于散热,所以使用铝合金汽车轮毂可以减少爆胎的可能,更易于散热。然后,铝合金汽车轮毂的美观度也很不错,对于汽车整体形象,轮毂的美观度也是对其有很大影响的。现在汽车的轮毂设计中,一个不可缺少的设计就是汽车的轮毂的设计。汽车轮毂的造型直接关系到汽车的车身设计的档次,也可以突显出汽车的品味。制造厂商和设计者在车毂的风格设计上下了不少功夫,不单在颜色上进行设计加工,还给车毂加了花纹结构,不同的花纹有着不同的颜色,再经过电镀,添加了很多个性化的设计,也很大限度地满足各类人群的审美要求。

3铝合金汽车轮毂的设计开发

随着现在人民的生活水平的提高,同时汽车品种的增多,和汽车价格的下调。汽车已经成为大众消费的热点产品。从大众对汽车的认知和实用性,到对汽车的审美和汽车的功能过度。大众不仅要求汽车的优良的性能,方便的驾驶,还会要求汽车符合自己身份地位,以及符合自己的审美品位。车毂对于汽车整体的形象有着重要的影响,如果想在市场上长期立足,就需要轮毂的设计开发,汽车部件的设计开发也是企业发展的关键所在。

4铝合金汽车轮毂的生产工艺流程

4.1生产厂家对汽车轮毂的生产设计进行研究。中层共同参与,通过了解大众在汽车轮毂使用中遇到的问题及未能得到满足的需求,挖掘大众在汽车轮毂方面潜在的需求,提出问题解决问题。

4.2市场调研。考察同类汽车的轮毂在市场的竞争情况,根据目标汽车轮毂的市场分析潜在的竞争环境,同时也要了解当前政府政策,和其他环境因素。

4.3管理定位。由管理层对汽车轮毂的价格、设计、风格、功能、性能、主导方向进行定位。各项指标均以数字化形式体现。

4.4根据产品需求进行概念设计。综合汽车轮毂的技术质量要求更进一步构思,在风格、设计定位的基础上绘制出不同款式的轮毂图,对所设计出来的轮毂图进行比较,筛选出最完美的设计稿,然后对设计稿进行优化,形成机构图纸,再用建模技术进行建模,利用分析软件对所设计出的铝合金汽车轮毂进行应力分析,根据分析出来的结果进行完善和修改,再重新设计模型,并了解客户需求,选出最理想方案。

第7篇

1.1焊接变形原因

焊接的热过程是导致残余应力和塑性应变的根源。在焊接过程中,焊接热过程对焊接质量和焊接效率的影响,主要来自以下几个方面的深层次原因:(1)在焊接件上,熔池的形状和尺寸直接影响焊接质量,而熔池大小与尺寸作用到焊接件上的热量分布和大小息息相关;(2)焊接的热过程包含加热和冷却两个过程,这两个过程中的加热和冷却参数会直接影响熔池的相变过程,对金属的凝固产生重要的影响,对热影响区的金属组织产生一定的破坏;(3)焊接中的热过程直接决定热量的输入过程和热量的传递效率,这直接导致焊接的母材的熔化速度;(4)焊接的热过程如果不均匀,会对金属构件各部分产生不同的热响应,导致出现不同的应力,产生应力形变。从以上理论探讨,我们可知在金属构件焊接过程中出现变形,主要是由于焊接热源是处于局部加热,使得铝合金构件上的热量分布存在差异,在构件与母材之间的焊缝区域附近热量吸收的较多,引起周围铝合金材料和母材都出现一定程度的受热膨胀,而远离焊缝区域的铝合金材料和母材材料由于吸收到的热量相对较少,发生的体积膨胀相对较小甚至不发生体积膨胀,使得焊缝区域的体积膨胀过程受到一定的抑制,导致焊接过程中,焊接构件和母材之间出现瞬间的热变形,但是当铝合金构件在焊接过程中产生的内应力超过了自身材料的弹性极限后,会出现一定的塑性应变,当焊接过程结束之后,焊接件又逐步冷却而产生残余变形。

1.2焊接变形分类

从机械领域考虑整个焊接过程,可以将焊接过程中出现的变形分为瞬间变形和残余变形。其中,焊接过程瞬间热变形分为三种,依次是面内位移、面外位移和相变组织形变。焊后残余变形分为面内变形和面外变形两大类,面内变形又分为焊缝纵向收缩、焊缝横向收缩、回转变形;面外变形又分为角变形、弯曲变形、扭曲变形。

1.3铝合金的焊接性能分析

熟悉化学原理的人都清楚,各种铝合金的化学成分并不一致,导致不同铝合金的物理性能和化学性能存在一定的差异,但是,由相关研究试验并结合以上的焊接热理论和焊接应力应变理论分析可知,铝合金的焊接性能主要与铝合金中的含铝量和含镁量有关。随着含镁量的增高,铝合金强度增高,焊接性能改善;但是,当含镁量超过7%的极限值之后,铝合金容易出现应力集中,降低焊接性能。但是,铝合金与其他金属相比,由于在空气中或者是进行焊接时,比较容易与氧反应被氧化,生产的氧化铝薄膜由于熔点高,在焊接时会阻碍焊接过程;焊接过程中,在接头内容以出现一些焊接缺陷,因此,在焊接前需要进行表面处理后尽快进行焊接。此外,由于铝合金的其他物理化学性能如热导率、比热等比钢大,在焊接时容易造成较多的焊接热量的流失,因此,在焊接时需要采用高度集中的热源进行焊接,才能有效提升焊接质量,降低应力形变的出现。

1.4铝合金构件焊接变形控制措施

从上述对铝合金构件焊接性能和焊接热过程的分析,对于铝合金构件在焊接过程中出现的瞬间变形和焊接结束后出现的残余变形,需要采取一定的控制措施,减少变形甚至是消除变形,促进铝合金构件在装备整体结构中发挥应用的作用。在铝合金构件设计阶段结合整体装备,做好其结构设计并采取优质的焊接技术,能够显著减小焊接变形量。为此,我们可以从两个阶段进行铝合金焊接变形量的控制。一个阶段是设计阶段,另一个是制造阶段。在设计阶段,主要遵循如下几个原则即可实现在设计过程做好对铝合金焊接变形的有效控制:首先是要对焊接的工艺进行有效的设计与选择,一般在这个过程中,遵循的原则就是尽量选择那些实践反馈效果好应用成熟的焊接工艺;其次,对于焊接过程中,铝合金构件和主体装备结构之间焊接缝隙的尺寸、形状、布局以及位置都应进行有效的设计,尽量通过好的焊缝设计铝合金构件在主体结构上的位置,控制好焊缝的布局和位置,然后减少焊缝的数量,选择最优的焊缝尺寸,实现对焊接结束之后可能出现的残余形变;最后,在设计过程中,需要做好一系列的仿真实验和小比例模型的模拟实验,在实验检验的基础之上,确定最终的设计方案,以便正确指导铝合金的焊接,减小甚至防止铝合金构件的焊接变形。在制造阶段对铝合金构件焊接变形的控制,主要是指焊接准备过程、焊接过程和焊接结束之后的过程中进行控制。首先,在焊接准备过程中,需要对焊接工艺设计到的参数进行详细的熟记,并对相关的理论知识做到熟记于心。另外,在焊接准备过程中,需要预先对焊接构件进行一定的拉伸然后再采取刚性固定措施进行组装拼接,做好这些准备工作是控制变形的前提;其次,在焊接过程中,除了要严格按照设计的焊接工艺进行焊接之外,还应按照优秀的焊接工艺实现对瞬时变形的控制,例如,采取那些能量密度高的热源,对焊接过程中的焊接受热面积进行技术控制;最后,在焊接结束之后,应加强对铝合金构件焊接水平的检测,一旦发现存在着残余变形,及时采取加热矫正或者是利用机械外力作用进行矫正,达到对变形量的减小。

2铝合金构件焊接工艺优化

对于铝合金构件在焊接过程中出现的焊接变形,可采取多种手段进行。如在结构设计阶段,可通过相关的应力形变实验,分析应力出现的大小,结合设计的允许值,调节焊缝的尺寸,尽量降低焊缝的数量,对焊接后出现的残余变形进行控制;在焊接过程中,采取一定的反变形或者是刚性固定组装的方法在焊前进行预防;焊接结束之后,为了减小已经出现的残余变形,可以采取加热矫正或者是利用机械外力进行矫正的方法。当然,最为有效的方法还是在相关变形研究理论的基础之上,结合焊接试验,对焊接工艺进行一定的优化,结合实际的铝合金构件进行参数的设定,科学控制铝合金构件的焊接应力变形,最终生产出符合设计要求的产品。对于铝合金构件的焊接,在焊接过程中,焊丝直径、成分和表面质量关系到焊缝金属及热影响区的力学性能,尤其是焊接变形。因此,选取合理的焊丝直径,选择表面质量上等和化学成分达标的焊丝就是优化焊接工艺的主要步骤之一。在通常的情况下,为了保证焊接的质量,主要选择焊丝直径大的焊丝。不过,由于焊丝直径选择太大,对于薄板铝合金构件的焊接并不利。因此,在现有实践的基础之上,对于焊丝直径的选择一般是随着铝合金构件厚度的增加而逐步增加。此外,在进行平焊时,焊丝直径应相对选大一点;立焊或横仰焊时,则选择较小直径的焊丝。焊接电源作为焊接过程中的主要能量来源,为了使焊接质量达标,在选择电源种类与极性时,需要选取那些既能够满足焊接工艺需求,又能够符合用户物质、经济和技术等条件的电源。

一般,由于直流电源的电弧具有较好的稳定性、焊接质量优和飞溅少等特点,在铝合金构件的焊接时是作为首选的。选择直流反接电源进行焊接,能够借助焊件金属为负极的电弧产生的阴极雾化效果,对铝合金构件表面致密的氧化铝薄膜产生快速熔化,而且在焊接过程中,能够避免产生大量的焊渣和污染性气体,不仅方便了焊工对反应熔池的观察,及时调整焊接的速度和角度,而且还能对焊工的职业健康危害程度有所下降。例如,在焊接6毫米的铝合金薄板构件时,一般主要采用直流反接电源进行焊接。对焊接工艺进行优化,目的就是为了使铝合金构件焊接的质量和焊接形变在允许的范围之内。由以上对铝合金焊接热过程和变形理论的分析和探讨之后,我们发现选择适宜的焊接电流,是优化焊接的重要考虑方向。在焊接过程中,焊接电流是指流经焊接回路的电流,这个电流的大小对焊接生产效率和焊接质量有着直接的影响。一般为了提高焊接生产效率,在质量保证前提下,选择尽可能大的焊接电流,以达到提高焊接效率的目的。不过,由于电流过大,引起热量输入过大和较大的电弧力存在而导致的焊缝熔深和余高增大,而且还会使热影响区的晶粒变得粗大,出现应力集中区,使接头的强度和承载能力下降。同时,由于电流锅小,电弧燃烧不充分不稳定,容易形成气孔和夹渣等焊接缺陷,使得焊接接头的冲击韧性降低,不利于焊接质量的提升,因此,在焊接电流选择上,还是需要通过实践选取适宜的电流。由于电弧长短对焊接质量也有显著影响,而电弧电压决定电弧长短,因此,在焊接时,依据焊接试验,需要控制好电弧电压,产生适宜长度的电弧长度进行焊接。例如,对于6mm厚度的铝合金板材进行焊接时,焊接电流定义为170A,焊接电弧电压为25V,通过实验论证,焊接接头强度可以达到良好的效果。由焊接热过程分析得到,在铝合金构件焊接过程中,为了实现对焊接变形量的控制与减小,一般应采用能量密度高的焊接热源,同时,对焊接速度进行优化,保证焊接速度既不会过快也不会过慢。例如,从相关实践表明,对于6mm厚度的铝合金板材进行焊接时,焊接电流定义为170A,焊接电弧电压为25V,通过此实验论证,焊接接头强度可以达到良好的效果。

3总结

相关范文