欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

大学数学统计学范文

时间:2023-08-08 16:45:55

序论:在您撰写大学数学统计学时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

大学数学统计学

第1篇

辽宁省高等教育学会“十二五”高等教育研究2013-2014年度课题“深化大学数学创新活动实施与效果评价”(GHYB13172)、

大连市社科联(社科院)与大连市高校工委2013—2014年度联合立项课题“大连市大学生科技创新活动现状及对策研究”(2013dlskybgx45)

【摘要】众所周知,大学数学是大学四年学习期间的重要课程,是一门除文史类专业以外,各个专业都要学习的必修课程,该门课程的学习为学生们获取高等数学,基础统计学,基础线性代数知识提供最根本的基础,近几年,各个大专院校已经将统计学的学习深入渗透在大学数学的课堂中,这不仅仅是为了要给予学生们更广阔的知识面,更是为了要提高大学数学与统计学结合的应用性,提高学生们利用统计学解决数学问题的基本能力,让学生们学会运用计算机软件进行统计学操作,将数与型巧妙的结合起来,培养学生们的理论素质和实践技能.本文将就此展开论述,具体说明大学数学与统计学相结合的必要性及应用技巧.

【关键词】大学数学;统计学;技巧

一、大学数学与统计学的异同分析

1.大学数学与统计学的共同点

(1)理论基础相同

大学数学作为大学课堂中的公共必修课,它包含着无穷的力量与解决大量问题的根源,而统计学作为大学数学中不可分割的一部分,也拥有着迷人的魅力,它们有着共同的理论基础,它们都是以变量为研究对象,用观察到的或者已知的数据经过计算得到我们想要的结论,无论是大学数学还是统计学,解决问题而得到的结论都是以数据为基础的,并且是以数据为核心解释结论的.从而,我们可以得到一些客观现象的发展规律,并为其进行合理的解释.

(2)解决问题的方向相同

大学数学和统计学的学习都是要在数字的基础上,寻找变量之间的依赖关系,这种依赖关系可以体现为函数,等式,不等式,方差,标准差等等.二者在学习的过程中虽然是分开进行的,但是它们对于人类社会却体现着相同的作用,大学数学和统计学都是用数字的形式来解决问题,在自然科学,社会科学,工程技术,管理学,金融学等各个方面发挥着重要的作用.

2.大学数学与统计学的差异点

(1)计算方法不同

大学数学和统计学的不同之处主要是计算方法不同,大学数学的计算方法比较多元化,它包括数形结合方法,极限求值方法,分布讨论方法,辅助线法,假设法,公式法等,而统计学的计算方法比较单一,主要是依靠数据的大量收集,汇总,利用固定的统计学公式进行基本的求解,近几年,由于社会经济的不断进步,出现了很多繁杂的经济统计及工程统计问题,这些问题的解绝不是只凭简单的动笔计算就能解决的,因而,现在的大学课堂中的统计学学习引进了计算机统计学软件操作的办法,运用计算机嵌入统计学公式,并进行计算的方法已经深入人心.

(2)学习内容不同

大学数学与统计学的另一个不同点是学习的内容不同,虽然二者的理论基础相同,解决问题的方向相同,但二者所学习的主要内容还是有差异的,大学数学所学习的内容主要倾向于函数,积分,线性,向量等的抽象计算.而统计学分数理统计和经济统计两个方向,其中数理统计是属于数学里面的一个分支,经济统计是偏向统计学知识在经济中的应用的.它所学习的内容只要倾向于事件的统计,概率的计算与分析等形象的计算.

二、大学数学与统计学结合的技巧分析

1.利用大学数学的估算进行统计分析

在很多利用统计学解决的实际问题中,都会发现数据很难收集的情况 ,由于现实环境的影响,我们往往不能准确的数据收集起来,也无法准确的将数据与统计公式中的未知量一一对应,然而解决这一屏蔽的技巧是利用大学数学中的估算方法,将数据合情合理的进行分区域收集,将收集到的数据进行估计.估算出适合我们代入公式计算的形式.这一方法不仅可以减少计算中的麻烦,还可以节省时间,提高效率.

2.利用大学数学的数形结合进行统计分析

数形结合思想是古往今来流传最为长远,应用最为广泛的思想,数型结合思想是将数据与图形恰当的结合在一起,用图像直观的诠释数据的含义,有数据对图形进行科学的证明.这是统计学中最为常用的技巧之一,在利用统计学解决经济问题时,我们常常会遇到繁琐的大量的数据,例如,比较两种股票在同期交易日中的股价及受益值等,这样的问题看似简单,但需要我们将收集到的大量数据进行汇总,一一列出,并计算各自的收益值,这是一个简单易懂的问题,但是在操作过程中会由于数据的庞大而容易出错,我们可以借助在计算机上画出表格图形的方法,嵌入公式,进行计算,这种计算方法既简单又快速.

3.利用大学数学的公式法进行统计分析

公式法是大学数学中的灵魂,是贯穿整个大学数学学习的基础,由于大学数学与统计学的理论基础相同,所以,我们可以借助公式法来为统计学的计算提供理论条件.例如,在计算偏斜度与矩偏度系数等一些复杂问题时,我们会发现统计学公式很繁琐:

此时,我们需要借助大学数学中的公式法计算法则及技巧,对这些繁琐的统计学公式进行拆分或者整合,最终得出答案.

【参考文献】

第2篇

关键词:统计学;大数据;利用;发展

统计学是通过搜索、整理、分析数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。随着统计学发展的同时,一个大规模生产、分享和应用数据的时代正在开启:大数据的真实价值就像漂浮在海洋中的冰山,绝大部分的数据都隐藏在表面下等着人类去探索。

1 利用所有的数据

在传统的统计学中,由于记录,存储,分析数据的工具不够好,所以总是倾向于从总体中抽取样本来分析,因为统计学的一个目的就是用尽可能少的数据来证实可能重大的发现。统计学家证明:采样分析的准确性随着采样随机性的增大而大幅度提高,但是与样本数量的增大关系不大。当样本数量达到了某个值的时候,从新个体身上得到的信息会越来越少,就同经济学中的边际递减效应一样。

在大数据时代,不使用随机分析的方法,而是采用所有的数据。即“样本=总体”。统计抽样其实只是为了在技术受限的特定时期,解决当时存在的一些特定问题而产生的。慢慢的,就会抛弃样本分析。

2 接受不精确

对小数据而已,统计学已经可以把数据处理的很好了,但是在大数据时代,太多的数据使原始统计方法捉襟见肘,因为数据量的大增会使得结果不太精确。执迷于精确性是信息缺乏时代和模拟时代的产物,只有接受不精确性才能进入我们从未涉足的邻域。接受不精确是从“小数据”到“大数据”的重要转变之一。因为拥有更大的数据量所带来的利益远远超过增加一点精确性,所以也就能够接受不精确的存在了。要想得到大规模数据带来的好处,混乱应该是一种标准途径,而不应该是尽量避免。

3 追求相关关系而不是确定因果

在小数据时代,相关关系也是有的。统计分析的目的在于如何根据统计数据确定变量之间的关系形态及其关联的程度,并探索其内在的数量规律。人们在实践中发现,变量之间的关系分为两种:函数关系和相关关系。相关与回归是处理变量之间的一种统计方法。变量之间存在的不确定的数量关系,称为相关关系。一般来说,可以用散点图和相关系数来描述和测度相关关系。

相关关系的核心是量化两个数据之间的数理关系,它没有绝对,只有可能性。大数据的相关分析法更准确,更快,而且不易受偏见的影响。知道是什么就够了,没必要知道是什么。通过探求“是什么”而不是“为什么”,相关关系帮我们更好的了解这个世界。如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。

4 数据的来源并非那么简单

在一般看来,要想得到一些你所需要的数据是需要通过各种不同方法测量或是记录才能得到,而有时候,数据会从你意想不到的地方得到。也许你精心地设计了你的实验或是探究,但是到了真正操作才会发现事情并不像你想象的那么简单。

首先,由于在大数据时代,数据不是那么的有规律,所以才要考虑数据的一系列问题。这些数据或是资料是不是一定要自己去得到,或是可以参考别人已经有过的结果,这样可以节省精力和时间。如果是参考别人的数据要考虑时效性和使用范围。也许不是专门为你的设想而准备的数据。大的数据库有着小数据库所没有的价值,大数据的核心就是挖掘出大的数据库所拥有的独特的价值。

5 数据的利用方式

在统计学中,对数据的利用不仅包括对数据求平均值,方差,分位点,可以的话还要得到数据中的某种关系或是联系,如父母的身高会不会对下一代产生影响,不仅要分析父母的身高,还要分析孩子的身高,从中发现有没有相关关系,得出自己的结论。

在大数据时代,数据没这么简单的让你下手,所以对数据的利用方法也随着情况的不同而不同。数据的用途已经从基本的用途移动到了二级用途,使得数据随着时间的推移而变得更有价值。明白了隐藏在冰山下面的绝大部分数据的价值后,创新型企业就能够提取其潜在价值并获得潜在的巨大收益。尽管如此,数据再利用的重要性还没有被充分认识到。要解锁这些数据,就必须通过新一代统计人员的不懈努力并借助新一代的方法和工具。

随着大数据的出现,数据的总和比部分更有价值。将数据的总体组合在一起,重组组合本身的价值也比单个更大。如果决定使用有生产价值的数据,就需要不断的更新数据库并淘汰无用的信息。即使数据基于基本用途的价值会减少,但潜在价值却仍然强大。潜在的数据价值需要通过创新的分析来释放。不出意外,给数据的潜在价值贴上价格标签会带来无限商机。

6 小结

个人认为统计学和数据挖掘一起可以更好的利用数据。一个可以对数据进行有效合理的分析,一个可以用多种多样的算法来更好地处理数据。在大数据时代,重要的是数据自身和大数据的思维观念。如果能做到数据,技能和思维三者具备,就能更好地服务于大数据时代,就能在大数据时代有非常大的竞争优势。

参考文献:

第3篇

大学数学教学大纲

课程代码318.009.1编写时间

课程名称数理统计

英文名称Statistics

学分数3周学时3+1

任课教师*徐先进开课院系**数学学院

预修课程

课程性质:

本课程为数学学院本科生开设,是概率论基础的继续,介绍数理统计学的基础知识。

基本要求和教学目的:

课程基本内容简介:

数理统计是一门理论研究与数学实践相结合的学科,它区别于概率论基础部分,不从概率空间出发,而是考虑如何给随机现象装配一个概率空间。

数理统计学研究数据资料的收集、整理、分析和推断,广泛地应用于社会科学、工程技术和自然科学中。

教学方式:

教材和教学参考资料:

作者教材名称出版社出版年月

教材概率论,第二册,数理统计(两分册)人民教育出版社1979

参考资料陈希孺数理统计引论科学出版社1981

峁诗松,王静龙,濮晓龙高等数理统计高等教育出版社,施普林格出版社1998,2003

J.O.BergerStatisticaldecisiontheoryandBayesionanalysis,2ndedition

中译本:贾乃光译,统计决策理论和贝叶斯分析Springer-Verlag,NewYork

中国统计出版社1985

1988

教学内容安排:

第一章引论

本章的教学目的是阐述数理统计学的基本问题,介绍数理统计学的基本概念。指出了现阶段的教学内容是研究如何利用一定的资料对所关心的问题作出尽可能精确可靠的结论,而不是考虑如何设计获得数据的试验。

统计量是从数据中提取信息的工具。本章介绍了两种常用求估计量的方法,介绍了刻画统计量性能的一致最小方差的概念。

§1统计学的基本问题

§2数理统计学的基本概念

§3求估计量的两种常用方法

§4一致最小方差无偏估计

第二章抽样分布

本章假定待研究的母体服从最常见的正态分布,导出了常用统计量,,的分布。本章的结论是对小样本讨论的,由于正态分布的特殊性,它们也可作为大样本情形的极限分布。

本章还介绍了与正态母体相联系的柯赫伦定理与费歇定理。

§1正态母体子样的线性函数的分布

§2分布

§3分布和分布

§4正态母体子样均值和方差的分布

第三章假设检验(I)

本章的教学目的是让学生认识到参数估计、假设检验和区间估计是针对问题的不同性质而作的三种统计推断,掌握并正确理解显著性检验问题的处理步骤。在本章的执行过程中,给出了一些典型的假设检验问题的分析和理解,以帮助学生掌握和运用这一统计思想。

本章介绍了具有一般意义的广义似然比检验。

§1引言

§2正态母体参数的检验

§3正态母体参数的置信区间

§4多项分布的检验

§5广义似然比检验

第四章线性统计推断

本章主要讨论数理统计学中两类重要的问题,线性模型和回归分析,介绍了处理另一类问题的方差分析。在数学过程中,解释了在复杂问题中使用线性模型的合理性,也分析了统计假设在实际问题中的意义。

在本章的执行过程中,比较了回归分析与线性模型的异同点。

§1最小二乘法

§2回归分析

§3方差分析

第五章点估计

本章从理论的角度讨论了一致最小方差无偏估计的性质。介绍了一些寻找一致最小方差无偏估计的方法。

§1最小方差无偏估计

第4篇

关键词:大数据;统计学;教学改革

伴随着网络信息计算的急速发展,各领域数据以迅雷不及掩耳之势的速度不断更新,同时人们对数据的看法也在不断变化,采取的决策也在不断深化,人们在各个领域做出的决策都在由“以业务为中心”向“以数据为中心”转变。有人说,获取数据的人将获得世界的青睐,因此,对数据的统计与分析能力是当今一项非常重要的技能[1]。

统计学作课程作为各大高校开设的一门必修课,在学生接受的课程教育体系中起着重要的基础作用。同时随着各行各业数据分析的深入,高校统计学课程也必须顺应时展,进行教学改革,力争培养能毕业后与各行业顺利对接、有较强数据分析能力的人才。

一、当前统计学课程教学中存在一系列问题

当前,统计学课程教学中有一些不尽如人意的地方,无论是教学大纲的编制、教学进度的安排还是教学中采用的软件应用性上,都有一些小问题,给教学工作者带来很多困惑。

(一)教学大纲内容多,教学时长却较以往更短

高校一般每学期都会就下一年上统计学课程的该年级学生编制教学大纲,大纲内容全面、综合,涵盖了几乎统计学教材中的全部知识。统计学知识点包括导论、数据的收集、整理、分析、抽验分布、参数估计等。内容多,且覆盖范围广,且要求学生有較好的数学基本功,能快速理解、掌握每个公式和理论背后的含义。同时,为提高学生处理数据的能力,大纲中还要求给与一定数量的实训学时,要学生掌握SPSS,SAS等统计软件。目标很好,希望学生能真正掌握统计学课程的精髓。只是时间太有限,学校分给学生学习统计学课程的时长只有48学时,有一学期甚至压缩到了32学时,课堂教学时明显感觉时间紧,无法详细讲述书中的重要知识点,课堂上老师只能走马观花的讲讲重点,学生听的也是懵懵懂懂,知其然不知其所以然,不能理解定理、公式背后的含义,学习效果没有想象中好[2]。

(二)学生基本功不扎实

统计学课程本质上是采用的数学方法,其理论基础是微积分和概率论基础等数学系课程。对于非统计专业的学生而言,数学课是从小就伴随着他们的噩梦,从小就缺乏学习数学、利用公式解决问题的兴趣。进了大学后,更为枯燥、深奥的符号在他们看来更是一场莫名其妙的游戏,内心不愿参与到这场游戏中,只能形式上听一听,至于老师上课时传授的内容和精髓,则根本不曾记住过。薄弱的数学功底导致了他们在学完微积分、概率论后接触统计学课程时无法理解统计学里的基本知识,甚至大数定律、中心极限定理这些最基本的统计知识他们都无法理解其深意。

(三)学生以考试及格为目标,重理论轻实践

统计学考试方式为理论考试,无上机操作考试。虽然教学大纲中明确要求有一定比例的实训学时,只是由于统计学课程知识点繁多,有些老师为讲完理论知识,不得已压缩学生上机操作的时间。而大部分学生上统计学课的目的是为了及格,也不重视统计软件的操作,导致通常一学期的课结束了,学生还不会使用SPSS软件进行聚类分析。造成了学生处理数据的能力非常差,进入企业工作后一定要接受额外培训才能分析数据,这与企业所需人才严重脱节。

(四)教学方法陈旧,不能采用新型教学手段

现在的统计学课程几乎还是采用满堂灌的填鸭式方法教学,老师在课堂上讲,学生在课堂听,整堂课下来,老师筋疲力尽,学生听得味同嚼蜡,有些地方没跟上老师节奏的,后面便再也不去听了,课堂效率低。如今互联网时代,很多新的教学方法应运而生,如微课+翻转课堂、对分课堂等,且这些方法是行之有效的,可以调动学生学习能动性。而统计学课堂却没有采用这些教学方法。

(五)统计学教材与当今大数据时代脱轨

很多高校给学生上课前选教材时都会选国家级规划教材,希望这些教材能保留统计学的精髓知识的同时,也顺应当今大数据时代的要求,倾向于讲述提高学生数据处理能力。只是老师们在选教材时还是会发现两难全。

统计学教学中有很多亟待提高的地方,基于此,统计学教学改革势在必行。

二、统计学教学改革措施

大数据时代,统计学课程可充分利用时代给予的“数据”红利,充分发挥工具的作用,将统计学中的方法充分与数据结合,使学生能自如运用统计学知识处理数据,并挖掘数据背后的含义。统计学教学改革可侧重以下几个方面:

(一)编制合适的教学大纲,制定相应的教学时长

教学过程中一定要分清重点,主次分明,不能什么都视为很重要的知识点。适当调整授课节奏,重点知识重点讲解,非重点知识可一语带过甚至不讲,编制合理的教学大纲。同时教学中注意尽量减少一味的讲公式、定理,要针对性教学,针对非统计学专业的学生,可尽量减少讲解定理的证明,多讲些现实中定理的应用,可穿插案例教学。讲授过程中慢慢引入统计工具与技术,力争理论与实践相结合,以适应大数据时代分析数据的需要。另外,可制定合适的教学时长,32学时只是入门级教学,可根据学生的专业适当延长学时。

(二)重视上机操作,提高实践操作的重要性

大部分非统计学专业的学生上统计学课是因为必修,为了修学分而上这门课。本着及格即万岁的小算盘,课堂上玩手机睡觉,平时得过且过,考前学习一下老师画的重点题,一学期轻松飘过。为让学生真正掌握统计方法,成为新时代需要的人才,可提高上机操作占学生成绩的比重,增加实训课时,并给学生分配任务,学会用主成分分析处理哪些问题,学会SPSS中的哪些统计方法。每次实训课结束前,要求学生上机演练一遍得出结果方能下课。且上机操作的表现可折合成平时成绩,作为学生总成绩的一部分;或者期末考试前会有一次上机操作考试,分数作为总评成绩的一部分。大数据时代,学生们一定要有使用简单的基础软件对数据处理的能力。而能力的培养,除了学生本身的兴趣外,还要从制定相应的制度强制学生树立自我培养的意识开始。

(三)注重案例分析,注重实用性,鼓励学生参与课题或比赛

统计方法的学习是为了以后更好地应用。为了增加学生学习的能动性,教学中可以通过案例分析的方法,将现实中实际问题和数据作为分析对象,并考虑现实背景,教授学生采用何种统计方法能更好解决问题。这种方法不仅能帮助学生长见识,拓宽视野,更能让学生切实感受到什么叫学以致用,感受到为未来进入职场积淀知识,力争成为大数据时代的综合性人才的重要性。

同时也可鼓励学生申请或参加课题,培养发现现实问题、采用统计方法分析问题和解决问题的综合能力,一个课题从开始申请到顺利结项,绝不单单只靠几个分析方法就能解决的,它是对一个人或团队综合能力的考验,涉及到撰写文案的功底、将现实问题去粗取精后凝练成模型的能力,以及解決问题所采用方法的准确把握的能力等,整个过程需要有计划的进行,方能有条不紊的将课题完成。

目前,很多高校提供了培养学生创新创业能力的比赛,还有全国数学建模比赛等,这些平台和机会都可以帮助学生,他们用自身所学的理论和上机操作知识,紧随新时展,采用先进的数据分析方法,锻炼解决问题的能力。同时这些实践经验反过来正作用于课堂教学,提高学生学习兴趣,使学生更加有侧重点地学习。

(四)采用翻转课堂、对分课堂等新型教学方法

经验告诉我们,满堂灌的授课方式效果真的不是多好,激发学生兴趣,提高学生学习的能动性是关键。大数据时代,可以借助互联网信息技术新方法,利用翻转课堂、对分课堂等新的教学方法,提供平台和教学资源,让学生自主学习,之后可分组讨论所学知识,对于不清楚的可自行搜索或者上课讨论,课后总结,这样线上线下教学的方式,使学生主动掌握学习节奏,增强师生之间的互动性。

(五)选择适合学生的统计学教材

如今市面上的教材数不胜数,如何选择合适的教材让教学工作者颇为头疼。对非统计学专业的学生,可选择应用性强的近三年教材,侧重案例解析和上机操作的,尽量少一些定理、公式的证明,更多的侧重于应用,这样有利于让学生感受到理论知识的实际应用,培养创造性思维。

三、结语

统计学教学改革不是一蹴而就的,需要老师和学生的共同努力。本文基于当前统计学课程教学中普遍存在的问题,探讨了统计学课程教学改革的措施,如授课内容、考核方式等,从而提高教学效果,提高学生处理数据的能力。

参考文献: 

[1]胡云霞.大数据背景下统计学教学改革与创新研究[J].现代商贸工业,2018,29(35).

[2]章政.大数据背景下经管类专业统计学课程教学改革研究[J].创新创业理论研究与实践,2019(24). 

第5篇

从国家每年生产总值核算、居民消费指数、通货膨胀率,到美国总统选举方法是否能代表广大选民意志,台湾军购对亚太局势影响,再到足球比赛中罚点球时将球射向球门的哪个位置最不容易失手……统计学已经贯穿了我们的整个生活。

统计无处不在

提起统计学,就要先弄清什么是统计数据。日常生活中到处都有统计数据:同学们的考试成绩在班级中的名次、班干部选举时各人的票数量等。统计学应用广泛,在我国最早的应用领域就是给政府提供了解整个国家的基本运行状况和制定各种政策法规的参考依据。我们常听到的一个名词CPI(消费者价格指数),就是政府通过统计学手段来衡量物价水平和通货膨胀水平的。如今,随着统计方法的进步和社会各部门发展对于统筹规划与决策的需求,使统计学从幕后走到台前,参与了大量的军事、政治、政府决策的制定,并为之提供理论依据。统计学就是一门搜集、整理、显示和分析统计数据的学科,可以形象地称为“和数据打交道的艺术”。

美国是统计学最发达的国家。几乎每一个大学生都知道统计这个学科,许多非统计学科都把统计作为必修课,这样,当人们遇到了统计问题,也都知道如何去寻求答案。因此,统计专业的应用范围十分广泛,已成为除计算机专业之外的最好找工作的专业。由于行业需要和立法等原因,医药界成了使用统计最多的行业之一,医药领域也成了统计方法和理论发展的一个重要源泉,同时生物统计也是统计家族中的一大热门。此外,工商业、金融管理、市场和民意调查及各级政府工作中同样大量地、普遍地和经常性地使用统计方法。时至今日,伴随着社会分工的进一步明细,统计学已细分为数理统计学、教育统计学、生物统计学、心理统计学等分支学科。

各科数学为先 练就宏观思维

很多同学也许会认为,统计学与传统的计算机、应用数学、应用物理这类纯理科不同,在所学课程上会涉及西方经济学思想、数理统计学、运筹学等这类偏文科类的知识更多些。而恰恰相反,统计学作为一个完全是和数据打交道的学科,需要的是非常良好的统计学基本方法和逻辑思考能力,而数理统计学、运筹学这些基本统计理论学科需要非常良好的数学基础。随着计算机在各个行业的广泛应用,从事统计行业的人如今还需具备熟练地用计算机操作统计软件分析数据的能力。这就使得现在的统计学专业加入了许多计算机类的基础课程,如数据结构、C++语言,JAVA语言等,这下好了,完全成了一个数学系专业了。

当初我在高考填专业的时候首选的是经济学,抱着方便调剂的心态填了一个自以为是偏文科的统计学,结果被“有幸”录取。上课第一天拿到培养方案,感觉就懵了,和同班同学交流心态时惊讶地发现大家的感受和我丝毫不差。后来才了解到,部分学校是将统计学和应用数学专业或者是信息与计算科学专业打通培养的(本科一年级和二年级的课程一样,专业课有些许区别)。

落差归落差,但在上过前两年的基础课(数学分析、高等代数、空间解析几何、常微分方程、概率论、数据结构等)之后,统计专业同学在数学思维、逻辑思考能力相比于别的专业的同学要强很多。为什么呢,拿经济学中的国际贸易来作比较,前两年数学学的是高等数学和线性代数,光看课本,这两门学科在目录上无显著差异。但深入学习之后发现,高等数学着重于计算能力,而数学分析重点在于数学思想的形成,学习中对于同一个理论,更多讨论的是它的推导和证明(有些类似高中数学对理科生和文科生的不同要求)。所以,同样是学数学基础课,统计学学生花的精力要多得多。一学期晚上看书看到十一二点的日子更是数不胜数,那些外专业所说的丰富多彩的课余生活基本与统计学专业学生无缘。每到数学考试前,统计学学生要玩命似的演算、推导,看着外系的学生把高数的书随手翻翻就可以及格,那个心情是无比的羡慕啊。

滚过前两年数学沙场,到了大三后,当面对大量复杂的数据和样本时,统计学专业的学生更具有大局观,能从容有效地面对和处理问题。很多如运筹学、博弈论、概率等经典问题会迎刃而解;最短路径,最小人力如何得到最大效率等在外人看来无从下手的问题,在统计学中就是小菜一碟。之前基础课的很多经典理论、思想,在通过进一步地学习初级统计学、数理统计、多元统计分析、非线性统计分析这类专业性极强的内容时也会一直使用。这些思想和理论在我看来,对于其他课程的学习也是大有裨益的。人们都说,学数学的逻辑性强,自己学过之后才有体会。我在大三的时候也尝试去涉猎西方经济学知识,后来发现思考能力比大一时进步很多。

统计学教会你的是一种放之四海而皆准的思维方式,故而周围很多同学在考研深造选择报考专业时也很广泛,涉及计算机、经济、教育学、管理学等等。甚至在做毕业论文时,选题也不用拘泥于传统的方程、概率等课题,可以从生物、经济、人文的多个方面入手。我的毕业论文就从交通与国民生产总值的相关性进行研究,涉及了统计学,经济学,运筹学等多个学科,论文完成之后觉得知识层次又更上一层楼。现在回想起来,前面的基础课如同学习如何使用工具,在学习过程中注意对数学思想的体会,对知识的总结,整个人的逻辑水平就会在不知不觉之中得到升华和提高。待到应用时,学习就一下子变得多姿多彩了。

专业岗位,可“跨界”考证

除了传统的报考公务员进入统计局或者税务,工商系统之外,给机构做数据挖掘和分析的统计公司、各大银行、金融机构等都是统计学专业毕业生的潜在就业单位。医学统计虽然在中国国内目前应用情况还不普遍,但在国外应用已经相当广泛而且是一个很受立法重视的行业,但可以预见这将是统计专业发展的方向之一。因为统计学接触到的都是行业中最本质最核心的东西――数据,所以统计学做的一部分活在外人看来难以精通,外专业人员难以替代。主要的岗位是研究院,可以再市场研究项目的管理和运作中发挥作用,数据是不会说谎的,通过数据分析得到的结论,对行业乃至社会变化都是是相对准确的。

由于统计学良好的数学、经济学以及部分管理学基础,统计学的学生考证“玩过界”也是十分普遍的事情。如你对会计感兴趣,可以考个注册会计师,对证券等金融行业感兴趣,就可以参加证券从业资格、银行业从业资格或者保险行业从业资格考试;如果对精算感兴趣,也可以尝试精算师资格考试,甚至考试场调查类的证书都会增加自己的就业砝码和精确自己的就业规划。

第6篇

关键词: 大数据; 大统计学;创新;教学模式;

中图分类号: C829. 2

《概率论与数理统计》是研究随机现象客观规律的一门学科,由于其理论知识的抽象性和思维方法的独特性常常造成学生理解和接受上的困难!特别是在大数据与大众创新双重背景下,随着数字化的进程不断加快,人们越来越多地希望能够从大数据中总结出一些经验规律从而为相关的决策提供一些理论依据[4]。因此积极探索概率统计的创新教学模式[2,3],显得尤为必要!

一、明确教学目标―是教学创新的源泉

高校概率统计学科教学, 对于培养和发展学生的数学素质具有极为特殊的重要作用!在教学中, 我们把教学目标定位在培养和发展学生随机数学素质,体现在重点培养学生四种思维能力:一是随机性思维,即以随机数学解释客观世界的偶然性(随机性)现象的思维。二是公理化思维, 即突出精确性、形式化和符号化。三是模型化思维, 通过建模来刻画事物本质,是该学科应用的基本方式。四是“大统计学”思维,即认识大数据、收集大数据与分析大数据的思维[4]。

二、整合重组教学内容-使创新建立在优化的知识结构上

创新能力的培养, 总是依托一定的知识来承载。知识是创新的源泉,创新是知识的转化与整合。根据创新教育特点, 紧紧围绕培养学生随机性数学素质和创新能力需要, 精选教学内容,坚持整体优化, 着眼发挥知识结构的整体功效, 注重知识之间的相互联系, 选择多方面、多类型的知识,形成创新的知识体系。因此, 可把课程内容整合成三大类知识:一是核心理论知识。主要包括概率论知识、统计学知识、“现代统计分析方法与应用随机过程等理论知识。二是方法性知识。主要指不确定性分析、随机分析、统计推断和大数据技术等方法。三是应用性、前沿性知识。这些知识的学习对培养学生的创新精神和创新能力不无裨益。

三、优化教学过程-体现在创新教学方法上

为了优化教学过程,我们尝试教学方法与手段的多样化, 使讲授、操作和实践相结合, 教学时倡导学生将动手实践、自主探索与合作交流等作为主要学习方式,使学习过程变为一个生动活泼的、主动的和富有个性的过程。经过尝试,初步取得了成效。

(一) 注重数学思想和方法的教学-选讲概率统计史料[1]。引导学生认识其发展历史,激发其学习的动力!比如通过选讲概率统计学家泊松、贝努利、高斯、贝叶斯等对概率统计的贡献,培养学生的创新意识和重新发现“概率统计”的能力,增强其学习兴趣和自信心。

(二)采用案例教学法[3]培养学生的创新思维能力。如选用古典概率公式解决“鞋子配对

收稿日期:

基金项目:国家自然科学基金(11461061)和重庆师范大学博士启动基金项目(15XLB013)资助.作者简介:康元宝(1973-),男,甘肃泾川人,讲师,博士,主要从事随机分析和数学教育育研究.

问题”与“概率与密码问题”等,又如运用“统计估计”思想与“假设检验”方法解决“先尝后买产品的促销问题”、“吸烟与患癌症的相关性”;以及用中心极限定理解决“保险公司盈利与亏损的问题”等等。促使学生养成科学创新思维的习惯。

(三)结合实际,培养学生利用概率统计建模能力。从理论的掌握到应用不是一件容易的事情,学生创新能力的培养是一项艰巨的任务。在教学中, 我建议通过成立概率统计学习兴趣小组,培养学生创新能力。每周活动1― 2 次,经过指导他们学习的方法,并使之充分认识概率统计的实用性,进而培养其创新能力。如鼓励学生通过建模来解决一些实际问题。如分析学生学习成绩与性别的关系,考察入学成绩与在校成绩的相关性等;还可拿出一些相应的全国大学生数学建模题让学生探讨研究,如2014 年A 题的城市表层土壤重金属污染分析问题,可用统计分析等方法解决。这样更能够增强学生的应用意识,培养学生的创新能力!

四、转变评价观念――实施科学的考核评价

评价是教学过程中非常重要的环节。但过去常常把“考试”作为衡量学生学习结果的工具, “一考定终身”。因此, 出现了教学过程中“教”和“学”的目的似乎纯粹是为了“考”的奇怪现象! 这是应试教育的典型特征与悲剧! 我们在概率统计创新教学中,需要转变评价观念, 坚持“考”为教学服务、为培养创新人才服务, 把考试作为实现教学目标的重要手段, 积极改革教学评价方式, 实施科学的考核评价。彻底改变唯分数论的教学评价体系!实行平时考核与期终考试相结合, 加强平时考核检查力度。最后通过成绩分析和反馈改进教学。如对成绩分布情况进行分析, 看是否符合正态分布,利用方差分析判断学生的学体水平和发展趋势。经过对每道题的得分情况进行统计分析, 评价学生对每个知识点的掌握情况和运用能力, 找出薄弱环节, 以便对原教学设计进行调整和改进。再对试题和试卷的信度、效度、难度、区分度等进行全面的分析, 利用最小二乘回归方法检验本次考试的质量, 提出改进措施, 以利于科学的考评!此外,也可通^贯彻如下教学创新模式:注重培养学生自主创新、多向发展和学以致用!

参考文献

[1]. 徐传胜. 运用实际问题改进《概率统计》教学[J] ,数学教育学报, 2000 , 9 (4) : 91~94.

[2]. 张志勇:关于实施创新教育的几个问题[J], 《教育研究》, 2000 年第3期.

第7篇

【关键词】大数据 统计学 挑战 机遇 教学

【基金项目】贵州省科技厅、贵州民族大学联合基金(黔科合J字LKM[2011]09号)

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2014)08-0235-01

1.引言

“大数据”时代的来临和“大数据”处理技术的发展深深的影响着统计学的发展。能否利用传统的统计理论和统计方法对海量的数据做出快速、准确的处理并获取相关信息?如何对传统的统计理论与方法进行改进或探索新的统计理论和方法来对大数据进行挖掘与处理以获取信息?如何在“大数据”时代背景下培养符合市场需求的统计分析师或数据分析师?如何将“大数据”处理技术融入相关统计学课程教学以促进数据处理与分析技术的发展?这些都是我们在统计学相关课程教学过程中必须思考的一个问题。

2.大数据与统计学

“大数据”随着社交网络、物联网、云计算等的兴起而产生。一般认为大数据具有规模性、多样性、实时性及价值性四个基本特征,包含分析、带宽和内容三个要素。“大数据”在数据来源、数据结构和处理方法方面对传统的统计分析方法产生了冲击。第一,在大数据背景下,数据来源不再是原来的简单抽样,而是“样本即总体”,直接将总体作为研究对象。第二,在大数据时代,研究对象也不是原来单一的结构化数据,由于数据的多样化与规模化,我们更多的是研究非结构数据,采用人工智能来进行数据挖掘和信息获取。第三,数据处理方法也不是简单的采用传统的假设检验方法进行研究,特别是对于统计学中的异常点,不再采取以往的丢弃或者平滑处理方式。

“大数据”处理技术对统计学的发展提出了巨大挑战,但我们必须认识到学科之间的发展是相互交融的,“大数据处理技术”其本质上是数据处理与分析技术,其发展对统计学学科的发展也有积极的一面,同时统计学作为一门独立的学科,有其自身独特的学科优势。首先,海量的数据有利于提高各类统计分析的精度,如减小抽样误差等。其次,较之于传统的统计学方法,现有的“大数据”分析方法难度较大、成本较高、耗时较长。而在实际的应用中,我们关心的不是数据量的多少,而是数据量所蕴含的信息。传统的统计学分析方法是以较少的数据进行精确度相对较高的统计分析,这是“大数据”分析所无法替代的。另一方面,统计学在数据收集方法、模型选择、模型假设以及模型诊断方面有很大优势。而且并不是所有的问题都具有海量的数据,并不是每一个“大数据”问题都适合用现有的“大数据处理技术”来处理。

3.对策与建议

3.1 夯实基础教学

针对以上的分析我们可以看出,大数据对统计学的发展既是机遇,又是挑战。因此我们在教学过程中要夯实统计学基础知识的教学,讲清楚统计学的基本原理与基本方法,特别是数据分析与数据处理的基本原理与方法。对于许多传统领域,如生物、医药以及质量与可靠性工程等,我们面对的多是“小数据”而不是大数据,因此基于样本的统计分析方法仍然是进行此类问题研究的最有效的科学手段。

另一方面,我们要结合大数据技术的特点,对统计学的基本知识进行拓展教育,引导学生思考怎样将已有的统计学基本原理与方法运用到大数据处理的技术研究中。如在大数据环境下怎样进行数据的收集、筛选与甄别、存储与分析等,如何分析并厘清可能的数据来源与范围,如何建立相关指标体系并对数据进行分类,如何制定或调整相应的统计参考标准,以及如何对依靠非传统数据源加工生产的统计数据进行规范的统计推断等。

随着大数据时代的来临,各行各业对具有统计背景知识人才的需求必定越来越多。因此,在统计学教学过程中,一定要结合各专业的特点,特别是“大数据”的特点,切实加强统计学的基础知识教学与拓展教学。

3.2 加强统计学专业软件教学

“大数据”环境下,对统计人才需求也发生了变化。面对海量的数据与多样化的数据,一名合格的统计人才或数据分析人才不单需要良好的统计素养与扎实的统计基础知识,更需要具有数据的存储与整理能力、计算能力以及数据分析与处理能力等。这就要求在教学过程中,加强统计软件或数学软件的教学。

针对传统的“数学证明+手工计算”或“重理论轻专业统计软件”的统计学课程教学模式,可将统计软件或数学软件融入课堂教学并安排一定的课时上机学习统计软件,以此提高学生数据处理能力,加深对统计学基本原理的理解与掌握。

在加强统计软件或数学软件,如SPSS、R、SAS以及Matlab的教学过程中,要摈弃“会软件的操作即会统计技术”的思维,要让学生真正掌握相关操作与相关算法,深入思考算法的实现与相关理论的应用。同时引导学生思考对“大数据处理”的技术要求,包括数据搜集、发掘、存储以及计算分析过程中的算法与设备要求等,引导学生针对大数据进行软件升级与开发。

3.3 突出案例教学与实践教学

大数据的产生和发展源于规模经济问题或超规模经济问题的研究。每一个大数据问题的研究都是与实际经济或社会问题紧密相联的,因此,在实际教学过程中,要突出案例教学与实践教学,由易到难,通过案例教学逐步引入大数据的概念以及大数据处理的基本技术,提高学生的分析全局观以及进行实际数据分析与处理的能力。

教学改革的目的是培养在“大数据”时代背景下,符合市场需求的专业统计人才,而合格的专业统计人才必须具备良好的统计实践能力。案例教学与统计实践活动是培养学生统计实践能力的有效途径。因此,在教学过程中,一方面,教师可融合各种与实际问题相关的案例进行分析和讲解,加深学生对相关统计理论知识的理解,激发学生的学习兴趣,培养学生解决实际问题的能力。另一方面,教师可以组织多种形式的课堂或课堂外的统计实践活动以培养学生统计实践。如,指导学生针对他们感兴趣的与经济、社会发展相关的统计实际问题展开统计研究,设计调查问卷,收集数据、整理和分析数据,撰写研究报告,实现对实际问题的分析和解决等。

4.结束语

总之,在“大数据”环境下我们既要积极面对挑战,又要紧紧抓住机遇,切实结合“大数据”的特点和“大数据处理技术”发展的需求,既加强对传统的统计学方法、统计理论的教学,又积极开展 “大数据“环境下的拓展教学,推动统计学的发展,在数据收集、数据分析以及统计制度等方面进行改革和创新。

参考文献:

[1]李国杰. 大数据研究的科学价值[J]. 中国计算机学会通讯,2012,8(9) .

[2]姜奇平. 2013 全球大数据-大数据的时代变革力量[J]. 互联网周刊,2013,1.

[3]游士兵,张佩,姚雪梅.大数据对统计学的挑战和机遇 [J]. 珞珈管理评论标,2013,2(13).