时间:2023-08-08 16:45:55
序论:在您撰写统计学的概率时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:概率统计;信息科学;结合
作者简介:付建军(1956,8-),男,汉族,北京交通运输职业学院普通课教研室主任,高级讲师,研究方向:课程开发
数学学科作为所有自然学科的基础,对科学技术的各个领域有着极强的推动作用,而信息科学作为新时代的主流技术,也已经逐渐渗透到人们生产生活的方方面面。当然,二者在发展中还面临着许多的挑战和阻力,对于概率统计与信息科学二者的结合研究,其意义就在于加强学科间的渗透从而给各个学科带来更加广泛的运用,给学科自身发展探究带来便捷。
1简介概率统计与信息科学的发展
1.1关于概率统计学
概率与统计是一门从数量方面研究随机现象规律性的数学学科,概率与统计的概念被广泛运用到各个领域及部门。概率统计学的运用及其广泛,随机事件的研究结果对于当代各类数据分析整合都有着重要的作用。与此同时,概率与统计的学科特点也决定了其研究的难度较大,概率与统计的结论得出往往建立在大量的实验与实践基础上。作为一门应用型数学学科,其广泛性必将为未来科学技术和人们生活水平带来不可估量的影响,而其自身研究条件的局限性,尤其是实验条件的不足,将直接影响到未来自然科学发展,也势必会减慢人类在科技创新之路的发展进程。
1.2关于信息科学
信息科学主要包含信息论、控制论、计算机理论、人工智能理论和系统论,其中,信息论、控制论和系统论在信息科学中占有主要地位,而计算机理论是数学研究中的应用重点。信息科学的兴起直接带领人类走向了信息化时代,对于人类文明的有着不可估量的作用。信息科学发展到今天,其作用已经不仅仅针对于学科本身以及信息行业,在信息化趋于高度发达的今天,将会为人们的生活带来质的飞跃,对于不同的行业领域,都将有信息科学的推动,信息化带来的是未来自动化和智能化的飞速前进。而信息科学自身也在不断地发展完善,数学学科作为自然科学的基础理论学科,对于信息科学的发展也不例外,只有从基础上进行完善和补充,才能帮助信息科学走上更加成熟更加美好的未来之路。
2信息科学与概率统计学的内在联系
在信息科学已经逐步成熟的今天,其所包含的各项技术已经为人们的生活带来了更加智能化、便捷化的体验。当然,信息科学是建立在数学基础上的学科,其技术须有数学理论、数学方法的支持与论证。[1]概率统计对于现代数学更有着重要的意义,其所涉及的随机规律的研究将更加符合生产生活的需求,而随机规律的运用在信息科学中体现的更淋漓尽致,信息科学的大多数结果都需要建立在庞大计算与实践的基础上,这就需要对结果的普遍性进行概率与统计的研究分析,同样,对于概率统计学科的发展,信息科学能够很大程度的减少研究过程的繁冗,加速概率统计学的发展和进步。由此可见,这两个科学领域存在紧密的内在联系,将概率统计与信息科学整合研究对于其自身发展以及整个应用型科学的发展都有着重要的意义。
3信息科学与概率统计学的整合策略
3.1重视对二者探究观念的结合
信息科学的发展带来了许多先进的生产技术,将其应用于概率学的研究探讨可以带来事半功倍的效果,而如何将二者更加紧密的结合在一起,创造出更大的社会价值,首先就要要求在思想观念上将概率统计学与信息科学联系起来。例如,在对于概率统计的研究或者论证中,根据其研究特点将概率统计中的数学模型抽象出来,针对其特点进行信息化的整合,力求将繁冗的步骤简化,减少人力物力的过度消耗。同样,对于信息科学,要在对其先进性进行发展改进时考虑到概率统计的运用,利用概率与统计的结果和普遍性规律对信息科学技术进行改良与进化,使得信息科学在实际中的应用更具有合理性。科学具有广泛的共同性,并且都不是单一存在的,只有建立起学科间穿插研究、互相渗透的观念,才能在科学技术的发展进程中更大程度的的实现多样化,挖掘出自然科学更大的潜力。[2]
3.2重视将整合后的理论用于实践
理论是实践的基础,而实践才使得理论具有意义,这句话对于各个领域,尤其是自然科学的探究上有着重要的意义。对于概率统计与信息科学的渗透发展,仅仅局限于“敢想”是不够的,在充分的思考后,要将想法勇于实践才能真正的实现二者的结合发展。而如何将理论用于实践,不知是需要专业知识的支持,还需要对环境因素、人为操作因素、结果预估等等进行全方位的统计,在推行到实践的过程中,始终保持科学严谨的态度,把控每一个环节,抓好每一个细节,才能更好的将理论运用于实践中去,才能赋予学科间渗透结合更完整的意义。
3.3重视对实践结果的推广
成熟的技术需要进行推广才能创造更大的效益,众所周知,概率统计学的研究过程面临着庞大的实验数据,要将这些数据分析并不是人力所能承受的,这就需要在对此学科的研究中大力推行计算机科学以及信息科学的技术。将二者充分的结合渗透,研究出兼具科学性、合理性和操作性的技术模式,为研究人员、教师和学生都创造出极大的便利,也为其自身技术水平的先进化和自然科学的整体发展水平提升做出了杰出贡献。
4结束语
概率统计学发展至今,其所研究的随机规律已经带给了人们许多便利,为人们的生产生活创造了可观的经济效益,信息科学也是如此。在时代的要求下,二者的结合渗透已经成为了突破自身发展瓶颈的必要途径,加强二者在研究观念上的结合、在实践应用中的结合、在技术推广上的结合将会在未来创造出更加优异的成绩。当然,在二者的结合发展中还将会面临各种各样的难题,要努力将专业知识与实践经验结合在一起,多角度的考虑问题,解决问题,势必会为科学的进步添上其浓墨重彩的一笔。
参考文献
[1]曾祥霖,张绍文.论信息技术与课程整合的内涵层次和基础[J].电化教学研究,2012,1l.
1简介概率统计与信息科学的发展
1.1关于概率统计学
概率与统计是一门从数量方面研究随机现象规律性的数学学科,概率与统计的概念被广泛运用到各个领域及部门。概率统计学的运用及其广泛,随机事件的研究结果对于当代各类数据分析整合都有着重要的作用。与此同时,概率与统计的学科特点也决定了其研究的难度较大,概率与统计的结论得出往往建立在大量的实验与实践基础上。作为一门应用型数学学科,其广泛性必将为未来科学技术和人们生活水平带来不可估量的影响,而其自身研究条件的局限性,尤其是实验条件的不足,将直接影响到未来自然科学发展,也势必会减慢人类在科技创新之路的发展进程。
1.2关于信息科学
信息科学主要包含信息论、控制论、计算机理论、人工智能理论和系统论,其中,信息论、控制论和系统论在信息科学中占有主要地位,而计算机理论是数学研究中的应用重点。信息科学的兴起直接带领人类走向了信息化时代,对于人类文明的有着不可估量的作用。信息科学发展到今天,其作用已经不仅仅针对于学科本身以及信息行业,在信息化趋于高度发达的今天,将会为人们的生活带来质的飞跃,对于不同的行业领域,都将有信息科学的推动,信息化带来的是未来自动化和智能化的飞速前进。而信息科学自身也在不断地发展完善,数学学科作为自然科学的基础理论学科,对于信息科学的发展也不例外,只有从基础上进行完善和补充,才能帮助信息科学走上更加成熟更加美好的未来之路。
2信息科学与概率统计学的内在联系
在信息科学已经逐步成熟的今天,其所包含的各项技术已经为人们的生活带来了更加智能化、便捷化的体验。当然,信息科学是建立在数学基础上的学科,其技术须有数学理论、数学方法的支持与论证。[1]概率统计对于现代数学更有着重要的意义,其所涉及的随机规律的研究将更加符合生产生活的需求,而随机规律的运用在信息科学中体现的更淋漓尽致,信息科学的大多数结果都需要建立在庞大计算与实践的基础上,这就需要对结果的普遍性进行概率与统计的研究分析,同样,对于概率统计学科的发展,信息科学能够很大程度的减少研究过程的繁冗,加速概率统计学的发展和进步。由此可见,这两个科学领域存在紧密的内在联系,将概率统计与信息科学整合研究对于其自身发展以及整个应用型科学的发展都有着重要的意义。
3信息科学与概率统计学的整合策略
3.1重视对二者探究观念的结合
信息科学的发展带来了许多先进的生产技术,将其应用于概率学的研究探讨可以带来事半功倍的效果,而如何将二者更加紧密的结合在一起,创造出更大的社会价值,首先就要要求在思想观念上将概率统计学与信息科学联系起来。例如,在对于概率统计的研究或者论证中,根据其研究特点将概率统计中的数学模型抽象出来,针对其特点进行信息化的整合,力求将繁冗的步骤简化,减少人力物力的过度消耗。同样,对于信息科学,要在对其先进性进行发展改进时考虑到概率统计的运用,利用概率与统计的结果和普遍性规律对信息科学技术进行改良与进化,使得信息科学在实际中的应用更具有合理性。科学具有广泛的共同性,并且都不是单一存在的,只有建立起学科间穿插研究、互相渗透的观念,才能在科学技术的发展进程中更大程度的的实现多样化,挖掘出自然科学更大的潜力。[2]
3.2重视将整合后的理论用于实践
理论是实践的基础,而实践才使得理论具有意义,这句话对于各个领域,尤其是自然科学的探究上有着重要的意义。对于概率统计与信息科学的渗透发展,仅仅局限于“敢想”是不够的,在充分的思考后,要将想法勇于实践才能真正的实现二者的结合发展。而如何将理论用于实践,不知是需要专业知识的支持,还需要对环境因素、人为操作因素、结果预估等等进行全方位的统计,在推行到实践的过程中,始终保持科学严谨的态度,把控每一个环节,抓好每一个细节,才能更好的将理论运用于实践中去,才能赋予学科间渗透结合更完整的意义。
3.3重视对实践结果的推广
成熟的技术需要进行推广才能创造更大的效益,众所周知,概率统计学的研究过程面临着庞大的实验数据,要将这些数据分析并不是人力所能承受的,这就需要在对此学科的研究中大力推行计算机科学以及信息科学的技术。将二者充分的结合渗透,研究出兼具科学性、合理性和操作性的技术模式,为研究人员、教师和学生都创造出极大的便利,也为其自身技术水平的先进化和自然科学的整体发展水平提升做出了杰出贡献。
【关键词】概率论 描述统计 推断统计 统计思想
一、概率论引入统计学的意义
(一)方法的突破
统计学研究对象的拓展。引入概率论后统计学研究对象的拓展表现在外延与内涵两方面。外延上,导源赌博问题研究的概率论以随机性现象为主要研究对象,它的应用将统计学思想方法带到自然科学领域,甚至用于研究人类心理活动、思维现象,拓展了原来始于社会经济现象研究的统计学的研究对象。另外,联姻前统计学对现象的描述、分析只能止于其确定性方面,有概率论新工具后,其不确定性方面也能描述分析,拓展了作为统计学对象的社会经济现象的数量信息内涵。研究对象的拓展,使得在此基础上统计学成了一门具有通用性的定量分析工具。
统计学研究方法的进阶。概率论联姻“统计”的突出意义表现在方法上—由描述走向推断。“描述统计”(包括数据的收集、整理、显示和分析)主要是通过图表形式对所收集的数据进行加工处理和显示,进而综合、概括和分析得出反映客观现象规律的数量特征;“推断统计”则是在对样本数据进行描述的基础上对统计总体的未知数量特征作出以概率形式表达的推断。联姻之前的古典统计学主要就是初级的“描述统计”(简单的计量、分组、图表、推算等),现代统计学则以“推断统计”为其核心内容。这里“描述”与“推断”的划分一方面反映统计方法发展的两个阶段,另外也反映应用统计方法探索客观事物数量规律的不同过程。“描述”是基础,“推断”是主要内容。
推断统计的现实性意义。统计学从描述发展到推断,反映统计学发展的巨大成就,也是统计学成熟的重要标志。一方面,它是重要的认识工具。正是由于有了“推断”,科学借助统计这一定量分析工具取得了巨大成就。象著名的基因论就借助推断统计方法而得。
(二)思想的腾飞
矩:统计学早期便有“平均”即一般代表值的思想,认识事物数量方面的一般性。引入概率论后,“平均”引申到“期望”,描述随机变量的集中趋势。与“平均”相对应,有对数据偏离“一般”程度的描述即“变异”,认识事物数量方面的差异。引入概率论后其内涵扩充到对随机变量离散程度的描述。“矩”源于力学研究,均数、方差同重心和转动力矩之间的类似促使统计上用“矩”来描述数据特征。其概念涵盖前述的几个参数,并扩充到多阶、多维随机变量特征的描述。“矩”体现了统计“求同察异”的思想,即在了解差异的同时认识事物的同质性。
估计:估计是据样本数据对总体参数所作出的“猜想”’其实质是一种类比,将对已知事物的认识拓广到更大范围。实际上有一个假定即样本、总体的同质性(同分布)。由于样本的随机性使得估计带有不确定性,便给出“区间”来对其描述。
检验:检验即先对总体特征作出一种假设,然后根据样本信息对这一假设的支持程度作出描述(假设正确性的判断),主要运用反证法、小概率原则等思想。检验与估计构成统计推断内容的两面,鉴于思维上推与证的不同而分别提出。
拟合:拟合就是对现象之间的联系、发展规律、变化趋势给予定量描述,是对事物间关系表现的一种抽象。也就是以一定的模型来反映现象及现象间的联系的发展变化,表现出联系的显性方面而抽象掉非显性方面。
相关:相关是客观事物普遍联系的哲学思想在统计上的具体化。统计所研究的对象之间往往表现出相随共变或相随共现的情况,相关便是对现象间这种联系的数量表现的描述、分析。通过对比关联现象变化的方向与程度,来研究它们之间是否有联系、联系的紧密程度和形式。
惯性:哲学上,客观现象都是有规律的辩证发展运动过程。任何运动都具有惯性,这种惯性表现为系统的动态性即记忆性。它反映现象未来行为与过去的行为有关这样一种动态思想,是“动态相关”,也是预测的思想基础,反映现象本身及现象之间关系发展、变化的规律性。
二、概率论引入统计学的启发
概率论引入统计学,使统计学思想方法有了质的飞跃,并成为统计学坚实的理论基础。这也给我们启发:统计学必须与时俱进,顺应时代而发展,不断完善方法体系,与其它定量分析工具、计算技术及其应用领域科学结合融会。
研究对象泛化:统计学是定量分析工具,首先便表现在对所研究的对象(社会经济现象、自然现象、精神思维等)的定量描述上(对象信息数据化),然后再做定量分析。最初统计学只能局限于现象数量信息做确定性的数量描述、分析,引入概率论之后,对研究对象便可以做随机性描述、分析。而实际工作中有时还必须对定性的、模糊的、混沌的甚至突变的等研究对象做定量的描述与分析,概率论便会有所局限,必须引入新的工具。比如引入模糊数学,对模糊性现象做定量描述分析;引入灰色理论,形成灰色统计思想等等。
电子技术发展:科技特别是计算机技术的发展使数据处理的手段得到提升,并对统计提出了新挑战。电脑、网络的出现一方面使统计学的研究对象(总体)成了一个结构复杂的系统,另一方面对数据的分析处理变成了算法。同时在我们面对的数量信息超大量化后,统计的“收集、分析数据”的任务、统计推断意义也就必然发生变化,等等。这一切都要求统计必须与计算机及其它科学联姻,如人工智能、神经网络理论等。
应用领域扩张:现代统计学是一多层次多门类的学科,几乎所有的科研都要借助这一定量分析工具。应用领域的不同,对这一工具的要求必然不尽相同。比如生物统计、保险统计与统计地理学在基础性方法一致的基础上各有与其相联系的实质性科学的特点。现代统计方法(包括概率论的成长、壮大)很大程度上来自一些实质性科研活动,这也就要求我们坚持以概率论等数理工具为基础的前提下紧密联系应用领域的实质性科学。
总之,统计学是一门生命力强大的科学,也是一门与时俱进的科学。顺应时代要求,不断借鉴其它方法科学,丰富统计方法,拓展应用领域。
一 中学概率与统计加强对学生的培养
针对以往的数学教程的不完善教育部实施了教学改革,其中对课程标准最明显的变动是增加了"概率与数理统计"这一内容,这在课程领域是一个突破.概率与数理统计是实际应用性很强的一门数学课程,它在经济管理、金融投资、保险精算、企业管理、投入生产分析、经济预测等众多经济领域都有广泛的应用.概率与数理统计是高等院校财经专业的公共基础课,它既有理论又有实践,即讲方法又讲动手能力.在初中阶段概率与数理统计作为义务教育阶段数学课程的四个学习领域之一.从第一学段安排有关内容主要因为现代社会需求每一个合格的公民必须具备一定的收集数据、描述数据、分析数据的能力.这样能要从小培养随机现象是这部分内容的一个重要研究对象.从随机现象中寻找规律,这对学生来说是一个全新的观念.如果缺乏对随机现象的丰富体验,学生往往较难建立这一观念.因此,应该从小就把随机的思想渗透到数学课程中去,这样不仅给以后的数学学习带来方便,而且能使学生所学的数学更加贴近现实,避免了理论脱离实际现象的产生.
三 新课标中的统计与概率内容
要使学生形成统计观念,最有效的方法是让他们真正投入到统计的全过程中:发展并解决问题,运用适当的方法收集和整理数据,运用合适的统计图表、统计量等来展示数据,分析数据作出决策,对自己的结果进行交流、评价与改进等。同样要使学生对随机现象有初步的理解,必须在实验的过程中,理解概率的意义,体会概率与频率的关系。只有通过大量的实验,才能丰富学生对于概率意义的理解,形成随机观念。
⒈第一学段通过具体操作活动,使学生对数据处理的过程有所体验,在活动中学习一些简单的收集、整理和描述数据的知识和方法(如统计表、象形统计图、平均数),并能根据数据回答一些简单的问题(也就是简单的统计推断)。本学段的学生更多地关注事物的新奇性和趣味性,他们的数学学习是否有效与自身已有的生活经验和知识背景密切相关,他们一般只能从感性的程度理解统计与概率的知识。因此,这一学段的学习侧重于初步的感受与体会,力求通过具体的操作活动和现实生活中的例子,让学生充分体验学习这部分内容的必要性和重要性。
⒉第二学段通过日常生活和周围的环境中熟悉的素材,使学生经历简单的数据处理过程。在此过程中进一步学习收集整理和描述数据的知识和方法(统计图表、平均数、众数、中位数等),根据数据作出简单的决策和预测,并能对某些简单问题设计统计活动、检验某些判断,进一步体会事件发生可能性的含义。
⒊第三学段通过自然、社会和科学技术领域中的现实问题,使学生主动地从事统计的过程,进一步体验统计是进行决策的有利手段,并初步接触抽样、随机抽样等内容,进一步学习收集、整理和描述数据的方法(如极差、方差、频数分布),体会概率的意义,能计算简单事件发生的概率。对于这学段统计内容学习要注重理解和在实际问题中的应用,即能够在新的问题情境中,特别是在具有现实背景的问题情境中,准确地解决问题。
⒋本学段统计学习的重要内容是抽样。这部分内容是通过丰富的实例,体会抽样的必要性和随机抽样的重要性;经历抽样的过程,并根据样本的平均数、方差等计算估计总体的特征,体会用样本估计总体的思想。例如:调查本班的同学,调查在操场上打球的学生,在校门口随便找一些同学,每年级男生女生按比例各抽几个人,按各班名册随便点几个人等等。
初中阶段的概率与统计内容的学习重点是统计与概率的思想方法的学习、理解与应用。对概念、公式、法则重在理解和应用,即能够在新的问题情境别是在具有现实背景的问题情境中,准确地理解和使用相关的概念、术语或公式。
高中阶段的概率与统计内容主要是将学生在义务教育阶段所学的统计与概率的基础上通过实际问题情境,学习随机抽样、样本估计总体、线性回归的基本方法,体会用样本估计总体及其特征的思想;通过解决实际问题,较为系统的经历数据收集与处理的全过程,体会统计思想与确定性思维的差异.学生将结合具体的实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器模拟估计简单随机事件发生的概率。其中本模块学习的随机抽样、样本估计总体、变量的相关性三部分内容贯穿于中学阶段的始终。
⒈随机抽样是高中数学课程统计学习目标非常重要的一个方向。简单的随机抽样是抽样中最简单的方法,也是最基本的抽样方法,因此,学生在学习时要领悟其基本思想.简单的随机抽样是使总体中所有抽样单位都有相等的概率被抽取到样本中去的一种抽样方法。
⒉在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
另外,要学生明确样本的信息与总体的信息还存在着一定的差异.样本所提供的信息只是总体的部分信息,在一定程度上反映了总体的有关特征,但不完全确定。也就是说,按照同一个规则进行抽样,每次抽样所获得的信息都不能保证完全一样的,是一个变化的量,这是抽样的随机性所决定的。
高中阶段的概率与统计的学习有助于学生形成数据处理过程中进行初步评价意识和自我评价意识;有助于学习方法与提高学习能力。在统计与概率的学习中,要求学生形成对数据处理过程初步评价意识,这将有助于学生对统计思维与确定性思维的理解。另外,数据处理的过程存在着统计思想与统计方法的差异,这样可能导致统计分析的结果的差别,学生的 初步评价意识有助于改善统计分析过程可能出现的各种问题.评价意识将有助于学生客观地认识统计的过程、统计的分析方法,有助于理性思维的培养。
高中数学新教材以较多的篇幅充实了概率统筹内容,旨在介绍一些新的基本数学思想与内容,同时使教材内容更加体现数学应用意识,其重要性是不言而喻的。通过实际问题使学生初步理解在现实世界中大量事件的不确定性,同时能用概率知识进行一些简单的判断与决策。
总之,统计与概率的教学,应重视问题的实际背景和意义,强调制定决策的过程以及统计与概率在社会生活和科学领域中的应用,注重学生的自主探索和在此基础上的合作交流,重视模拟和实验,不要把这部分内容处理成纯计算的内容,也不能灌输给学生过多的专业术语.
参考文献:
[1]北京师联教育科学研究所制定,《新课程与初中数学教学》.学苑音像出版社,2004 54-77
[2]北京师联教育科学研究所制定,《新课程与高中数学教学》.学苑音像出版社,2004 65-80
[3]谢安,《浅谈概率与数理统计课程教学改革》.中央财经大学,2005
统计的出发点是收集数据,然后再科学的分析数据和整理数据。不列颠百科全书对统计学下了如下定义:“统计学是收集和分析数据的科学与艺术”。这就是说,统计学不仅是一门科学,而且是一门收集和分析数据的艺术,要求从数据中挖掘出新的信息,而不是死记硬套现有的公式和定理。为了突出收集和分析数据的重要性,我们在教学的过程中,可以考虑以下几个方面:(1)首先展现给学生一系列的实际数据,比如一批电灯泡的寿命、某年级外语考试成绩等,让学生对数据有一个明确的感性认识,意识到统计是从数据出发的,先有数据,然后才有公式和定理。不同的数据具有不同的实际意义,弄清楚这些数据的分布规律和性质是统计的基本任务。(2)强调如何有效地收集数据是统计中的重要问题,通常是从总体中抽取样本,抽样的方法是多种多样的,在教学中可以结合实例作抽样试验,比如从同一种型号的汽车中随机抽取5辆,测量每公里的耗油量;观察吞某类药物的病人的反应情况;调查部分学生的外语考试成绩;等等。(3)分析数据是统计工作的核心,分析数据就是对数据进行加工处理,从而获取数据中关于总体的信息。通过构造各种不同的统计量,对所研究的总体进行推断,达到从部分认识全体的目的。在教学中可以通过计算机软件对数据的结构、统计量的分布作动画演示,比如数据频率直方图、经验分布函数曲线、样本均值分布直方图等,从而提高学生对分析数据的兴趣。
二、结合实例强调统计方法的重要性
概率统计是数学的一个重要分支,它的方法别具一格,无论对自然科学还是社会科学,现代统计方法是必不可少的。在教学的过程中,结合实例强调统计方法的重要性,既能加深对于概率统计理论知识的理解,又能激发学生对这门课程的兴趣,具体可从以下几个方面进行考虑:(1)结合日常生活实例进行教学,比如统计学生中同生日的人数,随着统计人数的增加,至少有两人同生日这一事件的频率会接近于1,然后将这一结果与理论概率进行比较;统计吸烟与非吸烟人群中患肺癌的比例,检验吸烟与患肺癌是否存在某种依赖关系;观测一天中某人手机的呼唤次数,然后与泊松分布进行拟合优度检验;统计某年级的外语考试成绩,根据数据进行正态分布的拟合优度检验;等等。(2)结合实例突出统计中的基本方法,参数估计和假设检验是进行统计推断的两种最基本的方法,其涉及的范围十分广泛,在教学的过程中应首先理解方法的基本原理和理论依据,结合典型实例进行分析,比如通过估计湖中鱼的条数,使学生了解矩法和最大似然法的原理和步骤;通过检验自动包装机工作是否正常,使学生掌握假设检验的方法步骤。(3)结合实例系统介绍统计中的基本内容,使学生进一步认识到统计方法的实用性和广泛性,为学生在今后的学习和研究中提供广阔的应用空间。
三、从统计观点出发进行概率论的教学
历史发生原理认为个体的数学认识过程与人类的数学认识过程具有相似性.概率统计教学可以从概率统计的发展史中寻求指导,从而借鉴历史经验,优化教学设计,加速学生对概率知识和理论的接受过程.概率是一般教材中的基本概念,其处理方式遵循这样的主线:概率是事件发生可能性大小的度量—频率的稳定值—古典概率—几何概率—公理化定义.概率是随机事件发生可能性大小的一种度量,这一直观概念已被普遍认可.但这只是概率的功能性解释,并不是它的数学定义.概率的解释与定义是在争议中发展的.客观概率学派认为任一事件发生的概率是其客观属性;相反,主观学派则认为概率是人的主观判断.客观概率学派以拉普拉斯在1812年出版的《概率的分析理论》中所提出的概率古典定义为代表,即事件的概率等于有利事件的结果数与所有可能的结果数之比.然而,这种定义讨论的范畴有明显的局限性,只适用于随机试验所有可能结果为有限等可能的情形;而且,对于同一事件,从不同的等可能性角度考虑可算出不同的概率,从而会产生悖论.此外,对于概率的概念又有频率学派、贝叶斯学派、信念学派的不同认识和观点.其中频率学派的观点是大多数现行教材所接受的,即概率是频率的稳定值,频率稳定于概率又需要在概率的意义下来刻画.历史上著名的贝特朗悖论使人们对“何为概率”的困惑放大到了极致,这个问题解决不了,当时所有研究成果就不能整合,概率理论成了不体系,也无法形成一个独立的学科.而要解决这个问题,就要给出概率的严格定义,将概率论公理化,并在此基础上推演概率的理论体系.公理化是19世纪末以来数学的各个分支中广泛流传的一股潮流——将一些假定作为无需证明的公理,其它结论则由公理演绎推出.在这种背景下,1933年俄国数学家柯尔莫哥洛夫在测度论的基础上综合了前人的研究结果提出了概率的公理化定义.概率的公理化定义被广泛地接受使概率论成为严谨的数学分支,对近几十年来概率论的迅速发展起到了积极的作用.教学中,教师必须了解并熟悉概率这一概念的发展历史,对概念有清晰准确的认识.在教学时穿插这些内容,不仅可以使学生清晰准确地把握概念,还可以增强学生对概率统计的感性认识,从而加深对概念的理性认识,优化知识接受的衔接过程,体会一个学科知识体系建立的严谨性、辩证性和复杂性,从而培养学生严密的逻辑思维,发展其创新意识,培养其睿智和实事求是的人格.
2还原知识的历史进程,降低新知识的抽象性
现代数学教材普遍都是按照知识的内在逻辑进行编排,很少按照数学问题的研究进程进行著作.这样的安排在逻辑结构上是科学的、严谨的,但却忽略了数学问题研究的历史痕迹.教师在教学过程中,应尽量地还原知识的历史进程,降低新知识的抽象性.正态分布是概率论中最重要的一种连续型分布,它属于概率论的研究领域,但也是解决统计学问题的基石,它的提出具有深刻的理论背景和极其广泛的应用价值.在教学中对正态分布的学习,通常是直接给出概率密度或分布函数,将其称为正态分布.但这会让学生感觉接受生硬,理解抽象,记忆困难.理论背景上,正态分布产生于棣莫弗的p0.5的二项分布极限研究,后来拉普拉斯对p0.5的情况做了更多的分析,并把二项分布的正态近似推广到了任意p的情况.二项分布的极限分布形式被推导出来,由此产生了正态密度函数,相应的结果称为棣莫弗-拉普拉斯中心极限定理.经拉普拉斯等学者的研究,20世纪30年代独立变量和的中心极限定理的一般形式最终完成.此后研究发现,一系列的重要统计量在样本量n时,其极限分布都具有正态形式.数学家进而合理地解释了为什么实际中遇到的许多随机变量或者统计量都近似服从正态分布,可以说这是概率统计中具有里程碑意义的发现.数理统计教材中一般是先认识正态分布,中心极限定理则在此之后学习.在学习正态分布的定义之前,教师可以设计一些具有明显正态性现象的数据,而后进行描述性统计分析,给出频率直方图,并解释这种具有两头小、中间大的分布现象是普遍的,也是常态的.对概率论中常见分布的知识背景的了解和掌握,有助于教师在课程设计和讲授过程中注意课程内容的衔接和承上启下的相互关系.借助数学家研究数学问题的进程史实,可降低新知识的抽象性,使学生易于接受和掌握,并提高应用的灵活性.
3注重统计思想,引导灵活应用
关键词:概率统计教学;教学改革;统计建模
中图分类号:G642.0 文献标志码:A?摇 文章编号:1674-9324(2013)05-0052-02 一、引言
在人类迈进21世纪的今天,无论是国民经济管理和公司、企业的经营决策,还是科学研究都越来越依赖于数据的统计分析。当面对着海量的数据和纷繁复杂的信息,如何迅速有效地从中找到事物发展变化的规律,是我们面临的重要课题。统计建模是以统计分析软件(如SPSS、SAS、R语言等)为工具,利用各种统计分析方法对批量数据进行探索分析,然后根据经济理论建立模型,通过对模型的分析和求解等一系列过程达到充分揭示数据背后的因素、诠释社会经济现象的目的。可以说,统计建模将统计思想、统计方法、经济管理理论和计算机技术完美地结合起来了,它能带动以数据分析为导向的统计思维,能为社会的经济管理提供更好的思路和对策。因此,将统计建模引入概率论和统计学的教学过程之中,对于促进概率论和统计学教学的改革,提高学生统计素养及应用概率统计知识解决实际问题的能力是十分必要的。
二、将统计建模引入教学过程的必要性
1.能提高学生学习概率统计学的兴趣。兴趣是学生积极获取知识、提高技能的强大动力。如果我们的教学还是停留在抽象、枯燥的概念讲述和定理、公式的推导,如何能激起学生学习的兴趣?我们认为很多学生之所以对课程学习不感兴趣,其根本原因是课程学习仅仅是和教室的情景相关联,应付考试成了学生学习该门课程的主要动机。统计建模能让学生充分感受和体验综合运用概率统计知识和方法解决实际问题的思维过程以及概率统计这门学科在解决实际问题中的价值和作用。当我们在教学过程中首先提出现实中碰到的问题让学生去分析、调查、研究,然后引导学生上升为概念、性质和理论,最后通过统计建模使问题得到圆满的解决,并且在解决问题的过程中让学生体会统计的思想和学习统计知识,学生必然会在探索、创造的过程中感受到统计学的魅力和创新思维的乐趣。
2.能加深学生对统计思想的理解和提高解决实际问题的能力。从历史上说,较早期数理统计方法的研究是密切结合种种实际问题进行的。例如,1710年阿布兹诺特考察生男生女的机会是否均等的问题,其所用方法包含了近代假设检验理论的若干思想。再如概率史上有名的分赌本问题:A、B二人赌博,各下注赌金a元,每局个人获胜概率都是1/2,约定:谁先胜S局,即赢得全部赌金2a元,现进行到A胜S1局、B胜S2局(S1和S2都小于S)时赌博因故停止,问此时赌金应如何分配给A和B才算公平?通过这个在当时来说较复杂问题的探索,对数学期望及其与概率的关系,有了启示。有的解法,特别是巴斯噶的解法,使用或隐含了若干直到现在还广为使用的计算概率的工具,如组合法、递推公式、条件概率和全概率公式等。可以说,通过对这个问题的研究,概率计算从初期简单计数步入较为精细的阶段。这些以及概率统计史上的其他例子说明:概率统计方法的研究只有与实际问题结合才会有活力。统计思想不是凭空创造的,往往来自于实际问题。可以说,统计思想和实际应用是相辅相成的,统计思想来源于实际应用并在实际应用中起指导作用;同时,通过实际应用我们又能加深对统计思想的理解与体会。因此,概率统计的教学要把统计思想和实际应用结合起来。如何让现代学生更好的理解统计思想和提高解决实际问题的能力呢?这需要教师从丰富的现实生活中找素材,提出问题让学生思考解决,增强学生利用概率统计解决实际问题的“欲望”。同时,在教学过程中要以实用为原则,对一些定理公式的讲解应少做推导,多讲其背景、思想及应用,这样才能有利于学生实现由知识向能力的转化。
三、提高统计建模能力的探索与实践
1.注重学生运用统计工具解决实际问题能力的培养。传统的统计学教学内容比较枯燥和抽象,统计推断与统计分析等知识对学生的数学基础又有较高的要求。因此,在教学中难以调动学生学习统计学的积极性,这就要求教师改变教学思路。在教学中不能简单地介绍原理、方法及讲解课本例题。在教学实践中,描述统计这部分的内容我做如下处理:先让学生自学和参与社会实践调查,然后通过案例的形式讲述数据的分组、数据的展现形式和数据的特征及度量。对推断统计的内容,我以案例导出统计分析、统计推断的原理、方法和适用范围,然后布置作业,要求学生应用这些原理和方法对社会经济活动中存在的问题进行统计分析。在学期末,我会布置一个大作业,要求学生利用所学的统计知识建立统计模型,解决实际问题。这样,一方面可以培养学生在现实生活中发现问题、提出问题、分析问题并寻求解决问题的能力,另一方面还可以激发学习兴趣,调动学生的主动性、积极性、创造性。
2.加强统计软件教学,提高学生数据分析的能力。现代社会对数据的分析、处理和应用都离不开计算机。没有掌握一种统计软件,对数据的分析和处理就无从谈起。因此,我在教学过程中非常注重学生对统计软件应用的熟练程度。非统计学专业的学生学习SAS和R语言这两种软件有难度并且耗时多。因此我们在实际的教学过程中选用Minitab软件作为辅助教学工具。Minitab也是国际上流行的一个统计软件包,其特点是简单易懂,学习起来非常方便。与SAS、SPSS统计软件相比,Minitab要小得多,但其功能并不弱。Minitab提供了对数据进行分析的多种功能,包括:基础和高级统计、多元统计分析、方差分析、回归分析、时间序列分析、非参数统计分析、模拟和分布、试验设计、质量控制、可靠性分析、多变量分析和绘制高质量三维图形等。另外,Minitab还具有许多统计软件不具备的功能——矩阵运算。所以充分利用该统计软件,将会极大地提高统计课的质量与效益。我一般在学期第一次课就把这款软件介绍给学生,让学生先摸索和操作一周。一周后,我再利用2个课时介绍和讲解该软件的功能和基本操作。根据我的经验,学生学习该软件的积极性很高,并且在使用软件的过程中自觉不自觉地学习了相关统计知识。对一些学有余力的学生,我们要求他们学习SPSS统计软件。相对来讲,SPSS统计软件更专业一些。
在实际的教学过程中,我一般先讲授统计学的基本理论和分析方法,然后通过课堂演示,讲解软件中数据分析的基本知识和理论及详细的操作过程,最后让学生上机操作掌握。利用多媒体技术和统计软件我们将统计理论知识的教学、现代化计算和分析工具的应用、实际案例的解决三者完美地结合在一起。通过教师的现场讲解和示范,学生练习及现场答疑解难,教学效果相当好。我在实际教学过程中采取3+1的教学模式,即教师课堂讲授的课时数与学生上机操作的课时数之比为3:1。在上机实验之前,先布置好作业,部分作业的内容是开放的。我把一个教学班级一般分为7~8组,每组6~7名学生,以组为单位完成作业。上机操作完成以后,各小组要陈述并展示所做的工作。
四、结语
现实世界中,哪里有不确定性,哪里就有统计。新时代的大学生应当而且必须具备良好的统计分析能力。因此,教师要大胆探索教学改革的方法,引导创新,注重实践。把统计建模与概率统计教学结合起来是一种良好的、切实可行的教学改革。只要我们在教学的各个环节中注意加强建模意识的培养,就能让学生深刻理会概率统计的思想并感受到概率统计的乐趣。同时,也能使学生自觉地应用概率统计知识、方法去观察、分析、解决实际问题。
参考文献:
[1]李大潜.将数学建模思想融入数学类主干课程[J].工程数学学报,2005,(8):2-7.
[2]葛玉丽,徐少贤,邵曙光.在概率统计教学中融入数学建模思想的教学探讨[J].南阳师范学院学报,2010,(12):86-88.
[3]凌旭东,陈香.概率统计课程教学方法的探索与思考[J].科技信息,2011,(35):280-281.