时间:2022-08-10 05:57:36
序论:在您撰写数控加工工艺论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
NXCAM是UG软件的计算机辅助制造模块,其功能强大,可以实现对复杂零件和特殊零件的加工,此编程工具易于使用。NXCAM已成为现代相关企业和工程师的首选[1]。进入NX8.0CAM模块,初始化加工环境,先建立型腔三维模型与毛坯,根据前述的工艺分析进行刀具组的创建,按NX/CAM的通用过程创建几何体,定义加工坐标系(根据装夹进行安全平面的设置);为后续的刀轨能实现3D动态模拟,在这里同时也进行了部件与毛坏的定义。由不同的加工要求,分别设置相应的加工方法。
1.1创建上表面3D平面铣工序平面铣(planarmilling)主要用于平面轮廓、平面区域或平面孤岛的一种铣削方式。它通过逐层切削工件来创建刀具路径,可用于零件的粗、精加工[2]。
1.1.1创建上表面粗加工平面铣工序通过单击工具条上的图标,在出现的“创建工序”对话框中选【类型】为【mill_planar】,【子类型】为【FACE-MILLING】,并按加工方案选用刀具与加工方法,点击“确定”,在出现的【面铣】对话框中以“曲线/边”模式选择毛坯上表面的4条边完成边界几何体的设置,在【机床控制】下分别进行“开始刀轨事件”和“结束刀轨事件”的相应设置。同时设【切削方式】为(往复走刀),行距为刀具直径的75%,按工艺安排表中的参数分别进行“进给率和速度”等参数设置,然后点击“生成刀具轨迹”图标,生成刀轨,完成上表面的粗加工工序的创建。
1.1.2创建上表面精加工工序与上述创建上表面的粗加工工序方法类似进行设置,但要选用不同的刀具和加工方法,同时要在“进给率与速度”中将“主轴转速”更改为2,000。由于是精加工,在刀轨设置时将行距优化为刀具直径的50%,得到的精加工型腔上表面刀轨如图2所示。
1.2创建4个侧面3D平面铣工序4个侧面的加工没有分粗、精加工,而是一步到位。选【类型】为【mill_planar】,【子类型】为【PLANAR-MILL】,其余如同上表面加工工序方法类似设置,以【曲线/边】模式定义部件与毛坯边界,以“指定底面”进行加工底面设置。在“切削层”对话框中设置“每刀深度”为4,与前述方法类似,分别完成“进给率和速度”与“机床控制”栏下的相应设置与刀轨设置,然后点击“生成刀具轨迹”图标,生成刀轨如图3所示。
1.3型腔的内腔加工型腔的内腔是成型塑件产品的工作面,表面质量要求较高,在这里采用型腔铣开粗、固定轴轮廓铣半精加工、区域铣精加工3步完成其加工。
1.3.1创建内腔的型腔铣粗加工工序型腔铣主要用于加工型腔或型芯,属多层切削,可以加工侧壁与底面不垂直的工件[3]。通过【插入】/【工序】,在“创建工序”对话框中选类型为“mill_contour”,“子类型”为“”,由加工工艺方案选用相应的刀具、加工方法、“进给率和速度”等参数设置。驱动方法对刀轨的影响较大,在UG软件中对数控加工提供了多种类型的驱动方法,驱动方法的选择与被加工零件表面的形状及其复杂程度有关,本型腔铣粗加工以“边界”驱动方式[4]。选择好切削区域,生成刀轨,如图4所示。
1.3.2创建内腔的固定轴轮廓铣半精加工工序固定轴轮廓铣是三坐标联动加工,主要用来加工自由曲面等特征,如模具等,刀具沿复杂曲面轮廓运动,适用于半精加工与精加工。在“mill_contour”类型下选子类型“FIXED-CONTOUR”,进入“固定轴轮廓铣”,选“边界”驱动。边界驱动方式可指定以边界或环路来定义切削区域,其刀具路径沿着复杂的曲面轮廓而产生。点图标工具,选内腔边缘为“驱动几何体”。与前述方法类似,分别完成“进给率和速度”(“主轴转速”输15,000转/min)“、机床控制”栏及刀轨的相应设置,然后点击“生成刀具轨迹”图标,生成刀轨如图5所示。根据加工的弧面形状,选用球刀进行半精加工,主轴转速达6,000转/min,从模拟仿真的结果来看,得到的刀轨较优。
1.3.3创建内腔轮廓曲面区域铣精加工工序轮廓铣是三坐标联动加工,常用于精加工,主要用来加工模具的自由曲面等特征[5]。模具型腔的内腔表面的精加工采用曲面区域铣,类型为MILL-CONTOUR,子类型为“CONTOUR_AREA”,刀具为B5球头铣刀。在“驱动设置”中将“切削模式”设置为“跟随周边”。由于是精加工,将“步距”设为刀具平直百分比的30%,部件的内公差及外公差均设为O。选内腔所有曲面为切削区域,并与前述方法类似,分别完成“进给率和速度”(“主轴转速”输20,000转/min)“、机床控制”栏及刀轨的相应设置,然后点击“生成刀具轨迹”图标,生成刀轨如图6所示。
1.3.4创建型腔的孔系加工工序为保证孔系定位精度,先对所有孔统一安排了一道中心钻工序。在“创建刀具”对话框通过改变“类型”为“DRILL”,“子类型”选择“SPOTDRILLINGTOOL”,创建中心钻刀。进入“定心钻”对话框后进行循环类型的设置、各孔的选择及各循环参数的设置,然后生成所有孔的中心钻刀轨,如图7所示。同理,完成其余所有孔的钻削加工刀轨生成与动态仿真验证。进行所有工序的刀轨生成,如图8所示,动态仿真验证如图9所示。
1.4后处理作为NXCAM模块中的一个重要组成部分,后置处理的主要任务是将NXCAM软件生成的加工刀位轨迹源文件转成数控机床可接受的代码(NC)文件[6]。型腔产品的加工刀轨生成后通过3D模拟,验证其不存在打刀、过切等情况,并且刀轨路径是较优化的,则可以点,进行后置处理,生成数控加工程序单,得到可用于实际生产的程序。
2结束语
1.1数控加工的概念及其发展
数控加工是指在机床上利用数控技术对零件进行加工的一个过程。数控加工和非数控加工的流程从整体上来说是大致相同的。但在技术上却大相径庭。采取数字信息控制加工零件的数控加工方法是针对零件种类多样、相同型号产量少、结构复杂、精度要求高等现实状况达到高效化和自动化加工的有效方法。数控加工的发展方向是高速和高精度。20世纪50年代,MIT设计了APT。APT具有程序简洁,方法灵活等优势。但也有很多不足之处如对于复杂的几何形状,无法表达几何即视感[1]。为修正APT的不足,1978年,法国达索飞机公司开发了CATIA。这个系统有效的解决了几何形状复杂、难以表达即视感的缺陷。目前,数控编程系统正向高智能化方向发展。
1.2数控加工的内容
数控加工的内容有挑选适宜在数控机床上加工的零件,对数控加工方案进行确定;详细绘制所加工零件的图纸;确定数控加工的详细流程,如具体工作的分工、工作的前后顺序、加工器具的选择与位置确定、与其他加工工作的衔接等;修正数控加工的流程;确定数控加工中的允许误差;指挥数控机床上一些工艺部分工作等。
2数控加工的工艺设计
2.1数控加工的工艺设计特点
采用数控加工的工艺设计具有加工程序简单,解放枯燥工作的劳动力等特点。改进了传统机床工艺的工序繁多,劳动强度大的弱点。如此便使数控加工工艺设计形成了自身的独特的特点。正常来讲,数控加工的内容要比传统机床加工的内容繁多。数控加工的内容非常精确、工艺设计工作十分逻辑明确。数控加工的工作效率非常高。零件在一道工序中能完成多项工作项目。而这些工作如果换成传统工艺则需要多个步骤才能做好[1]。所以,数控加工具有工作效率高的特点。将传统加工工作中的几个步骤在数控加工工艺中浓缩成更少的工作步骤,这让零件加工所需要的专业工具数量大幅下降,零件需要加工的工序和所用时间也节省出很了多,进而大大提高所加工产品的成品率和生产效率。此外,在普通机床加工时,很多具体的工艺问题如加工时各类工序如何分类和顺序如何安排、每道工序所使用工具的形状大小、如何切割、切割多少等,在实际工作中都是靠工作人员根据自己的多年工作经验和习惯慢慢锻炼成的纯熟的技巧来解决的。传统加工的工艺设计正常情况下不需要加工人员在设计工艺流程时做出过多的计划,实际工作做好就可以了。而在数控加工时,每个实际工艺问题必须事无巨细的都考虑到,而且每一个细节都必须在程序编辑时编入完全正确的加工指令,其结果也会是非常精细,这是数控加工最大的特点。
2.2数控加工的工艺设计方法
工艺设计的任务就是明确零件的什么部位需要数控加工,经过什么流程,如何确定这些流程的前后顺序等等。通常在数控加工时确定零件加工的工作步骤有如下几种方法:按所使用的工作器具确定。为了减少切换工作器具次数,节省时间,可以采取将同一种工作器具集中使用的方法来确定工作步骤。在一个工序中使用同一个工作器具的全所有步骤率先集中,统一完成后然后再使用第二种工作器具进行该种工作器具所要加工的所有步骤,以此类推。平面孔系零件一般使用点位、直线操控数控机床来加工,制定加工的工作步骤时,着重于控制加工精度、成品率和加工所需时间。旋转体类零件通常使用数控车床或磨床加工。在车床上加工时,一般加工成品冗余多,使用粗加工方法。数控车床上用到低强度加工器具加工细小凹槽的情况很频繁,因此适于斜向进刀,一般不要崩刃。平面轮廓零件一般使用数控机床加工。方法上应该着重把控切入与切出的方向。使用直线和圆弧插补功能的数控机床在加工不规则零件的曲线轮廓时,一定要用最短的直线段或圆弧段来无限逼近零件轮廓,让零件的误差在合格的基础上加工的直线段或弧段的数量最少为最佳方案[2]。立体轮廓零件:某些形状的零件被加工时,由于零件的形状和表面质量等多方面问题致使零件强度较差。机床的插补方法可以解决这一难题。在加工飞机大梁直纹曲面时,如果加工机床是三轴联动便只能使用效率较低的球头铣刀;如果机床是四轴联动,则可以使用效率比球头铣刀高的圆柱铣刀铣削。
2.3数控加工的工艺设计过程
数控加工的一般过程要经过阅读零件,工艺分析,制定工艺,数控编程,程序传输。数控加工之前应该绘制好零件的加工设计图稿。在数控机床上加工零件时,应该先按照之前绘制好的零件图稿来分析零件的结构、材质、几何形状、大小和精度要求,并采用分析结果作为确定零件数控加工工艺过程的基础。确定数控加工工艺过程,要先详细了解零件数控加工的内容和原则;之后再设计加工过程,挑选机床和加工零件所需的器具,确定零件的加工位置和装夹,确定数控加工中工作的步骤和顺序,确定每个工作步骤中具体的工作器具的使用方法及切割大小;还需要填写数控加工的工艺文件、加工程序及程序校验等。通过实际的操作经验总结,单纯的按照之前设定的数控加工程序来实际操作加工零件依然存在很多缺陷。因为人力工作可能对程序的具体步骤和原理不够明确,对编程人员的本意理解也不是很透彻,通常需要编程人员在零件加工时对加工人员进行现场的指导,这种情况对于零件数量较少的加工状况还能勉强正常工作,但对于时间长、数量大的生产情况,就会生出很多问题。所以,编程人员对数控加工程序比较复杂和不易理解的部分进行适当的补充和说明的作用是不可小觑的,尤其是要针对那些需要长时间和大批量生产零件的数控加工程序特别关键。
2.4数控加工的工艺设计应注意的问题
在数控加工中一定要注意并且预防工作所使用的器具在工作中和零件等出现不必要的摩擦,所以一定要明确的强调工作人员数控加工的工艺设计编程中的加工器具的加工路线,使加工人员在加工前就都清楚明了的知道加工路线[2]。与此同时还应该设置好夹紧零件的位置,如此便可以减少不必要的问题出现。除此之外,对于某些程序问题需要调整程序及加工器具路线和位置时必须事先告知操作人员,以防出现不必要的问题。
3结语
【关键词】数控车床车削加工工艺工艺分析车削
一、问题的提出
数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。
数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。其主要内容包括以下几个方面:
(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。
笔者观察了很多数控车的技术工人,阅读了不少关于数控车削加工工艺的文章,发现大部分的使用者采用选择并确定零件的数控车削加工内容、零件图分析、夹具和刀具的选择、切削用量选择、划分工序及拟定加工顺序、加工轨迹的计算和优化、编制数控加工工艺技术文件的顺序来进行工艺分析。
但是笔者分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。工序、工步的设计不合理将直接导致零件的形位公差达不到要求。换言之就是工序、工步的设计不合理直接导致产生次品。
二、分析问题
目前,数控车床的使用者的操作水平非常高,并且能够独立解决很多操作上的难题,但是他们的理论水平不是很高,这是造成工艺分析顺序不合理的主要原因。
造成工艺分析顺序不合理的另一个原因是企业的工量具设备不足。
三、解决问题
其实分析了工艺分析顺序不合理的现象和原因之后,解决问题就非常容易了。需要做的工作只要将对零件的分析顺序稍做调整就可以。
笔者认为合理的工艺分析步骤应该是:
(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择;
(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。
本文主要对二、三、四、五三个步骤进行详细的阐述。
(一)零件图分析
零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。
1.选择基准
零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。
2.节点坐标计算
在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。
3.精度和技术要求分析
对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。
(二)工序、工步的设计
1.工序划分的原则
在数控车床上加工零件,常用的工序的划分原则有两种。
(1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。
(2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。
2.确定加工顺序
制定加工顺序一般遵循下列原则:
(1)先粗后精。按照粗车半精车精车的顺序进行,逐步提高加工精度。
(2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。此外,先近后远车削还有利于保持坯件或半成品的刚性,改善其切削条件。
(3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。
(4)基面先行。用作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。
(三)夹具和刀具的选择
1.工件的装夹与定位
数控车削加工中尽可能做到一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以提高加工效率、保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。实际操作时应合理选择。
2.刀具选择
刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。
(四)切削用量选择
数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f)。
切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min)可根据切削速度υ(mm/min)由公式S=υ1000/πD(D为工件或刀/具直径mm)计算得出,也可以查表或根据实践经验确定。
三、结语
数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。
参考文献
零件数控加工工艺的标准化,就是利用标准化的理论和方法对零件的数控编程过程中涉及到的工艺信息如零件工艺分析、基准选择、刀具选择以及加工工序和加工路线等,即所有与数控加工过程有关的要素进行规范化处理。其目的就是利用标准化的加工工艺来生产相同或类似要求下的零件,防止不必要的工艺多样化,或者借助成组零件的相似性原理使得属于同一类型的零件采用相似的加工工艺,从而,提高零件的数控编程效率,减少劳动力的投入,还能保证零件产品的质量。
2数控加工工艺标准化的方法
2.1典型工艺法1938年索克洛夫首次提出典型工艺的概念,其着眼点是工艺过程的标准化,也就是将零件按照结构、形状相似性和工艺过程相似性标准进行分类,则同类零件可以采用同一的典型工艺。因此,典型工艺法能够很好地应用于如齿轮、标准件等结构形状相对稳定、批量相对较大的零件,而其他的一些批量不大或非标准结构的零件就很难使用典型工艺法。对于一些形状结构差别较大、批量小和种类多的生产场合,典型工艺只能作为零件工艺设计的参考资料。据统计有将近20%左右的零件可以用到典型工艺法,而且即使应用了典型工艺法其效果也不是很明显。
2.2成组工艺法1959年米特洛范诺夫首次提出成组工艺的新概念,其着眼点在于工序的标准化,即把零件加工过程中的全部或一部分相似加工工序的零件划分为一组,然后,针对每一组的具体情况制定适宜的成组加工工艺。因此,它能够很好地弥补典型工艺法的不足。当加工一个属于此类的零件时,只需要根据该零件的需要,按照成组加工工艺做出适当的调整或者补充,即可完成对该零件加工工艺的设计。实践表明,80%以上的零件品种可以采用成组工艺。
3采用成组工艺法标准化的过程
3.1分析零件的加工特征,从零件的形状特征入手,并结合工艺特征中的工序,借助成组技术的相似性原理建立零件的分类标准,在此基础之上将零件合理地分类成组。
3.2分析零件数控加工工艺的设计原则,并据此研究每一类零件的优化工艺信息设计。设计的内容主要包括成组零件数控加工工艺过程和工艺内容的设计,其中工艺内容涉及到具体的加工基准、加工工序、加工策略以及刀具和工艺参数等。
3.3研究零件数控加工工艺信息的存储和重用,主要涉及到工艺信息存储方式的选择及其相应数据库的建立,工艺信息再次调用的实现过程,以及重用过程中对相似工艺的修改和增加等。
3.4数控加工工艺标准化系统的设计和实现,包括系统的功能设计和结构设计,并对各类成组零件的工艺信息进行匹配和调用,实现对零件数控加工工艺的标准化。
4总结
异形槽零件通常壁厚程度从0.5mm到1.1mm不等,究其原因是形状尖角分布广泛,造成了应力的集中,极容易产生裂纹和内裂变力。这种零件在加工过程中,经过一系列的切削振动、工装夹具和灼热加工后,残余应力经过重新分布难以避免的会发生变形外,在各个加工工序之间流转存放的过程中,零件的残余应力也会受存放环境的影响(如温度,空气湿度等)而发生形状、尺寸上的变化,会造成工中的成品率不高。
2.对异形槽类零件加工工艺的分析
2.1零件图工艺的分析零件图可以直观的反应出零件的性能,用途和工作条件[5]。让人对零件与产品中的相互关系和作用一目了然。是设计工艺的理论基础,因此,零件的工艺图应具备以下几个条件:(1)零件图具有完整性和正确性,符合国家标准,有完整的尺寸和相关的技术标注。如清楚的显示点、线、面之间的平行或相交的关系。画图的过程中可以用cad软件作为辅助工具,以求达到最直观清晰的构图效果。(2)关于尺寸标注方法的要求:在零件图上尺寸标注分为分散法和集中法。通常采用的是集中标注,有利于直观的向编制的程序提供数据。
2.2针对材料的选择有些零件刚完工的时候是合格的,到整体装配的环节就出现超出范围的松动或难以装配,或者无法装配的情况。有些可以装配但是使用没多久就出现裂痕等情况。导致产品的使用寿命大大缩短。针对这一情况,对加工中出现损坏的材料进行抽样检查,发现在碳钢材料中,所含的S,P比值较高,导致的脆性变大,对加工过程的冷热变化十分敏感。因此,要提高成品加工的成功率,延长零件的最佳使用年限。就要在零件的选材上多下功夫,选择的材料必须符合如下几个特性:(1)材料表面实耐磨,具有良好的延伸性。(2)材料的内部必须具备良好的韧性和可塑性,且耐受性强。(3)因为异形零件工作介质很特殊,最好是选用渗碳合金钢(12CrNi4)q且含碳量要低于0.25。才能保证经过高温处理后,材料的内部仍具有良好的韧性,因为有碳的渗透而达到表面的硬度。Cr,Ni是为了提高材料的淬透性。
3.异形槽类零件加工过程中对刀具的选择
3.1对加工刀具的分类槽类零件的加工刀具主要分为铣刀、镗刀两大类[6],根据不同的加工阶段要使用不同的刀具:(1)在自由啮面的粗加工和半精加工阶段,首先选择铣刀,因为它具有优质的切削质量和效率。(2)如果对自由曲面进行精加工的时候该选用球头刀,因为该刀的切削速度慢,切削的行距够密。(3)如果是粗精加工,即使是相同尺寸和规格的刀具,都要分开使用。一般情况下,尽量使用一把刀具完成所有的加工部位。
3.2异形类零件加工过程中对刀具的用法(1)粗加工时螺旋进刀方式应控制在5度到10度之间,进刀量的径向不允许超过刀具直径的5%-8%,深度进给量要控制在刀具直径的5%。(2)半精加工阶段,由于零件的层间距离较小,要防止切削时刀具直接下沉到下个切削面,不要过切,要满足等量的切削原则。(3)粗加工和半精加工阶段,为实现较高的表面加工质量和切削效率,要配合使用UG软件的manufacturing模块里的cavity—mill铣削方式,其参数设定为,切削水平选bcalDepthperCut为2mm,将Stepover的toodiameter调整为55%。刀具则选用硬质合金双刃立式平底铣刀。(4)精加工阶段,选用优质合金球头刀为刀具;对比曲面的最大面,分为正反方向两组,刀轨走向尽可能的沿着最长轮廓线的方向;因为球头刀刀心速度为0,不属于切削而是削磨,所以加工时刀轴需要与零件底面保持不超过20度的倾斜,减少这样可以避免刀尖对加工零件的磨损;根据零件不同曲面的特点,可以用Cavity—mill中Ar.eaMilling、SurfaceArea、Boundar来进行加工。
4.切削加工中对切削液的选择
切削加工中要使用切削液,切削液具备四大性能,冷却性能,性能,清洗性能,防锈性能。在切削过程中切削液可以降低刀具与加工表面的摩擦,减少刀具的磨损,提高加工表面的光滑性。切削液也根据其性能也分为三个种类,切削油,乳化液,水溶液。水溶液其主要成分由水构成,无粘稠的透明质感,方便操作者观察,冷却性能好。其缺点是容易令金属零件生锈,性能差。乳化液外观呈透明或者乳白色,是由乳化剂、添加剂和植物油膏加水稀释而成,冷却、效果不错但是含水量大,容易让金属钝化。
5.异形槽零件钻中心孔时要注意的问题
钻中心孔是异形槽类零件加工中十分细节却又极其重要的一环,对异形槽零件的加工工艺的品质起到决定性的作用,因此,在异形槽加工过程中,应注意如下几个问题。
5.1防止中心钻的折断(1)中心钻一定要对准加工零件的回转中心,加工零件的末端要车平,不能留有凹头,否则容易造成中心钻偏斜,不能准确定钻心而折断。(2)切削时候要严格控制切削用量。(3)不能使用磨后的中心钻强行钻入。(4)要保证中心钻的清洁,及时清除中心钻上的切屑和浇注切削液。
5.2防止中心钻孔钻的不圆或钻偏(1)要及时矫正出现弯曲的加工零件2.保证装夹工具有良好的夹紧力,防止因夹紧力不足而引起的钻中心孔时加工零件的移位。且在钻孔时注意,中心孔不宜钻的太深,否则在工件夹装时不能与中心孔的钻孔贴合,避免中心钻孔修膜后圆柱部分的长度过短,不然在装夹时,容易造成装夹尖端与中心孔底的接触。
6.在热处理过程中需注意的问题
正确的高温的处理方法对后来的切削加工质量有着决定性的作用,金属的组织成分不同在加热处理中会呈现出不同的组织特性,当含碳量不足0.25%时,金属的切削加工性能也随着碳含量的变化而变化,如果有大量的铁素体在回火状态下出现,那么说明该金属的延展性很好。因为渗碳合金钢(12CrNi4A)具有含碳量低的优势,经过渗碳后冷却,然后通过金属加热处理后再低温回火,从而形成柔韧性和强度的完美融合。大部分的异形槽类零部件加工过程中,都是先经过加热处理及回火后再进行磨削工作,通过磨削加工达到所追求的良好机械性能。工件采用半自动或自动机床加工时高效率成批生产,只有经过科学的热处理工艺方法,有效的降低了磨削时“烧伤”或形成“磨削裂纹”的概率,保证了零件经过精磨后,还能维持有较高的光洁程度。因此,正确选定合理的热处理工艺方法是优质切削的基础。
7.结束语
一体化教学按照一定的程序进行,虽然学科和专业影响到操作细节,但总体而言,一体化教学存在一定的共性,具备通用的操作流程。吉林省林业技师学院根据实际教学情况,优化教学流程,具体如下:
1.1课前准备一体化教学的核心就是课前准备工作,直接影响到课程能否顺利开展,也直接影响到教学目标能否完成。首先,开课前一个月,编著教学执行标准,并上报校方领导,得到相关批准后实施。其次,根据实训场地、学生人数以及设备情况,确定适合学生发展的教学形式。最后,在开课前两周,制定相关的工具、材料需求计划,在开课前将教学所需的工具、材料准备完毕。同时,按照课程执行标准,开课前一周编制出实际教学方案。
1.2知识技能传授一体化教学知识技能传授,是以实践和理论结合为主。因此,在教学过程中,教学要始终贯穿“一体化”教学思维,遵循“讲练结合”的教学原则,根据实际课程特点,优化教学手段和教学方法,使得教学重点始终围绕技能强化和技巧形成。首先,组织教学。一体化教学是在教室进行的,但相对于传统教学而言,数控机床一体化教学的课堂空间更大,随机性更强。因此,在教学过程中,要遵循标准化教学,保持良好的教学环境和课堂纪律。如果教学过程不能顺利进行,教学目标也就不能顺利完成。其次,入门指导。可分成主课题与子课题,教师要根据课程标准量化教学方案,利用自身操作实践和教材知识引导学生获取知识,并在学生实践过程中附和操作要求,其内容主要包括讲解、复习、演示和操作等。再次,巡回指导。作为对课题示范讲解的巩固,也是学生联系实际是否正确的影响因素。只有目的明确且有针对性的检查和指导,才能逐步提升学生技术水准。一体化教学强调巡回指导的针对性,如学生的操作方法和操作知识以及操作安全等。最后,课程收束。此过程也被称为结束指导,是课程结束后,教师对学生的实践进行点评,并对学生出现的问题进行总结,强调问题的分析和反馈。由于数控机床操作是理论与实践相结合,因此在课程收束阶段,强调学生的操作问题和对知识的理解。采取一体化教学模式,能充分调动学生的积极性和确定学生学习目标,真正做到实践与理论结合,使得知识技能始终贯穿整个课堂教学。
1.3综合训练综合训练以典型工艺分析为主,并对关键部分进行演示。同时进行独立操作实验,激发学生自编工艺的能力,并及时反馈教学信息,学生在发现问题后,教师要做到及时点拨。一体化教学传授的每个环节都相辅相成,教师要根据课程的实际特点,合理优化教学环节,努力提升教学质量。
2结束语
数控加工课程是一门以实践为主、理论与实践紧密结合的课程。教学内容涉及专业基础知识多、范围广;教学工作不仅要完成理论教学任务还要培养学生综合应用能力以及操作技能,因此从课程的性质、任务来看,其教学过程需要理论教学和实践教学相结合,要理中有实,实中有理。目前多数高职院校在数控加工课程中仍采用传统的教学模式,即理论课和实践课分开上。为了克服传统的教学模式和教学方法所存在的教学效能低、理论知识与生产实践分离、理论教材与实训课教材相脱节的弊端,目前职业院校都在积极探索“一体化”教学模式与“行动导向”教学法等新的教学模式与教学方法。但由于受场地、设备、师资、教材和全校教学的统筹安排等诸多条件的制约,这些新模式、新方法仍未能大面积推广,只能在个别或少数班级试行。因此,积极推进数控加工课程一体化教学模式的建构,既是加快培养高素质的数控技能型人才的迫切需要,也是解决上述矛盾的必然选择。
2一体化教学模式的设计思路
“一体化教学模式”是按照职业岗位职责的能力要求重新组合原理性课程与实践性课程,实现教学目标“一体化”、教学内容“一体化”、教学时空“一体化”和师资“一体化”的教学模式。通过专业调研,分析毕业生岗位,掌握市场对毕业生的知识能力素质要求,围绕职业能力结构,确定专业定位和本专业的人才培养方向,结合职业资格标准,制定专业课程体系,从而决定本门课程的教学内容;根据学校教学资源,按照学训结合、学训交替的教学模式组织教学,在最大限度内采用加工操作、模拟仿真、技能拓展、综合实训、顶岗实习等教工学结合的教学手段进行教学;教学考核采用理论考核与实践考核相结合的形式进行。
3高职数控加工课程一体化教学模式构建
一体化教学的特点是“练中学、学中练、重能力、见实效”。一体化教学必须改变传统的教育观念和传统的教学模式,高职数控加工课程一体化教学模式的构建主要包括在以下几个方面:
3.1教学内容模块化、项目式
模块式课程具有任务引领、结果驱动、突出能力、内容实用、做学一体的特点,的确起到了充分利用教学资源、降低教学成本、调动学生学习兴趣、提高教学质量、促进教师教学能力提高的作用。数控加工课程包括三大模块数控车、数控铣/加工中心、数控线切割。每一模块又可以结合数控加工职业活动要求分成小的项目,将技能教学课题定为一项项的工作任务,通过学生完成一系列的工作任务来将所有涉及到的专业知识与专业技能串联起来进行系统学习,其中工作任务的逻辑形式包括递进式、并列式、流程式三种。
3.2按工作过程系统设计教学过程
本课程强调学生以直接经验的形式来掌握数控机床的编程与操作技能,教学组织按工作过程系统设计,即按照“资讯———计划———决策———实施———检查———评价”完整的“行动”方式来进行组织教学。通过“做中教”,“做中学”,融职业规范和职业素质培养于一体。采用“车间教学”的组织模式,让学生身为“准员工”体会真实的工作环境、工作过程、工作内容。
3.3建设双师队伍
理论基础、专业能力过硬的“双师型”队伍是理实一体化教学改革的关键。数控加工课程实践性强、职业能力要求高。要求教师既能从事理论教学又能承担实践教学,具有较强的动手能力和解决生产一线有关技术问题的能力,能在生产现场动手示范,指导学生掌握生产技能。实践证明“双师型”教师是实践教学体系顺利实施的重要保障。
3.4开发一体化校本教材
一体化教学凸显了形象思维教学够用为主的原则,这就要求教材的重点是实用和可操作的,理论浅显易懂,教材中舍弃繁琐的理论。一体化教材的开发应按高职教育培养目标,应以培养学生综合素质和技能为目的,按照典型工作任务和工作过程对原有的学科和课程体系进行改革,制定教学大纲,按教学大纲和技能鉴定内容等为标准,编写一体化教材,保证人才培养目标的实现。校本教材应以学校的教师为主体,企业的技术人员参与共同编制的。
3.5建设一体化教学场所
根据高等职业教育培养技能型人才的目标要求,高等职业学校开展一体化教学改革,必须打破理论教学与实习教学授课地点分离的模式,建立符合一体化教学需要的多功能的一体化教室,即兼有理论教学、小组讨论、实验验证和实际操作的教学场所。数控加工课程实践教学环节主要依托校内外“实训基地”进行。比如在课程中讲授数控工艺及编程时,我们将课堂搬到校内数控车间进行现场教学,针对实物讲解,以“企业真实产品”为教学任务,以车削、铣削的工作任务或产品为载体设计教学过程,采用现场大量“产品实例”讲练结合的教学方法,使学生边学边练,在学中做,做中学,做到学做合一。
3.6建立一体化评价体系