时间:2023-08-08 16:45:47
序论:在您撰写故障检测与诊断时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
一、概述
现代化工业技术发展突飞猛进,现代工业自动化程度越来越高,系统规模也越来越大,简单控制系统已经不能达到工业生成的需求,大规模、综合性、复杂的自动化系统运用越来越广[1]。自动化设备和系统结构的日益复杂和集成化,使得系统发生故障的机率也增加,故障的产生会毁坏设备,影响系统正常运转,甚至造成人员伤亡。国内外由于设备故障所引起的设备损坏、锅炉爆炸、道路塌陷,不仅造成经济损失也造成人员伤亡,社会影响及其恶劣。为了达到以人为本同时维护经济的目的,可以加强系统的稳定性、可靠性、鲁棒性和安全性,但任何设备都不可能无限期使用,这就需要防患于未然,因此故障检测技术应运而生。
二、故障检测重要性
故障检测技术是是一门多学科融合交叉性学科[1],如:信号提取则依赖于传感器及检测技术;信号降噪离不开信号处理技术;状态估计和参数估计方法以系统辨识理论为基础;鲁棒故障诊断涉及到鲁棒控制理论知识;此外数值分析、概率与数理统计等基础学科也是故障检查和诊断不可缺少的方法。多门学科知识的支撑确保了故障诊断技术的迅速发展,在工业领域也应用广泛,如化工生产、冶金工业、电力系统、航空航天、机器人等生产的各个领域。
三、故障检测技术经济效益
数据显示[2],故障检测技术与经济发展息息相关,对故障检测技术的研究与发展越来越多,在工业生产中也得到了应用和推广。通过故障诊断技术的推广,大大降低了设备维修费用,各国在故障诊断技术上的投入也逐渐增加。日本对故障检测与诊断技术的投入占其生产成本的5.6%,德国和美国所占比例分别为 9.4%和7.2%。在冶金工业生产中,我国每年承担的设备维修的费用就高达 250 亿元,金额庞大,然而如果应用故障检测与诊断技术,每年可以减少事故发生率同时也能节约 10%~30%的维修费用。因此故障检测能带来经济效益,不容小觑。
四、故障检测的分析方法
(一)状态估计法
状态估计法一般分为两步:首先求取残差,再从残差数据中提取故障特征从而实现故障诊断。目前状态估计法的故障检测诊断方法方兴未艾,如H2估计[3]、鲁棒故障检测与反馈控制的最优集成设计方法[4]等。
(二)等价空间法
低阶的等价向量在实现过程中较易实现但性能不佳,而高阶的等价向量能够得到较理想的性能参数,但以较大的计算量和计算时间为代价。为了解决上述问题,文献[5]采用窄带IIR滤波器运用于等价空间法中,在几乎不改变计算量的前提下,提高系统检测性能,但此方法会产生较高的漏报率。
(三)参数估计法
参数估计法是因为模型参数和相应的物理参数的特点不同,分别统计这两类参数的变化特性来分析和确定故障。物理参数携带重要的信息,具有物理含义,因此,可以分析物理参数的特点,如果异常可以确定故障位置。与状态估计法比较,参数估计法能更有效的故障确定。参数估计法研究越来越丰富,故障诊断方法新成果倍出[6]。
(四)热门的分析方法
(1)小波分析技术
小波分析由于具有时频域局部化特性[7],可任意调节时间窗和频率窗,因此突变信号能够检测出来。但是,小波基选取一直是在小波信号分析没能解决的问题,也是研究的一个难点,针对同一信号采用不同的小波基进行分析其分析结果往往不同。通过小波分析可以检测信号的奇异点,在信号降噪和信号分析中应用广泛。小波变换是结合时域和频域的分析方法,特征提取方便,在故障检测中应用较广。小波分析对单一的故障源检测效果明显,但较复杂情况,如多故障源效果不佳。
(2)神经网络技术
神经网络技术是根据模式识别理论,采用分类器理论,用神经网络进行故障分析和诊断。采用人工神经元网络进行故障诊断一般有四种方式[8]:神经元网络计算残差;神经元网络分析残差;神经元网络进一步分析确定故障点;神经元网络自学习过程进行自适应误差补偿。
(3)小波包分析和神经网络结合技术
用有限元法建立系统动力学模型[9],再根据系统采集信号进行小波包分解,建立基于小波包能量谱指标。把信号指标作为改进BP神经网络的输入特征参数,用分步识别方法进行识别。
(五)展望
故障检测技术运用广泛,用单一方法进行处理存在准确度和精确度的问题,因此可以考虑多学科技术结合的方法,进一步提高准确度和精确度。
参考文献:
[1] 周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报. 2009, 35(6).
[2] 周福娜. 基于统计特征提取的多故障诊断方法及应用.[博士学位论文].上海:上海海事大学, 2009.
[3] Fadali M S, Colaneri P, Nel M. H2robust fault estimation for periodic systems[C]MProc. American Control Conference,Denver, Colorado,2003: 2973-2978.
[4]钟麦英,张承慧, Ding S X.一种鲁棒故障检测与反馈控制的最优集成设计方法[J].自动化学报, 2004, 30(2): 294-299.
[5] Ye H, Wang G Z, Ding S X. An IIR filter based parity space approach for fault detection[C] Proc. the15th IFAC World Congress, Barcelona,2002.
[6] Abidin M S Z, Yusof R, Kahlid M, et al. Application of a model based fault detection and diagnosis using parameter estimation and fuzzy inference to a DC-servomotor[C] Proc.2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada,2002:783-788.
[7]李青锋,缪协兴,徐余海.连续复小波在工程检测数据处理中的应用[J].中国矿业大学学报,2007,36(1):22-26.
【关键词】暖通空调系统;故障检测;故障诊断;类型
一、暖通空调系统故障类型
暖通空调系统的故障大体可分成两大类:硬故障和软故障,既有局部性也有全面性,对整个HVAC系统的影响大小也不尽相同。硬故障是指机械设备和运转部件完全丧失功能所产生的故障,例如皮带断裂、传感器失效、阀门不受控制和风机停止运行等故障。从故障产生时间的角度分析,这些故障应当归为突发故障,且故障影响效果比较严重,所以检测和诊断的难度系数不大。软故障的实质是说设备和部件的机械功能降低或局部失效等,比如部件或管道结垢、堵塞,局部泄露、仪表稳定性降低等等。软故障基本都是循序渐进的,在产生的最初时期所表现的特征不太明显,因此在初级阶段很难被发现,实际上,这类故障的产生是因为系统参数渐渐恶化,从某方面或者某种角度来讲,软故障的危害性要远远大于硬故障的危害性,所以,软故障的监测力度要适当加强,并且要做好预防工作,其对空调系统的意义和作用是不言而喻的。
暖通空调在运行一段时间之后,系统故障的产生一般都是偶然且不确定的,所以,故障的属性具有任意性,且发展情况与平衡过程具有随机性。从HVAC系统整个结构入手分析,所涉及的设备都是由子设备和基础构件按照一系列的标准组合而成的,层次性和系统性极强,所以故障产生时就会因为层次深度的不一样而造成不一样的影响。除此之外,考虑到系统是由多个相关的子设备综合而成的,一些子设备发生故障也可能是因为其相关环节或者设备产生故障而引发的,这种现象称为故障的传导性。根据系统故障产生的位置不一样,既可以说是设备故障也可以说是传感器故障,既可以说是硬故障也可以说是软故障,因为这些故障参杂在一起很难分辨,所以空调系统的诊断和检测就十分的复杂。
二、暖通空调系统故障检测与诊断分析
1、暖通空调系统诊断方法
暖通空调故障诊断方式主要有两种:一种是在线方式,即故障诊断系统实时地监测设备的工作状态,基于适时的在线故障检测与诊断算法,给出系统的故障信息,包括故障程度、故障所属模块、故障位置、故障报警等。另一种是离线方式,即构建计算机辅助决策支持系统,帮助系统迅速发现故障,制定合理有效的系统维修方案。
(1)基于知识的专家系统
建立专家系统诊断模块,包括专家系统知识故障诊断库,并可根据经验和知识的积累以及在获得了新的、可靠的故障诊断规则时或发现原有某条规则不足甚至错误时,能自动进行添加、修改和更新。 专家系统诊断模块由知识获取系统、知识库、推理机和输人、输出系统构成。
(2)基于规则的故障树
利用专家知识、工程师的经验和知识库建立基本故障诊断树,并可生成新的故障诊断树,用户则选择相适应的故障诊断树来执行故障诊断。
故障树分析是在复杂系统中作故障诊断的一种有力工具。用这种方法诊断的效率较高且不容易漏检,例如该模块能根据系统故障现象,逐次向下展开,查询有关的节点和树枝,直到找出故障的发生原因及处理对策。
(3)基于人工神经网 B P改进算法的模式识别
该模块由 B P改进算法的网络、网络结构参数及推理诊断等组成,主要用于完成模式识别和故障诊断。专家系统诊断与故障树诊断两种方法的相互结合,可以有效地解决过去已发生过的各种故障的诊断;但对于以前没有发生过的故障,不具备处理能力,因为知识库中缺乏相应的诊断知识。采用人工神经网络( A N N) 模式识别技术是一种较好的方案。它根据新的样本进行自动学习和训练以更新故障诊断知识,并可添加到专家系统知识库中。A N N的故障初始样本来自已有的故障实例,这些实例可通过故障机理分析或专家经验获得,此外还可在应用中逐步添加、删除和更新。
2、故障检测与诊断的应用
随着科技的进步,现在的故障检测和诊断手段嵌入了动态的控制系统体系,完善了检测和诊断的技术。制定一些模型数值或者一些经验数据,当传感器测量得到的实际运行过程中的参数和由模型得到的计算值在诊断软件中进行对比和评估,它们之间的差值作为传送的数据,送到故障诊断分析其中的问题,如果这个差值逐渐的增大时,就说明了这个系统发生故障的可能性就会增加。根据检测系统的分析,就会将故障的诊断结果及时传送出去进行显示。这些故障诊断由输入的数据类型、复杂程度、性质等进行分区,较难的诊断就会需要长时间来完成,或者由更高层次的诊断设备来完成。
暖通空调系统故障的检测方法。在以前,我们所用的方法就是用直接、解析和时序三种冗余法来进行检测。基于定量模型法在相同的情况下可以通过比较实际系统或者仿真的模型运行状态来进行检测和诊断系统故障,但是在执行的时候需要具体的、精确的数据模型来进行检测。还有一些基于定型模型法、基于统计学法、人工神经网络法和模式识别法等可以对暖通空调系统的故障来进行检测。
按照故障的级别和故障的优先级不同,不同故障在不同的诊断层次上来诊断。在分布式控体系(DCS)中,驻留在不同层级上的故障诊断工主要由输入数据的类型、性质、复杂程度和诊断具使用的频率来区分,复杂的、需要更多知识和能的故障诊断(如诊断周期需要一天或一个月的将由更高层次的诊断工具(或计算机)来完成,由现在传感器性能的提高,大量的、低端的故障诊倾向于在传感器中就地解决。
三、结束语
综上所述,通过故障预测与诊断,使暖通空调设备按优化程序运行,是降低建筑能耗和提高经济的途径之一。因此,加强对故障的预测与监控,能够减少故障的发生,延长设备的使用寿命,同时也能够给业主提供持续的、舒适的室内环境,这对提高用户的舒适性、提高建筑的能源效率、增加HVAC系统的可靠性、减少经济损失将有重要的意义。
参考文献:
[1] 李志生,张国强,刘建龙. 故障检测与诊断技术在暖通空调领域的应用和展望[J]. 流体机械. 2006(06
【关键词】数字电路;故障;排查与诊断;分析
1.数字电路出现故障的常见的原因
数字电路是处理和变化这些离散信号的电路,工作原理主要是应用两个元器件来表示离散信号,其中的每一个元器件的参数值都有很大的差异,所以在实际的应用的时候,数字电路虽然能够发挥很强大的功能,但是数字电路出现故障的状况是一件十分常见的事情,下文详细的介绍数字电路出新故障的原因。
1.1 数字电路元件出现老化造成故障
任何东西在长时间的使用之后都会出现或多或少的损坏,其中数字电路中使用的材料都是金属材质,在长期的使用过程中,电路元件变得老化,电路材料参数性能也逐渐的下降,使得数字电路受到天气以及温度等状况影响变大,非常容易造成数字电路出现故障。
1.2 数字电路元器件出现接触不良的状况造成故障
数字电路由于接触不良而出现故障是最常见的问题,造成数字电路接触不良的原因是多种多样的,数字电路在日常生活中的使用经常会出现非专业人士保管不善,或者是电器的外壳损坏导致数字电路的元件长时间的暴露在空气之中,造成数字电路出现进水或者是电器内部的焊点被氧化的状况,这些问题的出现都会导致数字电路出现故障。
1.3 数字电路设备所处的工作环节不稳定造成了故障
数字电路的安全使用是需要一定的环节条件的,但是在实际的应用中,电路设备的使用环境并不是十分的完美,数字电路所处的工作环境时常达不到设备工作的状态,例如实际的温度、磁场的改变等等,这些因素都会导致数字电路发生故障,导致数字电路不能正常的工作。
1.4 数字电路内的元件过了使用期造成故障
数字电路内部的电路元器件都存在着保质期的,关于保质期的常识并不是所有的数字电路的使用者都了解的,所以造成故障也比较常见。数字电路内的元器件只有在规定的年限内才能发挥出最佳的效果,倘若元器件过了使用期限,数字电路内部会出现超负荷的状况,元器件也会出现老化、性能降低等现象,导致数字电路故障的发生率增加。
2.数字电路故障检测与诊断的方法
2.1 采取有效的方法将故障检测的过程与诊断这两个过程分开
在对数字电路进行故障检测之前,应当先对数字电路常见的故障的特征进行了解,在对其中一些基本特征进行对比之后,可以尽可能的缩小数字电路故障排查的范围,当然在初步对比故障的基本特征之后并不能武断的确认数字电路的故障,而是要进一步的进行诊断,使得这两个过程能够有效的隔离。使用逻辑检测与诊断对数字电路中出现的故障进行初步的确认。例如:当数字电路的信号消失之后,可以借助检测探头在电路的连接点上进行检测与诊断,也可以在发现数字信号之后能够使用脉冲存储器进行存储,可以有效的缩小数字电路的护长范围。
2.2 使用分块测试法对数字电路进行诊断
目前对于数字电路中出现的故障检测方法中最常使用的方法就是直接观察法,使用直接观察法进行故障检测,故障检测的准确率有所下降,对于故障的排查以及处理的效率很低,所以采用分块检测法是代替直接观测法最有效的方法。使用分块测试诊断法的时候,应当对数字电路的设计结构有一个初步的了解,并根据电路的实际情况,将电路分为若干个独立的电路,分别进行通电测试,通过观测结果对数字电路的故障状况进行分析,之后便可以提出具有针对性的数字电路的故障的解决方法,能够有效地提高数字电路故障检测与诊断的效率,在复杂的数字电路的故障检测与诊断中应用也十分的广泛。
2.3 使用电阻检测诊断的方法进行诊断
在日常的使用中,数字电路一旦出现任何的异状的时候,首先需要做的就是要切断电源,之后进行短路与否的检验,这时候最常使用的方法就是使用电阻检测诊断法。电阻检测法能够有效的检测出数字电路底板内部和电路连接之间是否有接触不良或短路的状况,在使用此方法的时候操作过程非常的简单,即便不是专业的电路维修人员也能够轻松的完成数字电路故障检测的事情。使用电阻检测法的时候,一定要注意的就是用电安全,在切断电源的基础上进行检测装置的设计安装,之后再一一进行故障检测。
2.4 使用波形检测方法进行故障检测
波形检测诊断方法对数字电路进行故障的检测以及诊断对于检测人员的专业素养要求很高,要求维修人员能够熟练的掌握电路维修的相关的理论知识和拥有一定的实际操作经验,熟练地使用示波器观察电路故障检测过程中所反映出的波形,也就是数字电路故障检测过程中在示波器上显示的数字电路板的各级输出波形的状况,观察示波器上所出现的波形是否表现正常,在这样的过程中得到的数字电路故障检测的结果更加的具有科学性以及具有说服力,在使用波形检测诊断法进行数字电路故障检测的时候,数字电路内多数是脉冲电路,由于脉冲电路的复杂程度,其他的检测方法并不是十分的准确与科学,所以波形检测诊断法形成的检测结果更加的准确,在进行故障检测的过程中对于维修人员的安全保障性能也是最强的,不仅提高了数字电路故障检测与诊断的效率,也有助于制定数字电路维修策略,制定的策略也更加的具有针对性。
3.总结
当今时代科学技术飞速的发展,对于数字电路的研究的投入也变得更大,数字电路在生活中的使用也变得更加的普遍,但是数字电路的使用出现的问题也困扰着现代人,所以为了更好地使用数字电路,提高使用效率,就一定要选择有效的方法对于数字电路中出现的故障进行检测与诊断,因此应当针对数字电路产生的原因进行研究,并且积极地进行故障检测的技术,使得数字电路的使用能够更加顺时代的发展,使得数字电路能够为现代人们的生活提供更多的便捷服务。
参考文献
[1]郭希维,苏群星,谷宏强.数字电视测试中的关键技术研究[J].科学技术与工程,2008.
关键词:数字电路 故障检测与诊断 原因 现状 对策
中图分类号:TN79 文献标识码:A 文章编号:1007-9416(2013)11-0214-02
21世纪的今天,随着全球经济一体化格局的形成,经济技术迅速发展,以数字技术为主导的高科技产品层出不穷,并且已渗透到我们生活的各个方面,遍布于每一个角落。然而,在我们的生活如此数字技术的当下,电子工程技术人员在设计、安装、维修、调试数字电路的过程中或多或少都会遇到各种事故。因此,掌握正确的数字电路故障检测与诊断方法对于保障数字电路的有效开发与生产是极为重要的。
1 数字电路故障产生的原因
1.1 电路元器件的老化
无论什么东西在使用的过程中因为摩擦等一些原因,在一定程度上都说到了损坏,对于电路元器件来说尤其如此。因为电路元器件大都是金属材质,在长期不断使用的过程中,就会导致部分元器件老化和参数性能下降,除此之外,有的电路元器件也会在遇到高温或极冷的天气状况下改变参数值。
1.2 电路元器件接触不良
由电路元器件接触不良导致的数字电路故障是最常见的原因。在日常生活中,可能会因为使用不当或者保管不善,破坏电器外壳使得电路元件暴露在空气中或者一不下心使电器进水等情况发生,那么电器内部的焊点就会被氧化,以至于导致电路板故障的发生。
1.3 电路设备工作环境不健全
每一样设备的顺利使用都是有一定的条件的,但是并不是所有设备都能够在健全的工作环境中,所以,一旦工作环境达不到电路设备的要求时,例如,温度、适度、电子磁场等改变,数字电路就会发生故障,那么设备也就无法实现正常工作了。
1.4 电路元件过了使用期
电路元器件都是有保质期的,只有在规定的年限内使用才能发挥它功效。如果过了使用期限,电路元器件就会负荷不了,就会出现元器件老化、性能指标降低等现象。所以说电器元件使用过程超出期限,设备的故障发生率就会增加。
2 数字电路及其故障的特点
所谓的数字信号是在时间上和数值上都离散的信号,而数字电路就是用来处理和变化这些离散信号的电路。它的工作原理主要就是利用两个状态的元器件来表示离散信号,看似很复杂,其实它的基本电路单元十分的简单。在数字电路中的每一个元器件的参数值都有较大的差异性,所以绝对不会出现电压不高不低的电平,除了三态门之外,输出的要么是高电平要么就是低电平。所有对高电平和对低电平的区分了解能够我们更好的了解数字电路的特征。
如果把数字电路按照逻辑功能来划分,可以分为时序逻辑电路和组合逻辑电路两种。从功能上来说,时序逻辑电路它是由具有储存功能的触发器所组成的电路来进行记忆和表达功能,但是关键得是储存电路的输出状态必须反映到输出端上,并且要与输出端共同作用才能决定时序电路的输出。另一个组合逻辑电路顾名思义就是由各种电路组合而成。不过组合逻辑电路在输出时,都是有那个时刻输入的信号来决定的,它与原电路的输出状态并没有直接的关系。
在数字电路的检测和诊断过程中一定要按照它所规定的顺序来想电路施加测试,并挨个观察数字电路的反应状态,看其是否正常。之所以要这样一步步仔细的检测那是因为数字电路的测试对象实在是多了,电路的输入、输出变量甚者有时候可以达到上百个,而且每一个都有可能出现偏差,如不逐一检测很难找到问题所在。此外,数字电路它还存在一定得物理缺陷,构成集成电路的门和记忆元件是封存在芯片里面的,以至于无法直接观察电路输入、输出的波形以及很难检测它们的逻辑电平,所以也就没办法快速查出数字电路的故障之所在。因此,研究出简单可行的测试电路故障的方法迫在眉睫,需要大家的共同努力。当然,也只有当数字电路故障检测方法解决之后,数字电路才能得到更好的应用。
3 数字电路故障检测与诊断方法的现状
3.1 直接观察检测诊断法
直接检查法就是通过直接的观察来推断电路大致在那个部分出现了问题。这种方法相对于比较适合有一定经验的电路维修员,他们通过询问顾客电路故障发生时出现了哪些现象来判断发生电路故障的大致原因,这样既方便有简洁,省去了中间的很多过程,为客户和自己都节省了时间,是一举两得的好事。例如,电视机突然不亮了,我们在检测之前应该首先观察一下外观是否破损,用手感觉一下外壳温度是否过高,其次看插头是否断开或与插班接触不良,然后用鼻子问一下电视机有没有异味等等,通过用这些直观的方法来判断电视机大概是哪一个部位出了问题啊,最后着手检测。虽然这种方法比较快速,但对于经验不足的电路维修员来说,还是不要贸然使用,否则可能是既浪费了时间也还是没有找到电路故障发生的原因,得不偿失。
3.2 顺序检测诊断法
现在应用于数字电路故障检测的数字检测法一般分为两种。一种是在输入端加上信号,从输入级开始向输出级检测,当信号中断或者是出现异常时也就找到了数字电路的故障所在地。第二种方法是在输入级到输出级的过程中加上信号,一旦出现信号不对的情况,就立马停下,然后以此为据点想下一级进行电路故障检测。虽然这种数字电路检测方法准确性比较高,但是需要花很长时间。在现在全球经济高速运转的是时刻,这种低效率的工作方法已经逐渐不适应时代的发展要求了,在某种程度上是可以被淘汰的,但是,前提条件就是我们必须尽快找到一种更好的电路故障检测方法来代替它。否则,还是得用顺序检测法。
3.3 比较检测诊断法
在检查数字电路故障时,比较法其实也是一种比较常用的检测方法。一般要想快速的检测出数字电路哪里出现问题,经常就会对电路的各个关键点进行测试,得出具体的参数值,然后找来同样的完好无损、能够正常运转的电器,也测出每一个关键点的参数值,最后将两组数值进行比较,参数值不一样的那个地方就是数字电路出现故障的地方。不过,能够这样很快就检查出问题所在的情况并不多,大多数电路故障地方都在比较细小的地方。因为,在数字电路器材生产过程中,厂商一般都会针对电路板比较薄弱的地方多做几道加工程序,确保质量安全,而那些人们认为不会发生故障的地方就没有多注意,所以往往电路发生的故障并不在电路板的关键点上。因此,比较检查法还算不上市完美的检测方法,依然有它的缺陷存在。
3.4 替代检测诊断法
有时候电路比较复杂,可能当我们试了各种方法还没有找到故障时,我们就应该想到用替代法来检查数字电路故障。所谓的替代检测法就是将数字电路中的电子元件用同等型号的电路元件来替换掉,不过质量一定要比元件好一些,否则质量太差的话还是无法检测出电路故障在哪里。当高质量的电路元件安装到元电路板中,合上电源,看电路板是否能够正常运转。若能正常运转则证明是元电路元件有问题,若不能,则证明原电路元件没有问题。若是前者,数字电路故障检测就能很快完成,但若是后者的话,就还需要再次进行检查与诊断。总之,替代检测在某种程度上也是比较麻烦和费时的。
4 提高数字电路故障检测与诊断效率的对策
4.1 分块测试诊断法
当我们无法通过直接观察检测法检测出数字电路故障时,用分块检测法是最好的检测办法之一。当我们对某种电路板进行检查时 ,对其电路结构、功能等要有一个事先的了解,根据实际情况,看怎样组合比较简单,然后就将电路分成若干个独立的电路,分别进行通电进行测试,观察测试结果找出有故障的那一部分电路,最后采取相应的措施准确找到数字电路故障点,诊断其原因,“对症下药”,解决问题。像这种分块测试方法过程比较简单,针对性也强,它能够有效的提高数字电路故障检测与诊断效率,更适合于比较复杂的数字电路故障检测与诊断中。
4.2 电阻检测诊断法
在日常生活中,当我们看到某种电器冒烟儿或者散发异味时,首先要做的就是切断电源,避免事故范围扩大。然后就是要检查电路是否有短路现象,那么这个时候就需要用到电阻检测诊断法。电阻检测诊断法它的作用就是能够检测诊断出数字电路底板内部和电路连接线之间是否是接触不良或短路等情况,操作过程简单,就算不是专业电路维修员也能够很好的掌握与应用。在碰到类似的事情时不至于惊慌失措,即使不花钱找专业维修人员自己就能够轻松搞定。所以电阻检测诊断法实用性比较强,适用人群比较广,在数字电路故障检测与诊断上效果比较明显与突出,是提高数字电路故障检测与诊断效率的好方法。
4.3 波形检测诊断法
波形检测诊断法对电路故障检测与诊断人员的专业素质要求比较高,要具备较高的电路维修理论知识,同时还要会使用示波器,这两个条件缺一不可。其实,我们所说的波形检测诊断法就是通过使用示波器对电路板的各级输出波形进行检查,观察它所输出的波形是否是正常的,以此来检测诊断出电路故障。目前,这种波形检测诊断法被广泛的应用于脉冲电路中,准确性高、安全系数高、效率也很高,是提高数字电路检测与诊断效率的完美对策。
5 结语
在当今科学技术腾飞的年代,数字电路已经取得了飞速发展,为了能够更好的将数字电路应用到现代电路中,提高数字电路检测与诊断技能、效率尤为重要。对于可能出现或者是已经出现的电路故障要能够及时预防与解决。因此,我们要不断完善数字电路检测与诊断技术,使之能够更好的适应时代的发展要求,为我们的生活提供更加便捷的服务。总之,本文主要是希望通过论述数字电路故障产生的原因、分析数字电路及其故障的特点、介绍目前我国对数字电路检测与诊断所采取的方法以及建议来给现在正身处数字电路的工作者一些帮助。
参考文献
[1]张兰,徐红兵.一种新的数字电路故障定位算法研究[J].电子科技大学学报,2009.
[2]郭希维,苏群星,谷宏强.数字电视测试中的关键技术研究[J].科学技术与工程,2008.
[3]朱大奇,电子设备故障诊断原理与实践[M].电子工业出版社,2008年9月.
[4]孙春辉,浅谈数字电路故障检测方法与技巧[M].技术开发,2010年5月第3期.
【关键词】数字电路 故障检测 诊断
当前,随着全球经济一体化的建设,经济技术迅速发展,促使数字技术主导高科技产品层出不穷,同时已经渗透到我们的日常生活中。但是在电子电路工作的过程中,会存在内部或者外部原因造成电路出现各种问题,导致电路不能正常的工作。因此电子工程设计人员一项重要的任务就是要对工作电路进行检修、检测以及故障的诊断与排除。在实际生活中,数字电路故障检测与诊断在电路设计与生产的过程中具有重要的意义。对数字电路进行检修与诊断,对及时发现、修复数字电路中出现的问题具有重要影响。同时还能够重新配置数字电路系统,有助于数字电路生产工艺的优化与改进。分析数字电路故障检测与诊断,能够提高数字电路的质量、效率与可靠性。
1 数字电路以及故障的特点
数字信号主要是在时间与数值方面具有离散的信号,而数字电路就是用来处理和改变这些离散信号。其工作的原理就是利用这两种状态的元器件表示离散信号。这样看起来较为复杂,但是基本的电路单元较为简单。数字电路的元器件参数值方面具有较大的差异。因而不会出现由于电压不高不低的电平。除去三态门之外,通常输出的电平要么是低电平或者是高电平。因此,这两种电平称为了解数字电路的主要特征。由此可见,检测事物存在一定的复杂性。并且其复杂性主要体现在待测电路存在大量的输出与输入变量,可能大于一百个变量。同时电路相应又具有时序性,有的还存在组合型。所集成的电路元器件与门都被安装在芯片里面,不能度逻辑电平、输入输出波形进行检测。类似模拟集成电路,仅仅可以在芯片的外部对其测试,而不能对数字IC内部电路进行测试。所以,必须及时寻找出一种能够简单的完成对芯片内部进行检测的方法。
2 数字电路故障产生的原因
在数字电路运行的过程中,产生故障的原因有很多种。但是较为常见的故障笔者认为有这么几种。首先,就集成数字电路而言,负载能力范围具有一定性。常规与非门的输出低电压可以带同类们的最大限度为10个。但是实际生活中这个输出电压所带门远大于理论值。这样就容易导致电路输出低电压,造成电路破坏,使得电路不能稳定运行。为避免这种情况的发生就需要使用负载的集成电路。其次,集成电路运行效率较低。在集成电路运行的过程中唯有第一组信号通过集成电路,并在电路内部延时作用下稳定输出端时,另外一组信号才能进入。由此可见,造成电路运行效率低下的主要原因就在于电路内部延时。如果输入脉冲很高时也会导致输出端不稳定。检测这一问题的过程相对复杂。因此,在设计逻辑电路时要采用运行效率高的集成电路。
3 数字电路故障检测与诊断策略
在数字电路检修的过程中,针对其中的故障需要采取有效的诊断策略,提高数字电路运行的效率。这样不仅保证电路运行的质量,还能够减少检修的次数。
3.1 隔离故障检测与诊断
在检测数字电路问题的过程中,第一步就应当根据故障的基本特点,最大限度的减少问题的区域,也就是将故障诊断与检测进行隔离。这一环节对数字电路检测具有十分重要的意义。在检测的过程中,其检测关键之处就是逻辑诊断与检测。通常而言,如果电路信号消失,那么可以使用检测探头完成电路信号连接的线路实施诊断与检测工作,从而快速找到消失的电路信号,并且检测探头上都安装了逻辑存储装置。这样就能够对数字电路上具体的信号进行诊断与检测。如果出现电路信号,就会被检测器上的逻辑储存装置记录下来,并通过显示器显示出来。从这一点就充分说明了数字电路上的脉冲信号能够被检测与诊断。通过缩小点路鼓掌范围,来找到电路故障的具置。另外一种就是能够有效的诊断和检测数字故障的方法就是逻辑分析。在检测的过程中利用逻辑分析仪对数字电路的设备进行检测,分析电路运行中产生的数据以及其输出情况。
3.2 定位检测与诊断
在数字电路出现故障的过程中,其最为关键的步骤就是检测故障,将故障进行定位。一般情况下,在电路故障范围缩小到一定范围时,直至缩小到某一电路元件时,就能够使用逻辑探头、脉冲检测仪等对数字电路的故障进行分析,并就其产生的影响进行分析。通过这种方法就能够检测出故障的具置。利用逻辑信号对数字电路的脉冲信号进行检测,分析电路输出与输入信号的情况。依据获取的信号判定数字电路运行的情况。研究表明,数字电路在日常的工作中,都会存在低电压与高电压。这两者在运行的过程中能够互相转换。使用逻辑探头等仪器进行检测,如果有信号就能够判断出工作电路是正常。通常情况下,数字电路偶尔也会出现故障。因此,电路信号的时需不需要经常检测。
4 结语
总而言之,在数字电路获得广泛应用的过程中,在一定程度上对提高电器使用与质量具有重要的影响。同时也进一步促进了电器产品性能的提高。但是,在此环节中我们应当充分的认识到,数字电路正常运行离不开故障的检测与诊断。重视数字电路检测与诊断,能够全面提高数字电路应用水平与运行质量。
参考文献
[1]李源.在《数字电路》实验教学中提高学生动手能力的尝试[J].井冈山医专学报,2011,12(04):56-57.
[2]张万里,杨烨,李毅,等.数字电路常见故障类型与检测方法及技巧分析[J].数字技术与应用,2012,10(6):98-99..
[3]杨聚庆,刘娇月,刘三,等.数字电路系统设计与制作的一般方法[J].洛阳工业高等专科学校学报,2013,8(04):79-90.
作者简介
马均(1990-),男,咸阳师范学院物理与电子工程学院电子信息工程专业本科在读。
关键词 助航灯光;故障;检测;诊断;程序;解调
中图分类号[U8] 文献标识码A 文章编号 1674-6708(2011)50-0144-01
机场助航灯光系统是飞机飞行安全的保障,是机场非常重要的一个目视助航设备。在一个中型的机场中,其助航灯光包括了跑道中线灯、跑道边灯、进近灯、末端等、顺序闪光灯、坡度灯等共计上千盏灯。机场助航灯光系统保障着飞机的安全起降,安全问题不容许丝毫的差错,助航灯光系统是否完好无损十分关键。在实际机场应用中,如何保证助航灯光系统的正常工作,如何及时的检测助航灯光系统的故障,也就变成保障安全的大问题。助航灯光系统中自动监视功能就可以很好的满足这一要求。我国目前较大规模机场使用的都是国外的助航灯光巡检系统,自己在助航灯光巡检监控系统方面的研究还没能形成成熟的系统,不能在实际中应用。不断学习,努力探索,寻求自己的助航灯光故障诊断系统,解决国内机场的燃眉之急。
1 助航灯光故障检测
助航灯光故障的检测主要通过自动监控,实行远程巡检,它的主要硬件设计包括了单片机、过零检测模块、模数转换模块、调制及隔离变压器模块、晶闸管驱动模块、进水检测模块、串口通信模块、单片机模块等。
1.1 灯暗检测和灯泡开路检测
灯暗检测实际上就是对灯电压进行检测,检测灯泡两端的电压。检测灯电压可以判断灯泡的输出功率,在使用6.6:6.6的隔离变压器时,一次测电流和二次侧电流是相同的。灯泡两端的电压反应了灯泡输出功率的大小,是判断灯暗的一个替代参数。灯暗的原因要么是灯泡经过长时间的使用,老化使得电阻减少,电压降低,从而导致灯暗。要么是灯泡中的灯丝出现靠丝现象,使得线圈被短路减小电阻,降低两端电压,减少功率,导致灯泡发暗。而灯泡开路检测则是对灯泡电流大小的检测。一个比较稳定的干路电流在隔离变压器的一次侧流过时,如果二次侧有正常的负载也会流过一个比较稳定的电流。当开灯光级设置越低时,电流越小;或则当负载的电阻越小时,电流越大。灯泡在使用过程中,新旧程度对电流的影响不大。而灯泡处于开路时,其负载电阻无穷大,电流就会急剧减小。在这一特点作用下,二次侧电压升高达到一定的数值时,通过对电路电压进行采用就可以判别灯泡是否断芯。
1.2 上行信号的调制
上行信号是指远程巡检单元向主控制单元上传的信息,这是灯光巡检中远程巡检单元和主控制单元之间通过调解和调制进行的有效通信中的一个方向。调制信号频率是工频50Hz,所以调制信号可以跨过隔离变压器,然后上传回主控单元。
1.3 上行信号的解调
经过电压互感器采样,然后经信号调理电路把调光器回路电压分为两路,一路过零检测电路,进入单片机;另一路经差分放大器处理,然后进行模数变换。进行采样12次,时间在2ms内。12次数据分为4组值,每组数据求一个平均值。所得的3个平均值分别与单片机中预先计算好并存储起来的对应数据进行比较,有调制的信号,其数值相比没有调制的信号明显要小。在差处理下,就可以得出“1”、“0”信息。
2 助航灯光故障诊断系统设计
2.1 主控单元解调程序
主控单元过零检测电路实时检测正过零点后,经过P3.3通道信号向单片机请求中断,然后执行中断程序。单片机读取转换值,2ms内进行采样12次,所得到的结果分成每组4个数据的3组,每组数据求其平均值,然后把求得的平均值与预先计算好并存储好的数值进行做差处理,如果差值大于设定值则为“1”,否则为“0”。重复过程3次,如果得到3个结果均为“0”,则说明没有下达命令;如果得到3个结果均为“1”,则说明肯定有下达命令;如果得到结果中有一个为“1”,则返回,要求上位机重新发送命令。
2.2 远程巡检单元调制程序
由P1.0和P1.2发送信号,经P3.7通道把正过零点后信号送入单片机,触发晶闸管开关。由于电压上加载了调制信号,所以电压输出就产生了畸变。
2.3 远程巡检单元故障定位程序
一个周期定位50ms,每个周期采样10次,每次采样之间间隔10ms,结果存放在寄存器中。每个周期采样的10次结果计算平均值,然后与设定的值作比较。在比较中,采样结果大于或则等于设定值,则灯已经损坏。
3 实际应用中的实验与结果
选择机场进近灯做灯泡断丝实验,结果实验的6盏灯判断全部正确,没有一盏误报。而灯暗实验中,电压波动率在5%以下,也基本能满足实际应用的要求。进水实验中,通过实验人员的实地检查,检测到进水的隔离变压器桶,其进水深度确实达到了设定值,而没有检测到进水的隔离变压器桶,则均未发现进水现象。以上实验结果表明,助航灯光故障检测准确度高,传输数据准确,电源足够稳定,操作灵活方便,在实际机场的应用中,能基本满足助航灯光故障检测与诊断的要求。
4 讨论
当然,笔者仅仅是从助航灯光故障检测的基本原理出发,浅显探析了其故障检测的方面。而实际应用中的助航灯光故障检测,要复杂多样得多,需要研究人员进一步探索,进一步完善才能达到实际应用的客观要求。而助航灯光故障诊断系统的设计,笔者更是仅仅点出了其大致的工作原理,要达到实际设计应用的要求,还需要全面细化,落实到细节,以及具体程序的编写和完善工作。
参考文献
关键字:数据包丢失;网络控制系统;故障检测;观测器;残差
中图分类号:TP399文献标识码:A文章编号:1007-9599 (2011) 24-0000-03
Fault Detection and Diagnosis of Networked Control System
Zhuo Min
(Zhenjiang Electrical and Mechanical Branch of Jiangsu Union Technical Institute,Zhenjiang212016,China)
Abstract:A great deal of attention has been focused on a class of networked control systems (NCS) wherein the control loops are closed through communication networks.This family of systems is an integration of plants, sensors,controllers,actuators and communication networks of certain local field.In this paper,based on the condition of data packet dropout,firstly,a modeling approach of the system is presented,and the fault observer is modeled as a stochastic switching discrete-time linear system with delay.When a fault occurs,the observer residual can change rapidly and detect the occurrence of the fault.Finally,an illustrative example shows the effectiveness of the proposed method.
Keywords:Data packet dropout;Networked control system (NCS);Fault detection;Observer;Residual
与传统的点对点控制系统相比,网络控制系统具有可实现资源共享、远程控制,具有较高的诊断能力和交互性好、增加系统柔性和可靠性、安装维护方便、减少系统的布线等优点。但由于网络的介入,使得传统的控制系统面临着新的挑战,如网络传输诱导时延、数据包丢失、时钟异步等,因此在利用网络作为信息的传输通道时,数据包丢失和时延等故障检测问题受到了广泛的关注[1-3]。
在故障诊断与容错控制方面,网络控制系统和传统控制系统有所不同。在数据传输中存在信息碰撞和网络带宽限制等问题,使得延迟和丢包问题在信息传输中发生,以致网络化控制系统的故障诊断与容错控制变的复杂[4]。网络控制系统的故障诊断与容错控制是具有现实和理论意义的研究课题,关系到国家经济命脉和国防安全的战略性需求,也是提升国家工业基础水平、综合实力和自主创新能力的重要举措[5]。
NCS的数据包丢失和时延是NCS中的重要研究课题。鉴于此,文献[6]针对一类具有数据包丢失和时延的NCS设计了保证闭环系统稳定的控制器。考虑到NCS中同时存在数据包丢失和时延的情况,以建立NCS模型来构建故障检测器;最后通过数据仿真验证了本文所描述问题的可行性。
一、网络控制系统
网络化控制系统NCS(Networked Control Systems),即将控制系统中至少一个或多个回路经过计算机网络实现闭环的控制[7]。
如图1所示的,网络只存在于控制器和执行器之间[8],所以系统只具有控制时延 ,为上界已知的时变时延。假定NCS的被控对象模型为
(1)
其中, 是状态向量; 是输出向量; 是输入向量; 是故障向量,正常情况下 是非零向量; , , 是适维常系数矩阵。
图1 网络控制系统
Fig.1 Networked control systems
在网络控制系统中,通讯网络并非是一个非常可靠的数据传输通道,会产生传输错误、网络堵塞、节点竞争发送权失败、连接中断和时序错乱等现象。虽然多数的网络协议具有多次重发送数据机制,由于此机制受到时间的限制,所以在超过了设定的时间范围时,便会导致数据包丢失。
正常情况下,实时反馈控制系统能够接受一定数量的数据包丢失。但是对数据包丢失寻求正确的解决方法的研究以及对在数据包丢失时系统是否稳定的探索是很有价值的。
二、状态预测器的设计
网络控制系统的状态可以直接反映系统的运行状况,所以在NCS系统中基于状态估计的故障诊断与容错控制方法显得特别突出。此方法可以归纳为以下两种:一种基于观测器的方法,另一种基于滤波器的方法。本文的研究是基于预测器的方法。
不考虑噪声等外部扰动时,被控对象的离散模型可以表示为:
(2)
令 = ,表示不确定时延 引起的不确定项。式(2)写为:
(3)
假设 非奇异和( , )能观测,被控对象的状态观测器就可以采用下列模型:
(4)
由于系统存在网络诱导时延[0, ], 时刻传输到观测器的信号为:
。 (5)
由式(3)可得
(6)
由式(5)和(6),得到观测方程为
(7)
定义估计误差
(8)
则估计误差方程为
(9)
由于 和 均已知,则式(9)可以表示为
(10)
其中,
由于 由不确定时延 引起,因此误差方程含有不确定项 ,且 有界。
三、存在数据丢包的故障检测
数据包丢失能够影响到闭环NCS状态矩阵的结构和NCS的控制性能,特别是其稳定性。因此,关于在NCS中数据包丢失对系统稳定性的影响成为关注的热点。
在NCS中,一是由于通信机制和网络带宽的限制造成的数据包,另一种是为达到某种目的而采取的主动丢包。本文是基于前者提出的故障检测方法。
当在传感器与控制器之间发生数据包丢失时,NCS结构可以用图2表示
图2 具有数据包丢失和时延的NCS
Fig.2 NCS with network-induced delay and packet dropout
图2中随机变量 表示第 个周期是否有传感器数据到达控制器,即
是独立的Bemoulli随机变量。在传感器与控制器之间,由于数据时延能够被看作在本周期未接收到有效数据,便可判断发生了数据包丢失。
若原系统的控制率为 ,则由式(2)可得
(11)
假设事件1和事件2发生的概率分别为 和 ,亦即
(12)
事件1 时刻传感器数据没有到达控制器端,在控制器端建立观测器
(13)
定义观测器状态估计误差 ,无故障时,其状态估计误差方程为
(14)
对于式(14),引入增广向量 ,可得
(15)
式(15)中含有 的两个滞后项,引入 ,可得
(16)
事件2 时刻控制器收到来自传感器的数据,建立观测器
(17)
则无故障时,观测器状态估计误差方程为
(18)
按照事件1中同样的方法,可得
(19)
有式(12),(16)和(19),可得如下的随机切换系统
(20)
其中,
, ,
四、故障检测设计
定理1:基于如下的观测器,残差系统(10)渐进稳定,
其中 , , 定义省略。 为卡尔曼滤波增益,误差协方差矩阵为 ,且
。
下面,我们将通过数值例子说明所得到结果的有效性。
五、数字示例和仿真结果
本文通过第2和3部分对状态观测器和存在数据丢包的故障检测进行了研究和描述,我们假定以下系统
(21)
其中 , , , 。假设Markov链的转移概率矩阵已知为 ,干扰信号 为任意的随机数。使用Matlab仿真工具,可得如下结果。图3显示为网络控制系统的状态响应。
图3 系统状态响应
Fig.3 State response of system
图4 传感器故障时的仿真结果
Fig.4 Simulation result with sensor fault.
注:1-系统的实际输出;2-观察期输出;3-残余量
Note:1system actual;2observer output;3residual
当传感器故障发生在8.8秒时,系统的实际输出、观测器输出和残余量如图4所示。从中我们可以观察到,残差量在8.8秒迅速增加,并且无延迟,表明了该传感器在此时出现了故障。
六、结论与展望
本文针对长时延的NCS,假定传感器和控制器之间存在数据包丢失,执行器与控制器之间存在时变控制时延等现象。针对此类NCS,本课题研究了有无故障两种情况下可能出现的结果,并且设计了故障观测器。
本文概述了近年来常用的网络控制系统基于模型的故障诊断方法,建立恰当的数学模型,将数据网络简化为对控制系统产生的若干影响因素,并将一般的故障诊断与容错控制方法与理论推广应用到网络控制系统中来。
对一般的控制系统来说,网络控制系统的故障诊断与容错控制并不完善。首先多数的研究主要针对某一特定性能的设计,缺少对系统整体与总体性能的研究;其次现有模型对网络时滞具有严重的依赖性,而且在非线性系统中难以实现。NCS的故障诊断与容错控制方法有很多,本文仅总结和归纳了一部分。
参考文献:
[1]方华京,方翌炜,杨方.网络化控制系统的故障诊断[J].系统工程与电子技术,2006,28(12):1858-1862
[2]Hao Y,Ding S X,Fault detection of networked control systems with networked-induced delay[C].The 8th Int Conf on Control,Automation,Robotics and vision.Kunming:IEEE Press,2004:294-297
[3]Bao Y,Dai Q Q,Cui Y L,et al.Fault detection based on robust states observer on networked control systems[C].Int Conf on Control and Automation.Budapest:IEEE Press, 2005:1237-1241
[4]霍志红,方华京.一类随机时延网络控制系统的容错控制研究[J].信息与控制,2006,35(5):584-587
[5]邱占芝,张庆灵,杨春雨.网络控制系统分析与控制[M].科学出版社,2009
[6]Turner J R.Towards a theory of project management:The nature of the project goverance and project management[J].Int J of Project Management,2006,24(2):93-95
[7]Fang Huajing,Ye Hao,Zhong Maiying.Fault diagnosis of networked control systems[J].Annual Reviews in Control,2007,31:55-68