时间:2023-08-01 16:55:47
序论:在您撰写电气工程的应用领域时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:储能技术 电气工程 应用效果 发展趋势
中图分类号:F407.6 文献标识码:A 文章编号:
一、未来电气工程学科面临的新问题及储能技术的作用
1.1电力系统安全高效运行问题更加突出
现代电力系统正在向大机组、大电网的方向发展,保持电网的稳定性对于电力系统的安全运行来说变得越来越重要。随着电网规模的不断扩大,互联电网的稳定性问题将表现出许多与原有电力系统不同的特点,其中,各种动态过程的强耦合性、系统运行条件的随机性、系统固有的非线性对系统稳定性的影响会更加突出。此外,特大型互联电网稳定性丧失带来的影响也越来越大。
传统的电力系统稳定控制装置所通过的控制环节较多,控制效果受系统运行状态变化的影响较大,有时难以达到满意的效果,并且还缺乏使用的灵活性和难于在同一个控制装置中同时实现有功和无功功率协调控制的缺点。将储能技术应用于电力系统稳定控制,可以实现一种更有效的电力系统稳定控制装置。
1.2可再生能源的规模化利用和分布式能源系统的建立势在必行
在电气工程领域应用储能技术是社会发展的必然趋势,具体表现在以下几方面:第一、为了促进经济的快速发展,各种化石能源被大量使用,世界各地的能源都在逐渐枯竭,为了解决将要到来的能源危机,必须找到能够解决这一问题的有效途径。虽然各种可再生能源应运而生,这些能源要想真正替代传统的化石能源,就要将他们进行规模化利用,可是他们的自身特点却阻碍了规模化利用的道路,需要找到一条有效的解决途径;第二、传统的供电方式为大电网集中供电,灵活性较差,容易产生连锁反应,很可能由于单一事故造成全网的故障,造成区域内全部停电,而建立分布式能源系统就可以有效的解决这一问题;第三、将分布式发电与可再生能源利用相结合的微型电网可在一定程度上解决能源危机问题。但是由于“微型电网”容量相对较小,系统的正常运行容易受发电和用电双方随机变化因素的影响,系统的运行能力和供电质量难以得到保证,因此,必须研究可以提高这种电网运行水平和供电质量的方法。将大电网与分布式发电相结合的新供电方式是一种灵活、高效、安全的供电方式,储能技术将在其中发挥重要作用。
1.3有利于促进环境保护工作的开展
大气污染是环境污染中一个非常重要的方面,由于交通和运载运输工具尾气排放引起的环境污染问题越来越受到人们的重视。传统的交通运输工具使用燃烧化石燃料的热机作为其动力源,为了减少大量运载工具尾气排放带来的环境污染问题,提出了“绿色出行”的概念,运载工具的电力驱动就是在这种情况下提出来的。在这方面,如何大幅度地提高蓄电池的储能密度和实现蓄电池的快速充电是需要认真研究的问题。另外,从能源系统的特性看,热机的能量密度大于蓄电池,其功率密度却小于通常的蓄电池,如果将这两种动力源结合起来,使其优势互补,则可构成混合动力推进系统。在这样的系统中,储能装置如何提高充电效率、延长放电时间、提高输出比功率等都是未来交通运输和推进系统必需解决的关键技术问题。
二、储能技术在电气工程领域的两类典型应用
所谓的储能技术就是指,将电能通过某种方式储存起来,并且能够在需要的时候转化成可供使用能源的一种技术方法,主要包括以下两方面内容:首先就是能够将能源进行高效、大容量的储存;其次,就是能够在需要使用的时候进行方便、快捷的转换。以下介绍了储能技术在电气工程领域的两用应用典型:
2.1储能技术在大型互联电力系统稳定控制中的应用
传统的PSS通过发电机附加励磁控制可以有效地抑制系统发生的局部振荡,但是对于大型复杂互联电力系统中出现的区域间多模式低频振荡问题,最有效控制点可能位于远离发电机组的某条输电线路上,PSS必须通过发电机组的励磁控制才能起作用,远离系统的最有效控制部位,常常难以达到满意的控制效果。储能技术的应用可以为这个问题的解决提供一条非常简捷有效的途径。
2.2储能技术在脉冲功率系统中的应用
脉冲功率系统主要包含低功率能源、储能单元、开关、波形调制(压缩与成形)单元、负载五个部分;其中,前四部分为脉冲功率源。脉冲功率源的发展趋势可以归纳为:高输出功率、高储能密度、高功率密度、高重复频率和高可靠性。减小储能器件的体积和重量、提高输出功率对于脉冲功率系统意义重大。储能器件主要有三种类型,即静电储能(电容器储能)型、惯性储能型和电感储能型。为实现小型化高功率储能,需要研究新型的储能方式和技术,以及将不同储能方式相结合的技术,如应用超级电容器、电池等,以及这些高储能密度器件与传统储能器件相结合的混合型储能技术。
三、储能技术在电气工程领域中的展望
第一、在今后的研究过程中,要不断促进储能技术向大容量、高密度的方向发展。目前,这一技术已经得到了相关研究领域的高度重视,成为重点研究项目。
第二、在储能技术应用中,各种形式能量的相互转换是非常重要的,必须解决大容量、快速、高效、灵活、低成本能量转换技术的问题,这就需要积极开展电力电子技术方面的研究。
第三、各种储能技术有不同的优缺点,在实际应用时,必须根据实际应用的要求,充分发挥各种储能技术的优点,使其优势互补。所以,要积极开发多元复合储能系统,并且能够将其进行有效利用。
第四、为了充分发挥储能系统的作用,应该研究能够对所存储的能量在时间、空间、强度分布上进行有效处理和管理的方法,使之既能满足实际应用的需要,又能发挥最大的效益。
第五、探索储能系统在科学研究、国防建设、工农业生产和人民生活中的新应用领域。
四、总结
综上所述,在电气工程领域中应用储能技术是未来的必然发展趋势,所以要加大研究力度,不断提高我国储能技术水平,这样才能够有效解决电气工程领域所面临的问题,促进我国经济发展水平的持续稳定发展。
参考文献
[1]张宇,俞国勤,施明融,杨林青,何维国,卫春. 电力储能技术应用前景分析[J]. 华东电力. 2008.04:42-44
关键词:储能技术;电气工程;应用;发展
中图分类号:TM72 文献标识码:A 文章编号:1672-3791(2016)10(c)-0000-00
电能的广泛应用被认为是20世纪中最具影响力的成就之一。随着电能的发展和技术的完善,现在电能已经逐渐深入到了国民经济和人们日常生活中的各个方面,是现代人类社会主要生存的基础。因此电力工业也是现阶段我国最重要的基础产业之一。由于过去传统电网在运行的过程中存在很多缺点,因此储能技术的应用在很大程度上提升了电网的安全性和灵活性,保证了经济的进步和发展。针对这种情况,本文就针对储能技术在电气工程领域中的应用和发展进行研究,以期对今后我国电力的发展和社会现代化水平的提升起到更大的积极影响[1]。
一、未来电气工程学科面临的主要问题及储能技术的作用
(一)电力系统安全高效运行问题更加突出
现代社会中我国的电力系统不断向着大电网的方向进行发展,因此保持电网的稳定不仅对电力的发展有着重要的影响,同时也对电力系统整体的安全运行产生重要的作用。随着现代电网规模的发展和扩大,互联电网将逐渐展现和传统电力系统不同的特征,在这个过程中,每个环节中的强耦合性、系统运行条件下的随意性等都会比之前更为突出。与此同时,大型的互联电网稳定性的逐渐丧失将给我们带来越来越大的影响。
(二)可再生能源的规模化利用和分布式能源系统的建立是必然的趋势
在社会的不断发展过程中,石油、煤炭等不可再生的化石能源随着不断使用和开发已经呈现了逐渐枯竭的趋势和状态,因此这也导致了全球范围内的能源危机,在这个基础上我们只有不断寻求更好的新能源对其进行替代,才能保证人类社会的正常发展和进步。因此太阳能、风能、地热能等可再生资源的有效利用,不仅能对这一问题进行解决,同时还能更好的实现可持续发展的基本要求,是一种有效地发展途径。但是在实际开发这些能源的时候,由于这些能源的共同特点都是稳定性较差,同时能量的密度也比较低,因此开发的过程中会存在很大的问题和困难,我们要不断对这一问题进行解决[2] 。
(三)环境保护问题的重要性
环境污染问题中一个比较重要的方面就是大气污染,特别是在现代社会中交通运输工具的发展下,越来越多的尾气排放都被排放到大气中,因此这一问题现在也引起了人们的广泛关注和重视。在传统交通工具的使用过程中,主要是以燃烧化石燃料为主要的动力来源,比如石油、柴油等。但是我们为了更好的对现代尾气问题和环境污染问题进行解决,我们也提出“低碳环保,绿色出行”的理念,因此交通运输工具的驱动系统逐渐转为电力驱动也是在这个背景下提出的。
二、现有储能技术的方式
(一)抽水储能技术
按照相关的容量对抽水储能电站进行建造,一般情况下,储存能量在释放的时候能释放少则几个小时,多则几天,并且效率都能保持在百分之七十五左右。这种方式通常应用在能量管理和频率控制的领域。抽水储能的一项最大的特征就是储存的能量非常大,也正是由于这项特点,所以和电力系统的发展是十分切合的[3]。
(二)蓄电池储能技术
用于储能的NaS电池可以对脉冲功率进行输出,同时由于高效的功率,因此在通常输出的功率也是额定功率的六倍,但是整项工作的开展通常不会超过三十秒。这一特点使得我们能更好的对电能进行调整和完善,将整体的设备经济性进行有效地提升和发展。
(三)超级电容器储能技术
一般情况下,超级电容器要比常规的电容器更具有介电常数、耐压力且拥有较大的表面积。例如,陶瓷超级电容器的绝缘能力就比较强,同时由于陶瓷超级电容器的耐压水平比较高,因此这项技术也被今后储能的应用和发展提供了良好的基础。
三、改善电能存储技术的主要方向
在社会的不断发展中,我国的现代化脚步也在逐渐加快,因此怎样更好的对高密度、大容量的电能存储技术和方式进行研究也是现阶段我们需要解决的主要问题[4]。
(一)发展电力电子技术
在电力行业的发展过程中,各种能量形式能否真正的进行有效地转换和发展,会直接对我国储能技术产生影响。因此对于快速、大容量同时成本又比较低的能量转换问题进行解决,就是一项非常重要的问题。因此在这个基础上,我们发展电力中的电能存储技术将是电力行业得到更有效的进步和提升。
(二)对于各种储能技术的有效利用
由于每项储能技术的特点不同,因此在优点和缺点上都会有很多不同。在实际生产建设过程中,我们也不可能只采用一种储能技术对工作进行开展和完成。在这个基础上我们就要对各种技术进行适当的发挥和利用,根据实际生产和应用的具体要求,我们要对储能技术中的优势进行有效地利用,对不足的地方进行改善[5]。
(三)寻找新的应用领域
在发展的过程中,我们在对储能技术进行完善和发展的过程中,也要适当的开发和研究新的储能技术,保证技术在不断地提升和进步。我们在对原有的技术和应用领域进行改善的时候,要及时的对原有的问题进行改善,避免出现局限性。同时我们要想让储能技术在应用的过程中向着更全面的方向发展,我们在进行服务的过程中就要不断开发新的应用行业和领域,将储能技术在今后的发展过程中得到更好的进步和应用。
结束语:
综上所述,我们通过研究了解到,作为我国社会发展中一项十分重要的基础性产业,电能无时无刻都在影响着我们的生活和社会的发展。而本文通过对储能技术在我国电气行业和工程中的应用进行分析,不仅对储能技术的重要性进行了有效地突出,同时还对我国今后怎样提升电能存储方式和方法提出了一定的建议,对电能的发展有着很大的帮助。希望通过本文的研究和分析,能帮助今后我国电力行业的发展起到更大的帮助作用,全面促进我国社会发展和现代化水平的进一步提升。
参考文献:
[1] 程时杰,李刚,孙海顺等.储能技术在电气工程领域中的应用与展望[J].电网与清洁能源,2011,25(2):1-8.
[2] 王碧波.储能技术在电气工程领域中的应用与展望[J].城市建设理论研究(电子版),2015,35(17):8138-8139.
[3] 劳金养.储能技术在电气工程领域中的应用与展望[J].建筑工程技术与设计,2016,27(19):2975.
关键词:电气;设备;智能化;系统
1引言
迈入二十一世纪以来,随着科技水平的不断进步,我国在电气领域也得到了巨大发展,不管是在质量上,还是在数量上,我国都得到了实质性的进展和突破。本着与时俱进的精神,电气行业的发展也紧跟时代的脉搏,紧紧围绕互联网技术和其他先进的科学技术的发展,形成了具有自身特色的发展模式。而与尤为突出的就是人工智能这一方面。人工智能技术在电气自动化控制方面的广泛运用,使得许多工作和研究中的疑难问题得到了很好的解决,同时也使得工作效率得到了很大的提高。
2智能化概述
既然说到智能化,那就显然我们来了解一下,什么是智能化!智能化属于计算机科学的分支,又常常被称为人工智能,其所表达的是对人的意识或思维的相关信息过程进行模拟。在智能化或说是人工智能的研究领域包括许多方面,比如图像识别技术、语音识别技术、智能机器人等等。而按人工智能化程度的强弱,可大致分为强人工智能和弱人工智能,所谓的强人工智能就是指具有自主意识能够真正做到自主解决问题和推理的设备或机器人,而弱人工智能则是没有自主意识的设备和机器人。在生活中,弱人工智能较为常见。人工智能能够被广泛运用于各个领域,自然有其所特有的优势。对于人工智能其特点有以下几点:第一,促进社会经济效益的提升。因为人工智能领域的发展,许许多多新的相关领域和产业也随之诞生。同时智能化技术的不断突破也使得传统行业和领域得到了改进和升级,从而进一步促使了社会产业结构的调整升级。智能化技术在其他行业的运用大大提高了该行业的生产效率和生产能力,以及生产质量。所以,总结一下就是智能化技术的不断进步能够促进社会经济效益的提升。第二,促进相关科学技术和领域的发展。随着人工智能技术的诞生和发展,随之而来的则是一场全新的技术革命。智能化技术给某些领域的科学研究来说有一定程度的冲击,其中就比如自然科学领域的一些研究。而在电气工程领域由于智能化技术的引入,使得电气工程的科学研究理念发生了改变,同时也使电气工程的相关研究更具有价值。第三,改变了人们的生活模式。随着智能化技术在各领域的应用越来越成熟,人们的生活模式也在慢慢的发生改变。生活中智能化的设备和一些智能化的体验,让人们切切实实地体验到了智能化技术所带来的便利。同时也对智能化技术期盼也越来越多。
3智能化技术在电气工程领域的应用
将智能化技术引入电气工程自动化控制设备后系统中大大提高了,设备和系统的工作效率和工作质量。比如由于智能化技术的引入,使得换热站的自动化控制程度得到了提高,目前已实现了无人值守的目标。下面我们将从系统的智能感知,记忆存储,自动调控和自我决策这几个方面来说明智能化技术在电气工程领域应用的具体意义。
(1)系统的智能感知
所谓的智能感知就是对外部世界的感知,并获取外界信息的能力。智能感知是智能化技术的重要组成部分。智能感知系统的设立有利于电气自动化系统对系统操作形式和数据分布的感知,对系统实现远程化、无人化和自我感知的能力有很大帮助。其实自我感知系统是智能化和信息化相结合的应用。比如在换热站中,自动化换热设备通过相应的传感器,对温度、设备的运行状态进行感知,而后将相关数据进行初步的处理之后,再将数据传送到相应的计算机终端,而后根据计算机对数据的分析结果,通过信息技术和自动化控制技术对自动化换热设备进行相关操作。
(2)系统的记忆存储
电气自动化系统对外部信息、操作数据以及其他相关数据的存储是十分重要的。在智能化电气自动化系统中,一般是由智能化终端对以上所说的相关数据进行存储的,除此之外,智能化终端还会对数据和信息进行一定的分析处理和计算整合。所以根据智能化终端的数据,我们可以找到数据之间的差异,从而改进设备的相关操作。同时在智能化终端还能在设备出现故障时,根据设备故障的原因对设备故障处理的相关操作进行相关的记忆存储,从而使设备的在遇到该类故障时可以实现自行处理的功能。
(3)系统的自动调控
所谓的自动调控就是根据外界变化的环境不断的进行自我调整,从而来适应变化的环境。反应在智能化技术中就是根据外部环境的变化,不断的对系统的相关操作数据进行调整,从而来实现电气工程的自适应。比如温度控制,在智能控制系统中,机械设备在运行过程中会产生热量其运行过程中温度升高,而智能系统在感知其温度升高后会自动调度设备中的散热装置对其进行散热,从而确保设备运行在正常的温度,而在其温度下降到一定范围,系统则会自动关闭散热装置。
(4)系统的自我决策
从上面我们不难看出,智能控制系统可以根据外界的相关变化做出相应的动作,所以从一定程度上来说,智能控制系统具有一定的自我决策的能力。而在电气自动化控制中,智能化技术作用最为突显的地方就是智能诊断。我们的电气自动化设备不可能是不出现任何故障的。而在电气设备出现故障时,智能化技术能够很快的发现故障的源头,并及时的对故障原因进行分析,而后进行自我决策并做出相应操作处理。
4结语
电气工程自动化控制系统的智能化是电气领域未来的发展方向,而智能化技术由于信息技术结合得十分紧密。所以在实现电气工程自动化控制智能化的过程中,就是将信息化和智能化紧密结合得应用在电气领域。通过计算机或其他信息终端提高电气设备智能化的程度,实现电气设备的自动化故障诊断、决策和处理运行。电气工程自动化控制系统的智能化是一项长期任务需要电气领域和相关领域的研究和工作人员的一起努力。
参考文献:
[1]张赛文挺.浅析智能化技术在电气工程自动化控制中的应用[J].科技风,2016(11).
关键词:储能技术;电气工程;应用
中图分类号:F407.6文献标识码: A
在能源结构调整的大背景下,随着电力系统对安全、高效、稳定运行等条件的要求愈来愈高,我国电网的发展逐渐歩入一个全新的阶段——智能电网。而智能电网要求我们提供适应21世纪需求的高品质电能质量,适应众多的电源种类和电能储存方式。而智能电网它是一个集合了多种当代先进技术的复合系统,这些技术包括电力、储能技术、信息技术、电子技术、传感测量技术等,而储能技术是其中至关重要的一环。这是因为储能技术不仅能保障电网系统稳定运行和提高系统安全性能外,还可以为电力系统调峰填谷,解决供用电矛盾。因此,研究储能技术在电气工程领域中的应用是非常有意义的。
1、储能技术的概述
目前储能方式主要分为三类:机械储能、电磁储能、电化学储能。储能技术主要分为物理储能、化学储能和电磁储能三大类。而机械储能包括:抽水储能、压缩空气储能和飞轮储能。其中目前最成熟的大规模储能方式是抽水蓄能;电磁储能包括:超导储能、电容储能和超级电容器储能;电化学储能包括铅酸电池、锂离子电池、液流电池、钠硫电池等等。液流电池具有大规模储能的潜力,但目前使用最广泛的还是铅酸电池。目前根据各种储能技术的特点,飞轮储能、超导电磁储能和超级电容器储能适合于需要提供短时较大的脉冲功率场合;而抽水储能、压缩空气储能和电化学电池储能适合于系统调峰、大型应急电源、可再生能源并入等大规模、大容量的应用场合。本文就目前最主要的抽水储能技术、空气压缩储能技术、飞轮储能技术和超级电容器储能在电气工程领域中的应用进行分析。
2、储能技术在我国智能电网建设中的作用
随着经济社会的快速发展和人民群众生产生活对电力需求的快速增长,我国已经成为世界上第二大的电力生产国和消费国,在今后的长远发展中,电力系统的建设对我国有着举足轻重的意义。这是因为电能存储技术还在其他很多行业中扮演着不可或缺的角色,它的进步必定会带动一系列产业的优化和升级,为人类社会的良性发展贡献出巨大的正能量。为了人类居住的地球不再因为能源的稀缺而烽烟弥漫,电能的存储技术亟待取得新突破。下面就传统电网与智能电网功能对比表(见3-1):
当然,智能电网既要适应大型电源中心的集中式接入,也要适应各类可再生能源发电的分散式接入。目前我国智能电网的发展面临着可再生能源发电与智能电网的互动和协调、均衡发展的问题,这就离不开储能技术的支持,储能技术是可再生能源发展应用的先决条件,也是实现智能电网与可再生能源发电互动、融合的必要方法。而智能电网将安全、无缝的融合各种不同类型的发电和储能系统,并能够使其并网过程达到最简化,最终近似的实现“即插即用”。而在智能电网建设中,大型集中式发电厂包括各种清洁能源的电源,这些大型电厂通过加强输电系统的建设仍然能够远距离输送电力,继续发挥主要的作用。因此,智能电网通过遍布电网的诸多储能节点,同时对电力资源进行更为有效的调度,有效平衡各方利益,提高整个电网的用能。
储能技术在电气工程领域中的应用
3.1、抽水储能技术
抽水储能技术最大的特点就是电能储存能力较大,对于电力系统用电高峰时期的电能补充有着优秀的表现。抽水蓄能电站是目前在实际工程中技术最成熟,同时应用最为广泛的一种储能方式,其结构如图1所示:
图1 抽水蓄能电站示意图
抽水储能电站在构成上必须具有上、下游两个水库,其工作原理是在电力负荷低谷时期,利用电网剩余电能将水从下游水库抽到上游水库,即相当于将电能转化成水的重力势能存储,在这个过程中,抽水储能装置工作于电动机状态;而在负荷高峰吋段,系统利用储存于上游水库中水的重力势能进行发电,补充电网供电不足,在这个过程中,抽水储能装置则是工作于发电机的状态。抽水储能电站是现在唯一可以大规模解决电力系统中峰谷调节困难的方法,其具有多种优点:技术上已经成熟,运行可靠,容量可以做得很大;缺点是地理条件因素会限制水库的建造,具有合适的高低水库且适合建造储能电站的地理位置较少,一般又都远离负荷中心,输电损耗较大,地理位置偏僻也给其维护带来了不便。
3.2、空气压缩储能技术
压缩空气储能技术主要用于燃气轮机发电设备。压缩空气储能示意图(见图2)。
压缩空气储能电站在实质上是一种用于调峰的燃气轮机发电厂,其主要原理利用电力系统负荷低谷时段的剩余电力进行压缩空气作业,并将其储存于高压密封设施内,在负荷高峰时段释放出来用以驱动燃气轮机发电。压縮空气储能与抽水储能类似,只要能做到较大规模,就可用于解决峰谷差问题,其关键问题就是找到一个适合储存压缩空气的场所,最合适的场所是水封恒压储气站,这种场所可以保持输出为恒压气体,因此能够保障燃气轮机稳运行稳定,增加系统的稳定性。随着分布式发电系统的发展,提高储气压力和减小储气库容量就显得更为必要,今后,微型压缩空气蓄能电站(micro-CAES)将是CAES最具有应用性的发展途径。
3.3、飞轮储能技术
目前的飞轮储能技术主要是通过一个旋转质量块与轴承组成。其中轴承是采用磁悬浮技术,主要目的就是为了减少由于旋转摩擦引起的能量损耗,提高储能效率延长使用年限。飞轮储能技术由于受外界环境影响较大,因此推广程度不及抽水储能及化学蓄电池储能。(飞轮储能见图3)
飞轮储能的原理是当系统储存能量时,将电能通过内部的电机转化为飞轮的动能储存起来,当需要放电时,又将飞轮的动能经过电机还原为电能,输送给外部负载使用。目前,飞轮储能主要用于不间断电源系统、应急电源系统、电网调峰以及频率控制。随着磁悬浮轴承技术的进步,飞轮的大型化、高速化发展以及轴承有效载荷密度的提高,飞轮储能的应用将会更加广泛。
3.4、超级电容器储能
电容是电力行业常见的元件,但是超级电容器与传统电容器有很大的区别。超级电容器的电介质常数更大,其过大的内部表面积使得超级电容器有着出众的耐压优势。大部分超级电容器的材质都是采用陶瓷来记性设计,因为陶瓷有着极高的耐压和绝缘效果,超级电容储能技术是未来储能技术的主要发展方向。超级屯容器储能示意图(见图4)
超级电容器经过近几年的发展,目前已形成诸多系列产品,超级电容器储能最大储能量已达30 MJ,但由于超级电容器价格比较昂贵,其发展空间受到一定的限制,在电力系统中,超级电容器储能—般用于负载平滑、改善电能质量、调整高峰值功率等,在系统电压跌落或受到瞬态干扰时提高供电质量。
4、储能技术未来发展方向
我国未来智能电网的发展要求提高能源利用效率、调整能源结构、增加替代能源,实现能源的可持续发展。储能技术可以调节可再生能源发电的输出功率,并使其具备向电力系统提供频率控制功能以及快速功率响应等辅助服务,为可再生能源的大规模应用开辟了可行之路。当前,电力储能技术正向着转换效率的高效化、储存能量的高密度化和应用的低成本化方向发展,通过各种试验示范和实际运行,其发展日趋成熟,我们有理由相信,在我国智能电网的建设发展中,储能技术必将会有更广阔的应用和发展。
参考文献:
关键词:电气工程;自动化技术;建筑工程;设计;应用
在我国经济日益发展前景下,电气工程自动化技术取得了较大的进步。但是与国外发达国家相比,我国电气自动化技术不够智能化。而在建筑领域大力发展的情况下,对电气工程自动化技术需求逐渐提高。这就需要我国以积极主动的态度引入国外先进技术和经验,并结合我国建筑行业实际情况找寻一条最为合适的发展道路,进而确保建筑工程电力设备有序运转。
一、电气工程自动化技术内涵
电气工程自动化是将电磁感应定律以及基尔霍夫电路定律等一系列电力理论作为参考依据,对电能产生问题和电能传输问题进行科学研究与技术分析。其中,自动化电气工程内容主要包括电力电子技术、网络控制技术、电子信息技术等。其特点为:硬件与软件的结合、强弱电结合。电气工程自动化技术是指将电力理论作为基础、电力控制理论作为前提条件、以电子信息技术作为技术手段,实现对电力开发和电力管理等多领域的科学研究。其出发点和落脚点是节约社会能源。
二、电气工程自动化在建筑设计领域的应用
(一)电气接地系统的应用
电气工程设计过程中,常见的电气接地系统为TN-S和TN-C-S。TN-S和TN-C-S在建筑设计领域应用的频率较高,实现中性线与保护线的分离是TN-S接地系统的最大优势。在整个电力系统变压器中,需要运用不导电的EP线、导电的中性线,并将两者相连,实现保障变压器安全、稳定运行的目的。现阶段,建筑工程和建筑设计逐步向智能化、信息化、现代化方向发展,在智能建筑工程管理中,安全性是首要考虑因素。相较于TN-S而言,TN-C-S的连接点存在较大的差异性。需要在保护线与中性线之间设置一个界面,用户进入界面之后,需要自行设施TN-C密码。并依据用户需要分别设置TN-S系统、TN-C系统。在具体使用过程中,要想进一步保证电力系统的安全、稳定运行,需要采用接地引线方式实现这一目的。
(二)检测系统的应用
在设计建筑工程电气自动化中,其重难点是电力系统设备的智能化管理与维护。依据电气理论和传统设计模式具有明显的缺点,即时间浪费现象严重、设计过程较为复杂。在信息化时代,在线监测系统应运而生,且被广泛应用于建筑设计领域。在线监测技术的运用不仅可以提升设计效率、减少不必要的时间浪费,还可以实现实时监控,在较短时间内发现电气设备异常现象,并针对问题制定具体的解决措施,促使电气检测系统更加智能化和功能化的实现。在线监测设备主要包括绝缘检测设备、反馈智能设备等。绝缘检测设备在工程建设中占据重要地位,主要起保障电气设备稳定运行的作用。雷击检测设备主要用于检测暴雷天气,其目的是保障电力系统的安全性。在建筑工程中,因暴雨天气或者雷雨天气损害电机或者电气设备的现象较为常见。这就需要积极引入雷击检测设备,能够最大程度保障电能的供应。
(三)检修应用
随着现代信息技术的不断发展,各种功能的家电设备运用而生,并为人们的生活带来了较大的便利。但是站在维修角度来讲,电气设备的检修难度系数增加。在信息化时代下,设备检修成为电力管理系统的重要组成部分,并成为保障电力正常运作的关键要素。设备检修系统的形成是基于通信、计算和传感等多个自动化技术基础之上。将传感技术应用于电气设备检修系统中,能够在第一时间收集电气设备的相关信息,传感设备能够定期传回设备的信息。一旦在传递信息中发现电气设备出现故障,相关技术人员可以及时找出故障源,并依据故障数据准确排查设备。当多台电气设备同时运转时,多台传感设备同时工作会出现信号扰这一情况,这是需要引入通信系统,充分发挥通信系统应用的功能与作用。在良好通信系统保障下,内部信息资料可以实现顺畅传递。在信息资料传递之前,设置计算机程序,对传感器设备传输的数据进行分析与计算。由此可见,安装检修设备之前,需要及时优化计算机程序,从而实现保障建筑工程电气工程自动化运行。
(四)楼宇自动化
楼宇自动化控制中,所需的主要设备为计算机技术设备,采用计算机技术设备展开楼宇自动化控制。直接数字控制器被用作分散控制器,借助计算机实现主机屏幕的监控与管理。其主要手段为动画、曲线、数据库、各种专用控件等。楼宇自动化系统较为复杂、包含范围较广。比如既包括通风监控系统与照明系统,又包括空调监控系统和消防控制系统等。设计楼宇自动化系统之前,应分析各项机电设备信息,并将其分类,从而为实现集中化管理与监控,进而保障各项系统设备的安全、稳定运行。为进一步实现各个子系统的高效运行、促使工作环境更加安全,需要科学合理计划各系统的造价、节省能源与管理费用,在保证各系统发挥功能与作用的同时提升智能楼宇管理与服务质量。
三、未来发展趋势的简要分析
自改革开放以来,我国工业和建筑行业得以迅速发展,从而为进一步完善我国电气自动化控制系统创设了良好的条件。现如今,随着信息技术的不断发展,自动化控制发展逐步向智能化、现代化、信息化方向发展,建筑电气自动化控制水平逐渐提升,信息网络技术与建筑电子自动化技术的融合成为未来发展趋势。这样既可以发挥信息网络技术的优势,又可以提高建筑工程电子自动化操控水平。同时,IT平台为建筑工程电气自动化的发展提供了良好的平台,并以电子商务发展模式为基础,实现节约能源和节约造价成本的目的。进而促使未来自动化控制技术的发展前景更加明朗,在增加建筑施工单位经济收益的同时降低管理成本,促使建筑行业长远健康发展。
结束语:
将电气自动化技术引入建筑设计领域,具有明显的优势。既可以降低管理成本和设备造价成本,又可以降低工作人员工作量,实现节约时间的目的,因此电气自动化技术被广泛应用于建筑工程领域。在当前信息时代,电气自动化技术与计算机技术的有效结合,是未来建筑电气自动化控制的发展方向。这样不仅可以大大提升电气设备使用效率,还可以提升建筑企业市场综合竞争力,促使电气技术全面发展的实现。
参考文献
[1]李灵耀.电气工程自动化在未来建筑工程领域的发展及其应用[J].山东工业技术,2015,(08):110.
[2]化鹏.电气工程自动化在建筑设计领域的运用[J].中国高新技术企业,2015,(08):50-51.
[3]刘伟国.浅谈建筑设计领域中电气工程自动化的应用[J].门窗,2014,(08):204.
关键词:建筑;电气工程;状态监测、控制、维修;自动化设计
中图分类号: TU198文献标识码: A
引言
电气工程涉及到建筑物多项改造活动,对建筑物结构性能的变化有较大的影响。根据勘测结果显示,建筑物电气工程结构存在着诸多问题,尤其是设备运行、线路连接、现场操控等方面,严重影响了智能建筑电气工程的改造质量。为了避免各种问题对电气工程造成的不利影响,针对智能建筑结构设计自动化运行模式是必不可少的。
1 智能建筑改造设计存在的问题
电气工程改造是建筑电力系统建设的关键性项目,改造工程的质量对电力系统运行性能的完善十分重要。早期国内建成的智能建筑由于时间问题出现了不同的问题,严重影响了建筑正常的生产作业秩序。智能建筑改造是未来建筑行业发展的必然趋势,也是满足市场经济改革发展的重要措施。
1.1环境保护方面。环境污染是阻碍智能建筑改造工程顺利实施的常见问题,改造期间引起的污染是多个方面的。一是土地资源利用,扩大智能建筑占地面积是改造工程的主要内容,可以扩大企业经营的运行规模,但土地资源利用率偏低造成资源浪费,破坏了地表生态的平衡;二是物理条件干扰,智能建筑改造不合理引起异常噪声、电磁辐射等污染,影响了智能建筑的正常运行。
1.2结构方面。智能建筑在原始电能传输过程需先将电压升,传输至用户区域再按需要把电压降低,简单的电能转变流程却对智能建筑内系统的组建提出了更多的要求。就站内布局这一点而言,改造作业存在危险患,如:机构箱门、端子箱、万用钥匙使用、电缆进出口未关闭,造成站内进水;接地线布局不合理,加固螺丝松动影响了站内系统正常运行的效率。
1.3造价方面。按照运行的规模大小,国内智能建筑规模分中小型或大型,每一个改造工程均要投入大笔资金。由于施工单位思想理念、改造技术、现场管理等工作不全面,对改造工程的成本造价控制不严格,导致工程造价投资的稳定性波动较大。如:建筑改造工程承包单位,接受项目资金后未能合理规划运用,改造期间应资金流通调控不当引起成本问题。
2 自动化设计中的在线监测系统
从另一个角度理解电气设备的状态监测、控制、维修,其实在电气设备处于某种状态的前提下开展的检测、维修工作。在线监测系统是电气设备状态维修技术的关键系统,技术人员根据在线监测系统显示的数据可及时发现异常问题,引导技术人员尽快实施故障维修方案。结合新时期电网规划的规范标准,在线监测系统的设计应涉及到以下几个方面的内容。
2.1绝缘监测。电气设备的绝缘性能关系着电力系统运行的安全性,对线路绝缘进行监测是状态维修的重要内容。我国电网建设期间设计的绝缘监测系统多数是挂网运行的绝缘子,如:瓷、复合绝缘子等,这些绝缘装置会受到外界因素的变化而减弱性能,对绝缘元件积极配备监测系统可保证电气设备的稳定作业。
2.2雷击监测。线路是向电气设备传输电压的载体,若输电线路发生故障则会影响到电能的正常供应,不利于电气设备的持续性运行。状态维修方案中的在线监测系统需顾及到雷击的危害,参照电气设备的具体结构规划雷击监测系统。如:常用的雷击监测方法是安装避雷针或避雷器,电气设备遭受雷击前后可起到监测、保护的作用。
2.3环境监测。环境对电气设备或连接线路也有很大的影响,若不采取有效的措施保护电气设备,则会造成设备的故障发生率上升。环境监测系统的主要监测对象是大气温度、湿度、二氧化硫等,当这些因素对电气设备的性能造成不利影响后,监测系统会把异常信号传递给监控中心,警告技术人员尽快采取维修措施保护系统及设备。
3 自动化状态检修的常用技术
电网改造工程的广泛开展,使得国内电气设备的功能日趋多样,而相应的电气设备的故障形式更加辅助,给设备维修人员的处理造成了很大的难度。随着电力科技研究工作的深入进行,设备状态维修引进了许多相关的辅助技术,降低了电气设备故障维修的难度,保证了电力系统数据传输的稳定性,显著提升了状态检修工作的效率。
3.1传感技术。传感技术是状态维修时获取数据的主要手段,维修人员将传感器安装于电气设备,可定期接收有关设备的状态信号,为异常故障的判断提供了可靠的依据。此外,传感技术可以扩大电气设备的监测范围,其对电气工程建设范围内的任何区域的信号都能精准地捕捉,有助于智能建筑电气工程自动化运行水平的提高。
3.2通信技术。智能建筑内部电气设备连接的设备数量、种类、型号等复杂多样。状态维修操作时需把电气设备的异常信号快速传输给控制中心,以引导维修人员尽快制定出处理方案,利用信息传输技术可以把电气工程的实际状态转发给控制人员,以做好实时监测工作。
3.3计算机技术。利用传感器捕捉信号后,维修人员应对信号实施加工处理,筛选出最优价值的电气设备感应信号,保证后期故障维修操作具有针对性。一般信息处理技术要借助于计算机平台,凭借计算机强大的数据处理功能完成数据的收集、处理、分析等工作。如:利用计算机强大的服务器功能,对收集到的信息给予自动化处理等。
4 结束语
总之,电气工程是智能建筑自动化设计的关键内容,对未来建筑物使用性能的发挥起到了重要的作用。现代化智能建筑的结构形式更为复杂,其相应的电力工程也有所改变。为了保证电气工程自动化调控模式的效率,对其实施自动化改造是必不可少的。因而,施工单位必须针对电气工程构造设计自动化状态检修模式,及时发现电气工程中的问题以采取有效的处理措施。
参考文献:
【关键词】:建筑;电气工程;状态维修;自动化设计
【 abstract 】 : electrical engineering is the main component of office buildings, electrical automation installation quality relationship between later the normal use of the building. In order to make use of the building performance into full play, the construction unit of office building electrical engineering takes several control measures, the author proposed building electrical engineering automation design concept. As for traditional office building design and transformation of the existing problems, this paper puts forward the electrical engineering automation state the concept of maintenance, so guided design diversified monitoring plan, ensure that building electrical systems and equipment on their good effect.
【 key words 】 : building construction; Electrical engineering; State maintenance; Automation design
中图分类号:F407.6文献标识码:A 文章编号:
电气工程涉及到建筑物多项改造活动,对建筑物结构性能的变化有较大的影响。根据勘测结果显示,建筑物电气工程结构存在着诸多问题,尤其是设备运行、线路连接、现场操控等方面,严重影响了办公建筑电气工程的改造质量。为了避免各种问题对电气工程造成的不利影响,针对办公建筑结构设计自动化运行模式是必不可少的。
1 办公建筑改造设计存在的问题
电气工程改造是建筑电力系统建设的关键性项目,改造工程的质量对电力系统运行性能的完善十分重要。早期国内建成的办公建筑由于时间问题出现了不同的问题,严重影响了建筑正常的生产作业秩序。办公建筑改造是未来建筑行业发展的必然趋势,也是满足市场经济改革发展的重要措施。
1.1环保方面。环境污染是阻碍办公建筑改造工程顺利实施的常见问题,改造期间引起的污染是多个方面的。一是土地资源利用,扩大办公建筑占地面积是改造工程的主要内容,可以扩大企业经营的运行规模,但土地资源利用率偏低造成资源浪费,破坏了地表生态的平衡;二是物理条件干扰,办公建筑改造不合理引起异常噪声、电磁辐射等污染,影响了办公建筑的正常运行。
1.2结构方面。办公建筑在原始电能传输过程需先将电压升,传输至用户区域再按需要把电压降低,简单的电能转变流程却对办公建筑内系统的组建提出了更多的要求。就站内布局这一点而言,改造作业存在危险患,如:机构箱门、端子箱、万用钥匙使用、电缆进出口未关闭,造成站内进水;接地线布局不合理,加固螺丝松动影响了站内系统正常运行的效率。
1.3造价方面。按照办公运行的规模大小,国内办公建筑规模分中小型或大型,每一个改造工程均要投入大笔资金。由于施工单位思想理念、改造技术、现场管理等工作不全面,对改造工程的成本造价控制不严格,导致工程造价投资的稳定性波动较大。如:建筑改造工程承包单位,接受项目资金后未能合理规划运用,改造期间应资金流通调控不当引起成本问题。
2 自动化设计中的在线监测系统
从另一个角度理解电气设备的状态维修,其是在电气设备处于某种状态的前提下开展的检测、维修工作。在线监测系统是电气设备状态维修技术的关键系统,技术人员根据在线监测系统显示的数据可及时发现异常问题,引导技术人员尽快实施故障维修方案。结合新时期电网规划的规范标准,在线监测系统的设计应涉及到以下几个方面的内容。
2.1绝缘监测。电气设备的绝缘性能关系着电力系统运行的安全性,对线路绝缘进行监测是状态维修的重要内容。我国电网建设期间设计的绝缘监测系统多数是挂网运行的绝缘子,如:瓷、玻璃、复合绝缘子等,这些绝缘装置会受到外界因素的变化而减弱性能,对绝缘元件积极配备监测系统可保证电气设备的稳定作业。
2.2雷击监测。线路是向电气设备传输电压的载体,若输电线路发生故障则会影响到电能的正常供应,不利于电气设备的持续性运行。状态维修方案中的在线监测系统需顾及到雷击的危害,参照电气设备的具体结构规划雷击监测系统。如:常用的雷击监测方法是安装避雷针或避雷器,电气设备遭受雷击前后可起到监测、保护的作用。
2.3环境监测。环境对电气设备或连接线路也有很大的影响,若不采取有效的措施保护电气设备,则会造成设备的故障发生率上升。环境监测系统的主要监测对象是大气温度、湿度、二氧化硫等,当这些因素对电气设备的性能造成不利影响后,监测系统会把异常信号传递给监控中心,警告技术人员尽快采取维修措施保护系统及设备。
3 自动化状态检修的常用技术
电网改造工程的广泛开展,使得国内电气设备的功能日趋多样,而相应的电气设备的故障形式更加辅助,给设备维修人员的处理造成了很大的难度。随着电力科技研究工作的深入进行,设备状态维修引进了许多相关的辅助技术,降低了电气设备故障维修的难度,保证了电力系统数据传输的稳定性,显著提升了状态检修工作的效率。
3.1传感技术。传感技术是状态维修时获取数据的主要手段,维修人员将传感器安装于电气设备,可定期接收有关设备的状态信号,为异常故障的判断提供了可靠的依据。此外,传感技术可以扩大电气设备的监测范围,其对电气工程建设范围内的任何区域的信号都能精准地捕捉,有助于办公建筑电气工程自动化运行水平的提高。
3.2通信技术。办公建筑内部电气设备连接的设备数量、种类、型号等复杂多样。状态维修操作时需把电气设备的异常信号快速传输给控制中心,以引导维修人员尽快制定出处理方案,如:采取GMS 或CDMA 系统或GPS全球定位系统进行数字传输。利用信息传输技术可以把电气工程的实际状态转发给控制人员,以做好实时监测工作。
3.3计算机技术。利用传感器捕捉信号后,维修人员应对信号实施加工处理,筛选出最优价值的电气设备感应信号,保证后期故障维修操作具有针对性。一般信息处理技术要借助于计算机平台,凭借计算机强大的数据处理功能完成数据的收集、处理、分析等工作。如:利用计算机强大的服务器功能,对收集到的信息给予自动化处理等。
4 结束语
总之,电气工程是办公建筑自动化设计的关键内容,对未来建筑物使用性能的发挥起到了重要的作用。现代化办公建筑的结构形式更为复杂,其相应的电力工程也有所改变。为了保证电气工程自动化调控模式的效率,对其实施自动化改造是必不可少的。因而,施工单位必须针对电气工程构造设计自动化状态检修模式,及时发现电气问题以采取有效的处理措施。
参考文献:
[1] 贾玉佩.现代建筑电气工程的技术性维修方案[J].安徽建筑工业学院学报,2008,12(7):33- 35.
[2] 郝玉萍.电气工程对高层建筑性能的影响里分析[J].东北大学学报,2009,40(17):145- 146.