时间:2023-07-24 16:16:10
序论:在您撰写超高层建筑结构设计要点时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1前言
由于复杂高层与超高层建筑建设难度相对较大,为保证人们居住的安全性,相关建筑结构设计人员就应该以提高建筑结构安全性为主要目标,找出更有利于高层建筑建设的结构设计措施,从而在促进建筑行业发展的同时,保证复杂高层与超高层建筑建设能够具有合理性、抗震性,提高人们居住的舒适度与安全性。
2高层建筑整体结构设计特点
高层建筑整体结构设计特点主要体现在以下几方面:一是由于高层建筑相对较高,建筑水平荷载对建筑整体会产生一定的竖向轴应力,并在水平上受到自然灾害、风力等因素影响。因此在设计高层建筑整体结构时,除需要考虑到建筑竖向荷载外,也应该深入考虑到建筑水平荷载。二是由于高层建筑顶部压力相对较大,建筑在后期使用过程中,会出现轴向变形的问题,从而影响建筑梁弯距。因此为了保证高层建筑整体安全性,在结构设计时就应该加强对建筑梁弯矩的重视,避免发生高层建筑轴向变形问题[1]。三是对高层建筑整体抗震性的要求。高层建筑在设计过程中应该重视其结构延性,保证高层建筑能够更好的抵抗地震灾害,从而保证居住人们的生命安全。
3复杂高层与超高层建筑结构设计要点
3.1提高对建筑结构设计的重视,优化结构设计方案
复杂高层与超高层建筑结构设计方案直接决定了建筑结构后期应用的安全性。基于此,在进行结构设计时,相关人员就应该提高对建筑结构设计的重视,从而能够结合建筑工程周围实际情况,优化已经研制出的结构设计方案。首先,复杂高层与超高层建筑结构设计人员应该重视概念设计,在前期设计阶段需要坚持结构设计规则性、整体均衡性等原则,保证建筑结构各个部分都能够发挥出更有力的支持作用;其次,在完善复杂高层与超高层建筑结构设计时,结构设计人员应该加强与工程施工人员的沟通,从而在外观效果、施工效果的角度上实现对建筑结构设计方案的优化,避免建筑结构出现后期转换的问题[2]。最后,由于计算机技术在结构设计过程中发挥了重要的作用,因此相关人员还应该积极采取有效的计算机软件,实现对结构设计方案更科学的优化。
3.2深入分析建筑结构设计指标,提高结构设计的合理性
建筑结构设计指标不仅是复杂高层与超高层建筑结构设计人员应该遵循的指标,也是保证复杂高层与超高层建筑结构设计合理性的重要因素。因此在设计建筑结构时,相关人员就应该加强对以下几点内容的重视,从而提高复杂高层与超高层建筑结构设计的合理性。一是地震荷载指标:在研究人员的深入分析下,发现超高层建筑结构自震周期在6秒至9秒之间,因此在地震荷载指标的影响下,建议复杂高层与超高层建筑结构设计中直线倾斜下降时间控制在十秒左右。同时在分析该项技术指标时,也要全面结合建筑周围的实际情况,从而保证评估结果能够满足建筑结构合理性的要求;二是风荷载指标:由于复杂高层与超高层建筑主要会受到地震以及风力的影响,因此相关人员还应该遵照当前所提出的风荷载指标对建筑结构设计进行全面评估,从而实现对建筑变形的控制,提高建筑居住的安全性。
3.3根据相关建筑结构设计规范,保证结构设计的抗震性
由于建筑结构直接影响着人们的生命安全,因此在建筑行业快速发展的背景下,国家制定了科学、合理的建筑结构设计规范。针对复杂高层与超高层建筑提出的设计规范,有以下两种:《高层建筑混凝土结构技术规程》和《高层建筑抗震规程》。要想保证复杂高层与超高层建筑结构设计更加合理,能够更好的满足建筑抗震性要求,相关人员在设计复杂高层与超高层建筑时,就要严格按照相关建筑结构设计规范进行设计工作。同时也要全面考虑到当前建筑项目所处的外部环境、需求的抗震类别以及施工条件,以保证复杂高层与超高层建筑结构设计抗震能力为建设目标。在按照相关规范设计后,利用相关分析方法对复杂高层与超高层建筑进行结构抗震性的深入分析。
3.4重视后期居住的舒适性,保证建筑结构设计的科学性
在复杂高层与超高层建筑结构设计中,除需要重视上述设计要点外,还需要考虑到后期人们居住的舒适性。一方面,这是当今社会人们生活水平提高后对建筑结构提出的要求,另一方面,也是复杂高层与超高层建筑必须达到的建设目标。由于复杂高层与超高层建筑竖向荷载相对较大,因此在前期施工以及后期居住中,都会出现一定的压缩变形问题[3]。基于此,为了保证后期人们能够居住的更加舒适,在进行建筑结构设计及施工过程中,就应该积极采取预变形技术,并通过计算机软件进行详细的模拟演练,从而保证建筑结构设计能够更加科学合理,更好的满足人们居住要求。
4总结
综上所述,相关结构设计人员在设计复杂高层与超高层建筑时,要深入分析建筑结构设计指标、相关建筑结构设计规范以及居住的舒适程度,从而保证设计人员能够设计出结构更加合理、抗震性能更高、科学性更高的复杂高层与超高层建筑结构方案,保证复杂高层与超高层建筑使用寿命与安全性,为人们居住、工作提供更安全的环境。
参考文献:
[1]刘国荣.试论超高层建筑结构的抗震性设计[J].中国新技术新产品,2015(11):118.
[2]关伟,于连友,贾国熠.关于超高层建筑的相关结构设计讨论[J].门窗,2013(2):215~216.
关键词:复杂高层 ;超高层建筑 ;建筑结构 ;设计 ;
中图分类号:TU97 文献标识码:A 文章编号:
我国复杂高层及超高层建筑不断崛起,建筑企业为了提高自身企业在建筑市场中的竞争力,对复杂高层及超高层建筑结构设计也有了更高的要求。复杂高层及超高层建筑结构设计中包含了诸多设计方面及影响因素,在设计施工前要根据高层建筑规范要求及实际情况进行科学合理的设计分析,确保建筑结构设计施工的科学性合理性,从而提高复杂高层及超高层建筑的安全性能,促使建筑企业走向一个新的里程碑。
复杂高层及超高层建筑结构设计中的抗震设计分析
复杂高层及超高层建筑相对于普通建筑而言,具有一定的特殊性,复杂高层及超高层建筑结构较为繁杂,且具有一定的高度,若出现紧急情况或者是地震自然灾害等不易救援,在这种情况下在复杂高层及超高层建筑中进行抗震设计就显得尤为必要。评价一个复杂高层建筑或者是超高层建筑结构抗震设计是否合格,可以从以下两方面进行分析:
1.抗震设计时要保证其为弹性状态
复杂高层建筑及超高层建筑倘若出现地震自然灾害由于其海拔过高必然会影响到周围的建筑物,给城市带来一定高的灾害,对其进行抗震设计是防患于未然的一种措施,在抗震设计中保持其为弹性状态,能够降低地震对建筑物的损坏率。
抗震倒塌设计
在复杂高层建筑及超高层建筑结构抗震设计中,要对建筑所能承受的地震振动侵害的大小,对其最大地震振动进行计算分析,能够在一定程度上降低地震灾害的侵害程度。其次,对于地震结构设计中的延性构件进行合理设计,其非弹性变形的能力不得超过其本身的变形能力,而对于非延性构件,其承受地震自然灾害的抗压力应该大于其本身建筑所能承受的压力,不论是复杂高层建筑结构设计还是超高层建筑结构设计,都要对其构件进行合理的控制,保持抵抗地震自然灾害的弹性。
复杂高层及超高层建筑结构设计要点分析
复杂高层及超高层建筑在建筑施工中相比普通建筑而言,具有一定的难度,其工程量较大,楼层较高,所以在建筑结构设计中要遵循一定的施工要求,准确把握施工要点,这样才能提高施工质量,保证复杂高层建筑及超高层建筑的安全性及稳定性,以下笔者根据诸多建筑企业进行复杂高层及超高层建筑结构设计施工中所总结的建筑结构设计要点:
重视建筑结构概念设计,着眼整体
复杂高层及超高层建筑其施工程序较为繁杂,在对其进行施工设计时,需要全面把握其结构概念,重视复杂高层及超高层建筑结构的概念设计,要做好复杂高层及超高层建筑结构概念设计,首先,应该从建筑的规则性及均匀性着手,在实际施工中要重视建筑施工中的对称性,保证建筑整体的美观;其次,结构设计中需要多个施工人员的配合,所以在建筑结构概念设计中要注重传力途径的建设,要保证施工中有一条清晰直接的通道实现传力,在传力途径建设中主要从结构竖向传力及抗侧立传力两方面出发;再者,在建筑结构设计施工中,要把握好复杂高层及超高层建筑的整体性,它在一定意义上直接体现了建筑企业的施工水平,另外我国提倡节能减排,建筑企业要想适应这一形势,在超高层建筑结构设计施工中就要融入节能减排的理念,在建筑物内部安装节能设备。
合理选择抗侧力结构体系
抗侧力结构设计是复杂高层及超高层建筑结构设计中的重要组成部分,良好的抗侧力结构设计能够提高复杂高层及超高层建筑的安全性能,为用户提供良好的居住或办公环境,因此在建筑结构设计施工中一定要合理选择抗侧力结构体系。选择合理的抗侧力结构需要了解建筑的实际高度进行科学的分析选择,另外在整个结构设计中要尽量使抗侧力结构体系中的各构件紧密连接在一起,保证其内部构件的整体性。结合建筑实际状况对每种抗侧力结构体系进行分析,了解其在建筑结构设计中所发挥的作用,根据复杂高层及超高层建筑的不同特点及当地的地理环境从而选择正确的抗侧力结构设计方法。
注重抗震设计各个环节的把握
抗震设计是复杂高层及超高层建筑结构设计的重中之重,它直接关系着建筑整体的安全性及稳定性,是确保建筑安全的重要环节,因此在复杂高层及超高层建筑结构设计中一定要严格把控抗震设计中的各个环节,提高抗震设计各个环节的合理性与科学性。在抗震设计中对抗震材料的选择是十分重要的,它在一定程度上直接影响了抗震设计的抗震性能,选择抗震材料要根据复杂高层或者是超高层建筑的特点进行购买,针对不同的高度选择抗震性能等级不同的材料。在建筑结构抗震设计施工前,要拟定行之有效的设计方案,确定建筑结构的变形弹性,在抗震施工中对其变形弹性的把控需要符合地震预期要求,另外还需要合理控制地震作用下的层间位移,进行层位位移在一定程度上能够降低地震给建筑带来的侵害。
全面了解所要设计的建筑结构特点才能准确把握结构设计的要点,在抗震设计中要科学对建筑结构的变形及结构位移进行科学的研究分析,精确两者之间的连带关系,从而更好的进行抗震结构设计,提高复杂高层及超高层建筑的安全性能,延长复杂高层及超高层建筑的使用寿命。倘若该建筑处于地震灾害的常发地区,应该进行多方面抗震设计,提高其抗震延性,增强复杂高层及超高层建筑的抗压力,减少因地震灾害而出现建筑倒塌事件的发生。
建筑结构抗震设计的质量及方法从一定意义上来讲直接决定了其抗震能力及效果,在整个建筑结构抗震设计中,设计人员一定要按照高层抗震设计的相关规定,而后再结合超高层及复杂高层建筑所在的具置,周边环境进行分析,从而制定出符合建筑结构施工要求的抗震设计方案,以便后期施工人员抗震结构设计施工的顺利进行。抗震设计对复杂高层及超高层建筑结构设计具有重要的意义,良好的抗震性能能够降低降低地震自然灾害对建筑的侵害,确保建筑的安全,从而保证住户的人身安全。
总结
复杂高层及超高层建筑与普通建筑相比,施工难度大,注意事项较多,所以要做好复杂高层及超高层建筑结构设计,要结合复杂高层建筑或者超高层建筑所在的地理位置及特点进行全方位的结构概念设计,制定科学合理的设计方案,从而保证设计人员顺利进行结构设计施工建设,提高复杂高层及超高层建筑的结构设计水平,从而确保整个建筑的安全质量,为住户或者办公者提供良好的建筑环境。
参考文献:
[1]陈惠信.对超高层建筑结构设计技术要点的探讨[J].中国建筑工业出版社,2012,10(5):116-118
[2]陈天虹;林英舜;王鹏种.超高层建筑中结构概念设计的几个问题[J].建筑技术,2011,10(5):357-359
[3]黄鹤.复杂高层与超高层建筑结构设计要点探讨[J].才智,2012,6(12):45-48
关键词:复杂高层;超高层;结构设计;设计要点
在高层和超高层建筑的结构设计工作中,面临的问题十分复杂,与普通建筑相比,高层和超高层建筑的结构设计工作难度更高。为了解决高层及超高层建筑结构设计的难题,有必要对复杂高层与超高层建筑结构设计要点进行探讨研究,这对我国城市发展以及建筑行业的发展都将起到重要的意义。
1、复杂高层和超高层建筑与普通建筑在结构设计上的区别
复杂高层和超高层建筑与普通建筑在结构设计上具有很大的不同,普通高层建筑的高度一般不超过200m,而复杂高层和超高层建筑的高度通常在200m以上,甚至可达到上千米。另一方面,普通高层建筑大多为钢筋混凝土结构,而复杂高层和超高层建筑通常采用混合结构或钢结构。此外,在复杂高层和超高层建筑的结构设计工作中,需要面对抗震要求、风荷载、舒适度、避难层、机电设备层、施工因素等一系列难题,可见复杂高层和超高层建筑的结构设计难度要远大于普通高层建筑。
2、进行复杂高层建筑与超高层建筑的结构设计时需考虑的问题
2.1设计方案方面的问题
在对建筑结构进行设计的时候第一步就要对建筑物的结构方案问题进行重要的思考。特别是对于那些复杂高层与超高层建筑来说,如果因为在选择结构设计方案的时候没有恰当的选择,那么就很容易引起整个结构设计方案大幅度的调整。正因如此,设计单位在对建筑物进行设计方案的制定时,不仅仅要把专业的东西结合进去,还要对去其他地区的实例进行考察,结合多方面的东西,来对方案进行有效的确立。
2.2建筑结构类型方面的问题
对复杂高层建筑与超高层建筑在展开选择结构类型的时候,结构设计工作者不仅仅要对建筑所在的地区的抗震度进行充分的考虑,还应该对建筑地区的外部环境的地质进行合理有效的分析。不仅如此,在一个方面还应该大量的减少建筑成本,对建筑工程造价问题进行充分合理的考虑,如果条件一样的话尽量选择成本比较低的借建筑结构。
3、复杂高层与超高层建筑结构设计要点
3.1严格选择合理的结构抗侧力体系
不同高度的高层建筑物,所采用的结构抗侧力体系也各不同,不同高度建筑物常用的结构抗侧力体系也不尽相同。在建筑结构设计上,要保证结构抗侧力构件能有效结合为一个整体,在复杂高层和超高层建筑结构体系设计过程中,如果采用多层抗侧力结构体系,那么应分析每种抗侧力结构体系的作用,要根据其作用的不同,对抗侧力构件进行科学的布置。在条件允许时,复杂高层和超高层建筑结构的抗侧力构件应该尽量做到相互连接,增强结构整体性,如可以通过伸臂桁架将核心筒和框架柱相互组合,例如广州东塔及其组合抗侧力体系,该建筑在结构设计中,就是通过伸臂桁架将核心筒和框架柱相互连接。另外也可以将通过环带桁架、巨型斜撑将框架柱组合成整体,进而形成巨型框架,此外还有深圳平安大厦及其组合抗侧力体系,该建筑在结构设计中,就是通过环带桁架、巨型斜撑将框架柱组合成整体。此外,也可以将纵横向墙体相互组合,形成组砼筒体或者组合墙,此抗侧力体系均可用于复杂高层和超高层建筑。
3.2概念设计的重要性
从以往的建筑工程中得出的经验,对于复杂高层和超高层建筑,应重视在其结构概念设计上的重要性,主要应重视以下几点:
(1)控制好建筑结构的均匀性和规则性,保证建筑结构的稳定性。
(2)保证建筑结构竖向和抗侧力有直接且有效的传力途径。
(3)保证建筑工程结构的整体性。
(4)在结构设计上,要保证绿色环保、节约能源。
建筑工程的结构设计要想满足以上几点,需要结构工程师和各专业设计之间的共同努力协作,只有协作好才能达到设计标准,保证工程质量。
3.3控制结构设计指标及计算结果的合理性
(1)合理选择分析软件
在建筑结构设计工作中已经普遍采用了信息化技术,目前计算机软件的种类十分繁多,各个软件的侧重点也不尽相同,因此,设计人员应该对各种软件有所了解,根据工程项目的实际情况,选择科学适用的计算机软件。
(2)充分考虑荷载作用
1)地震荷载
在复杂高层和超高层建筑进行结构设计时应考虑地震荷载的问题。对建筑施工场地进行地震安全性评价,结合安评内容并与规范规定采用的地震力合理对比,小震时应进行包络设计,同时根据规范要求合理选用地震波。
2)风荷载
在复杂高层和超高层建筑结构的设计过程中,风荷载对建筑物的影响很大,随着建筑物高度的增加,其风荷载也在不断的增加,对于建筑高度超过200m以上的建筑物,应进行风洞试验。
(3)合理控制关键设计指标
一定要合理控制各项关键设计指标,包括剪重比、自振周期、位移比、层间位移角、侧向刚度比与抗剪承载力比、核心筒和框架部分剪力与弯矩分配、单位面积下的重力荷载代表值、整体稳定性验算等等。
3.4结构性能优化分析
(1)在进行方案设计时,必须有结构专业的人员参与其中。
(2)复杂高层和超高层建筑在选择结构类型时,一定要充分考虑工程所建地的工程地质情况。
(3)要考虑工程的造价成本问题,在保证安全、质量的前提下,应尽可能选择造价较低的结构类型。
(4)要重视抗震设计,在复杂高层和超高层建筑的抗震方案设计过程中,要慎重的选择建筑结构的抗震材料,应有效控制地震发生时楼层间的位移限值,通过对发生改变的建筑构件和建筑层间的位移进行分析,得出构件的变形值,合理选择建筑结构的抗震方案。
3.5工程施工过程对设计的要求
在进行设计的过程中一定要充分考虑施工因素的影响,如在复杂高层和超高层建筑中,竖向构件的压缩变形会使建筑物的外形发生改变,而且影响建筑的内力分布。因此,为了避免建筑的外形发生改变,提高建筑结构设计的合理性,保证施工过程的安全,应对复杂高层和超高层建筑进行施工过程模拟和预变形演练。另外,在结构设计时,一定要注意复杂节点部位钢筋及钢材传力的可靠性,同时要考虑现场施工的可实施性。如在型钢混凝土梁柱节点中主筋与型钢相交时,通常采取以下4种处理措施:型钢表面焊接钢筋连接套筒;钢筋绕过型钢;钢筋与型钢表面加劲板相焊连;钢板上开洞穿钢筋等。在实际设计中,一定要合理选择处理措施,保证现场施工的可实施性。
4、结束语
综上所述,复杂高层和超高层建筑的结构设计特别关键,它直接关系到建筑物的质量和安全。所以我们在进行结构设计过程中,一定要综合考虑建筑物的抗侧力性,只有确保建筑结构体系的稳定才能保证建筑的安全。概念设计在复杂高层和超高层建筑结构设计中,占有很重要的比重,概念设计是否合理决定着高层建筑结构设计的好坏。在进行结构设计时,每个环节的设计都应高度重视,从而使建筑结构体系达到安全稳定,满足人们的使用功能要求。本文主要对复杂高层与超高层建筑结构设计要点提出几点建议,希望对相关设计工作有所帮助。
参考文献:
[1]董兴明.复杂高层建筑结构设计要点分析[J].中原建筑,2014(9):70-72.
[2]辛晓宇.复杂高层、超高层建筑设计要点分析[J].科技创新与应用,2012(5):219-220
关键词:复杂高层;超高咏ㄖ;结构设计;设计要点
中图分类号:TU97 文献标识码:A
在建筑行业发展中,越来越多新技术、新工艺和新材料应用其中,这就对工程结构设计提出了更高的要求。尤其是在当前复杂高层和超高层建筑的结构设计中,可能受到一系列客观因素影响,为工程结构埋下安全隐患,影响工程结构设计质量。尤其是在高层建筑结构设计中,相较于普通的建筑而言,结构设计要求更高,需要充分结合建筑特性,把握复杂高层和超高层建筑设计技术要点,提升设计合理性,为后续施工活动有序开展打下坚实的基础。
一、复杂高层和超高层建筑结构设计
某建筑工程总高度78.5m,高22层,主楼地下两层,地面20层。建筑结构为框剪结构,通过多方设计方案论证,桩基工程选择后压浆钻孔灌注桩,选择端承-摩擦桩的装荷载形式,压浆钻孔灌注桩295根,φ700桩252根,有效桩长18m~19m。采用标号C25的混凝土,关注前0.5m?~0.5m?碎石置于空洞地步。关注过程中,导管同孔底之间的距离为0.5m,连续灌注混凝土。
复杂高层和超高层建筑结构设计中,相较于普通的建筑结构设计而言存在明显的差异。一般其概况下,普通建筑的高度是在200m以下,复杂高层和超高层建筑的高度则超过了200m,这就对建筑工程稳定性提出了更高的要求。普通建筑多为钢筋混凝土结构,而复杂高层和超高层建筑结构则是多为钢结构或是混合结构,设计技术含量较高,结构更为复杂。此外,在复杂高层和超高层建筑结构设计中,需要充分考虑到建筑抗震要求、环境因素、自重以及风荷载等因素的影响,设计内容较为复杂,所以复杂高层和超高层建筑结构设计难度更大。
二、复杂高层和超高层建筑概念设计
(一)提升对概念设计的重视程度
近些年来,在复杂高层和超高层建筑结构设计中,设计理念不断创新,积累了丰富的结构设计经验,其中最具代表性的就是概念设计。在概念设计中,提升结构设计规则性和均匀性;结构中作用力传递更为清晰;结构设计中应该充分体现高标准的要求;结构设计中融入节能减排理念,促使结构设计更为科学合理;设计中,提升建筑材料利用效率,在满足建筑结构整体设计要求的同时,迎合可持续发展要求。基于此,为了满足上述设计要求,设计人员应该同建筑工程师进行密切的交流,在充分交流基础上,提升建筑结构设计合理性。
(二)选择合理的结构抗侧力体系
在复杂高层和超高层建筑结构设计中,为了可以有效提升结构设计安全性,选择抗侧力体系是尤为必要的。在选择结构抗侧力体系中,应该根据建筑具体高度来选择,明确结构抗侧力体系和建筑物高度之间的关系,如果建筑高度在100m以下,可以选择框架、框架剪力墙和剪力墙体系;如果建筑高度在100m~200m以内,则选择框架核心筒、框架核心筒伸臂;建筑高度在600m左右时,选择筒中筒伸臂、桁架、斜撑组合体;在结构设计中,需要充分考虑到结构内部各个部件之间的关系,形成一个整体;如果建筑工程结构中存在多个抗侧力结构体系,应该分别对这些抗侧力结构体系进行分析,在此基础上科学分析和判断。
(三)提高建筑抗震设计重视程度
提高建筑抗震设计重视程度是尤为必要的,尤其是在复杂高层和超高层建筑结构设计中,抗震设计对于建筑安全影响较大。在选择抗震方案中,需要选择合理的施工材料,质量符合建筑要求;尽可能降低地震过程中能量的扩大,对建筑构件的承载力进行验收,计算地震下建筑结构位移数值;高层建筑工程设计中,结构抗震手段的应用需要在得到位移数据基础上实现,设计更加合理的建筑工程结构设计方案,一旦建筑结构发生变形可以起到有效的保护作用;结构设计中体现出建筑构件的生产要求和界面变化情况,提升结构设计稳定性和牢固性。
(四)复杂高层和超高层建筑结构设计融合经济理念
在复杂高层和超高层建筑结构设计中,由于工程项目较为庞大,在具体的结构设计中,可能受到客观因素影响出现一系列成本问题。故此,在建筑结构设计中,需要充分融合经济型设计理念,对结构设计方案优化处理,避免建筑工程结构冗长带来的资源和资金浪费,提升资金利用效率。
三、复杂高层和超高层建筑结构设计精准性
(一)选择合理的结构设计软件,提升设计结果精准性
在复杂高层和超高层建筑结构设计中,设计工程师需要充分掌握前沿的设计手段和方法,能够选择合理的分析软件,提升计算结果准确性。当前我国复杂高层和超高层建筑结构计算软件种类繁多,但是不同软件侧重点存在明显的差异,这就需要在结构设计中,设计人员可以了解到不同软件的具体功能和应用范围,结合工程结构设计要求来选择合理的计算机软件。此外,在复杂高层和超高层建筑结构设计中,还应该对力学理念合理判断和分析,结合自身丰富的设计经验,提升计算结果精准性。
(二)加强荷载和作用力的考量
在复杂高层和超高层建筑结构设计中,设计工程师需要充分结合复杂高层和超高层建筑结构特性,明确结构自身的竖向荷载力大小和风荷载的影响因素,将其融入到后续的结构设计中,提升设计合理性。复杂高层和超高层建筑结构设计中,除了需要考虑到结构稳定性问题以外,还可以组织风洞试验,测试建筑的抗风能力。在后续的实验中,可以设计模型来模拟在不同风场环境下,建筑物的抗风能力和受力情况,有针对性提升建筑物结构的稳定性。
建筑工程结构设计中,还需要考虑到倒塌水准,主要表现在以下几个方面:其一,复杂高层和超高层建筑的延性结构构件,构件的弹性变形能力高低同结构抗震能力存在密切联系;其二,对于复杂高层和超高层建筑中的构件,满足各项技术要求;就复杂高层和超高层建筑结构设计要求,对于建筑物中的控制构件,满足建筑结构抗震设计要求,能够在不同环境下保持相应的弹性。
(三)科学计算自振周期
复杂高层和超高层建筑结构设计中,需要充分把握震动规律,提升设计合理性。但是不同的振幅和频率,可能出现大幅度震动现象,进而影响到建筑结构稳定性。故此,在建筑结构设计中,需要科学计算出自震周期,结合抗震强度、建筑高度进行科学计算,确保自振结果精准性。
(四)建筑的垂直交通设计
复杂高层和超高层建筑的结构形式主要为框架―剪力墙和核心筒结构,此种建筑结构形式可以有效提升结构稳定性,同时垂直交通体系结构可以产生较大的水平在和抵抗力。除了需要考虑到楼梯、电梯和卫生间等区域以外,向平面中央集中,可以有效减少空间占地面积,赋予建筑更好的交通环境和采光效果。垂直交通结构体系设计中,需要充分协调采光和节能之间的关系,便于后续的维护工作开展。
结论
综上所述,复杂高层和超高层建筑由于自身特性,建筑物高度较高,在结构设计中需要充分考虑到建筑抗震性能、垂直交通设计和载荷计算等问题,确保建筑工程结构稳定性和安全性,满足高层建筑使用要求,维护人们的生命财产安全。同时,对于建筑行业长远发展具有更加突出的促进作用。
关键词:复杂高层;超高建筑结构;设计要点
结构设计并不是一项简单的设计工作,其能效发挥与不确定因素的控制效果是相互关联的,尤其是复杂高层的层高特点,会直接造成设计难度的进一步增加,因此这就需要从建筑需求入手,开展有针对性的设计工作,并将相应影响因素纳入重点考量范畴中,一旦结构设计环节缺少对结构布置的合理性规划,不仅后续建筑施工流程难以正常推进,建筑质量更会受到直接影响,而建筑结构缺少稳定性,也会导致其使用寿命不断缩短,因此,这就需要不断强化对复杂高层及超高层建筑结构设计的研究,充分掌握其设计要点。
一、复杂高层及超高层建筑结构设计要点
1.强化对概念设计的重视
在当今社会,设计可以说是建筑施工的灵魂,尤其是复杂高层及超高层建筑,结构设计的优化性也就显得至关重要。目前,我国的设计师也将工作重心放在了高层结构设计上,在实际设计环节根据对设计项目的研究及总结,也逐渐形成了一定的规范化标准,其中最为主要的就是强化概念设计。首先,复杂高层及超高层由于层高较高,这就对结构的稳定性提出了更要的要求,在实际设计环节应当以此为关键点,在结构设计中不断加强对结构受力的均匀性设计,使其更加符合应用的规范化标准。
其次,设计内容中应该涵盖着对应力高效传递的优化研究项目,使其能够在应用过程中实现力的快速分解及传递;第三,在结构设计环节,应当确保其标准内容能够直接体现在结构整体上,实现对结构的完善性规划整理;第四,当今社会的各个领域中都倡导应用绿色能源,减少浪费及污染问题,而这一理念也应当在结构设计中得以灌输,只有这样才能有效提升复杂高层及超高层建筑的环保性能;第五,在推进设计工作时应当在结合工程实际情况的基础上,将建筑材料与结构进行有机结合,使二者能够更加具有协调性,从而从根本上提高材料利用率,使其能够在后续应用中承受高强度的结构荷载力。总体来说,为了将以上几点落实到设计主w中,需要建筑以及结构工程师的密切配合,在互相交流经验及工程项目研讨过程中,不断对设计图纸进行优化调整,使其更加具有参考价值。
2. 科学选择结构抗侧力体系
为了在复杂高层与超高层建筑结构设计中,能够充分体现出安全性问题,我国相关设计师总结出,提高结构抗侧力体系的科学性是基础。选择该体系的过程中,应当注重以下几点:结构体系的合理选择应当根据具体的建筑高度来确定,我国相关工作人员在近年来的工作中总结出了不同结构抗侧力体系与不同高度建筑之间的关系。
例如,在建筑高度小于等于100m 的时候,该体系最佳组合为框架、框架剪力墙及剪力墙;当建筑物的高度在100~200m之间的时候,最佳体系为剪力墙和框架核心筒;当建筑物高度在200~300m之间时,该体系最佳组成为框架核心筒、框架核心筒伸臂;如果该建筑高度小于600m时,该结构抗侧力体系的最佳构成应该为筒中筒伸臂、巨型框架、桁架、斜撑及组合体;在进行设计的过程中,应注重以上提及的相关结构抗侧力构件能够保持高度的连接,最好能够形成一个统一的整体。
3. 高度重视建筑抗震设计
复杂高层与超高层建筑当中,其抗震设计应当在建筑功能充分发挥的基础上进行确立,同时该环节也是确保建筑拥有较高安全性的重要部分。抗震方案在高层建筑当中,最重要的一点就是科学选择建筑材料;实现有效减少地震过程中的能量增加。在这项工作当中,验收承载力是使用建筑构件最主要的方式,并且应当有效控制地震情况下建筑结构的层间位移限值;在实际高层建筑的过程中,结构抗震手段的应用应当在位移的基础上建立,并定量分析相关设计方案,促使地震发生时结构的变形弹性能够对建筑产生一定程度的保护作用;精确分析地震发生时建筑构件会产生的变形及位移在建筑结构中的体现具有重要意义,这样一来,能够对构建变形值进行有效的确立;针对性设计应当体现在建筑构件的生产要求及建筑界面的应变分别当中,同时应当注重场地的坚固性,这也是有效降低地震发生时能量输入的重要方式。
4. 坚持高程建筑结构设计经济理念
复杂高程和超高层建筑是一项较大的项目,在结构设计和施工过程中,会面临很多成本输出问题。因此,在建筑结构设计过程中,应该坚持经济型设计理念。对于结果设计方案,应该坚持优化处理,避免在建设过程中由于结构冗长而造成成本浪费的问题。
二、复杂高层与超高层建筑结构设计中确保计算和设计的准确性
1. 合理选择分析软件、合理计算结果
现阶段,复杂高程与超高层建筑结构计算软件的种类很多,侧重点也有所不同,在结构设计过程中,设计人员首先应该明确不同的软件的作用,然后根据实际需要合理选择合适的计算软件。与此同时,还应该对具体的设计计算结果进行科学分析,从力学理念和工程设计经验方面进行合理判断,确保计算结果的合理性和准确性。
2. 重视荷载与作用方面的考虑
对于复杂高层与超高层建筑的结构设计,由于高层建筑很容易受到风载荷的影响,因此在高层建筑,尤其是超高层建筑结构设计中,应该重点考虑风载荷的影响。例如,在某大楼设计过程中,不仅需要考虑相关设计规范,而且还进行了相关风洞试验,从而提高建筑物的抗风载能力。在具体的试验过程中,设计了一个以 1:500 为比例的模型在半径为 600m 的风场环境中进行试验,验证建筑在不同风况下的受力情况。
现阶段,对于地震灾害的预测,在技术方面还有一定的限制,很难准确预定地震灾害。有些发达国家对于地震的研究十分深入,但是依然无法准确预估地震发生的时间和地点。因此,在高层建筑设计过程中,应该加强抗地震力的设计。与此同时,还应该重点考虑建筑主楼、裙楼在地震力作用下的不同反应。
综上所述,随着科学技术水平的不断提高,人们生活质量不断上升,我国城市建设过程中复杂高层与超高层建筑增加,在对这类建筑进行设计的过程中,应当充分考虑到抗震设防烈度、结构方案及类型等因素。经过我国建筑行业近年来积累的经验,总结出复杂高层与超高层建筑结构设计要点包括概念设计、结构抗侧力体系及抗震设计等内容。新时期,我国建筑行业相关工作人员只有在实践中不断加强对这些方面的重视,才能够促进我国建筑业不断进步。
参考文献:
关键词:复杂高层;超高层建筑;结构设计
随着我国经济和建筑技术的快速发展,复杂高层建筑和超高层建筑的数量越来越多,并且它们的复杂性呈现出一种不断增加的趋势,这些都给施工人员带来了新的要求和挑战[1]。所以要想保证复杂高层和超高层建筑的质量和安全,一定要抓好施工阶段,尤其是要控制好建筑结构的设计要点。
一、复杂高层与超高层建筑和普通高层建筑在结构设计上的不同
复杂高层建筑和普通高层建筑之间在结构设计方面存在明显的差异性,从建筑的高度上来看普通高层建筑通常来讲都是在200m高度以内的,而复杂高层建筑和超高层建筑基本都是超过200m甚至有的达到了上千米的高度。从建筑的材料设计上来看,普通高层施工人员一般就是应用混凝土的结构设计来进行施工建筑,但是在进行复杂高层或者是超高层建筑的时候,还可以选用全钢结构以及混合结构来进行结构的设计,充分保证超高层建筑的安全性。复杂高层建筑对机电设备以及消防设备的要求标准同样要比普通高层建筑高出很多,因为复杂高层建筑需要考虑到对机电层以及避难层的设计。同时在防震的设计方面,复杂高层在进行平面设计的时候所能够选用的形状要少的多,要能够使设计的结构满足我国的抗震要求。另外复杂高层建筑还需要考虑风载荷作用对人们居住舒适度的影响,而普通的高层建筑通常来讲不用考虑这些。
二、结构设计要点分析
(一)重视建筑结构概念的设计环节
很多的实践已经向我们表明,在对复杂高层建筑以及超高层建筑进行设计的时候,要想保证建筑的质量就一定要重视对其结构概念的设计环节[2]。具体需要注意的内容如下:
第一、要重视对建筑结构规则性以及平衡性的设计。
第二、要能够保证所进行的建筑结构设计具有直接的传递力的途径,特别是对结构的横向以及竖向的传力。
第三、一定要确保所进行的设计工作能够确保建筑整体的质量能够维持在较高水平。
第四、在进行设计的时候,还要充分考虑节能环保这一理念,要对耗能机制进行优化设计,减少建筑体系的耗能。
第五、还要充分考虑建筑材料的利用率,最大化的实现对建筑材料的利用,节省建筑的施工成本。
要想能够保证这一要点环节的实现,是离不开建筑工程师和施工人员之间的交流工作的,要让施工人员充分了解建筑工程师的设计意图,使得建筑工程师的设计思想能够切实得以实现和应用。
(二)根据实际情况选择结构抗侧力体系
大量的理论和实践表明,选择科学合理的结构抗侧力体系能够在很大程度上提高复杂高层建筑以及超高层建筑的稳定性和安全性,它也是建筑结构设计中的重点所在。在进行选择上具体需要考虑一下几个方面:
第一、进行结构体系的选择时,一定要首先考虑建筑的高度。当高层建筑物的高度第一100m的时候,可以选择框架结构、剪力墙以及框架―剪力墙相结合的结构体系;当建筑物的高度处在100m~200m的时候,所选用的结构抗侧力体系主要为剪力墙、框架―核心筒;当在200m~300m之间的时候所采用的结构体系为框架―核心筒、框架―核心筒―伸臂;300m~400m,为框架―核心筒―伸臂、筒中筒;高于400m的建筑,算是比较高的建筑它在结构体系的选择上能够选用的结构体系也会相应的减少,现阶段我国的主要结构体系为筒中筒―伸臂、大型框架/矩形斜撑/大型桁架的组合体等。
第二、在进行建筑结构的设计工作时,一定要充分做到各结构体系之间的相互联合和统一。
第三、在对建筑结构采用多种抗侧力结构体系的时候,要预先进行试验和分析,当确保所选用的结构体系能够达到建筑要求时方能进行实际应用。
(三)要注意做好防震设计
第一、在进行超高层以及复杂高层建筑的施工操作的时候,要想保证能够起到一定的抗震作用,对于建筑材料的选择是至关重要的。
第二、要切实做好建筑的设计工作,确保地震发生时,能量的输入能够得到有效的控制。具体所需要做到的方面有:首先,当建筑物施工完成时,对建筑物的构建进行承载力验收工作的时候,要对建筑结构在地震情况下的各楼层的位移和变形的限制进行良好的控制;其次,在对超高层和复杂高层建筑进行设计的时候,要充分考虑到地震所发生的可能性,采用积极和基于抗震的设计方法进行建筑结构的设计工作,并且对所进行的设计要进行定量的分析,确保所作的抗震设计能够满足要求;然后要对建筑物在地震情况下,所发生的变形和位移这两者之间的关系进行精确的计算,预先设计好构件的变形值;其四,结合建筑物的高度和大小对建筑物的构造进行有针对性的设计;最后,高层建筑施工的场地一定要选用坚固的土地,确保地基的稳定性,这在一定程度上也能够减少地震的危害性。
第三、利用先进的施工技术最大化提升建筑的延性。对于高层建筑来讲,它自身的承载能力基本上是一定的,但是它的延性确实有很大的不同,同时已经有大量的实践和理论表明,建筑物具有良好的延性能够将地震所带来的能量进行有效的转移,减少建筑结构的变形程度。所以要想做好防震工作,从提升建筑结构的延性入手也不失为一个好的办法。
第四、做好施工前的设计工作。设计工作的质量高低对于抗震效果有着明显的影响作用,所以在进行超高层以及复杂高层建筑施工的时候一定要做好建筑结构的抗震设计工作,并且要根据建筑所处的地理位置和建筑高度选用适合的结构体系[3]。一般来讲目前最为流行的结构体系主要有三种:框架―筒、筒中筒以及框架―支撑结构体。
(四)控制结构的自重,提供科学合理的重力荷载传递路径
第一、对于高层建筑的重力荷载传递途经已经要进行明确的设计,使得传递途径尽可能的直接和明确。
第二、对楼板的选用方面,一定要综合建筑的具体高度、设备、承重能力等方面的要求,并且还要综合考虑经济、环保等因素,综合考虑之后确定最优的选择。
第三、在进行施工建设的时候,可以采用钢筋+组合楼板相结合的形式,来缩短施工工期和达到减低楼板自重的目的;并且针对组合梁,可以在具体铺设的时候采用上面铺设小钢梁下面铺设大钢梁的方法,减少施工成本;在进行混凝土平板施工操作的时候,可以通过在混凝土中填充柱状、球形或者其他形状的轻质材质降低结构的重量。
第四、超高层建筑的外圈所铸造的框架柱以及核心筒会存在一定的差异压缩,要充分考虑这种变形差对水平建筑构件所产生的内力影响。如果有必要可以将框架和核心筒之间相互连接的水平构件进行连接,一端采用铰连接方法,另一端采用桁架斜腹杆延迟的连接方法,保证建筑工程的施工质量。
结语:
综上所述,复杂高层和超高层建筑是社会发展的必然结果,随着社会经济以及建筑施工技术的提高,越来越高的施工技术将会在复杂高层和超高层建筑的施工中有所体现。所以在对复杂高层以及超高层建筑进行施工的时候,对于施工工艺的选取是非常重要的,同时为了切实保证施工质量一定要对建筑结构的设计工作做好严格把控,控制好建筑结构设计的要点,争取从根本上保证高层建筑的施工质量。
参考文献:
[1]刘军进,肖从真等. 复杂高层与超高层建筑结构设计要点[J]. 建筑结构,2011,11:34-40.
【关键词】:超高层;结构设计;特点;要点
中图分类号:TU318文献标识码: A 文章编号:
引言
超高层建筑的建造,其所以如此之快,除了有的城市为了有一个高大的形象建筑之外,主要还是超高层建筑能在有效面积的土地上,得以发挥最大的使用效益。也尽管建造超高层需要的费用比一般高层建筑高出很多,但在我国的城市建设中,随着日益快速发展的需要,为土地使用率的提高,必然会使超高层建筑以更快的速度发展。
一、超高层建筑设计的特点
1、超高层建筑由于消防的要求,须设置避难层,以保证遇到火灾时人员疏散的安全。由于机电设备使用的要求,还需要设置设备层。一般超高层建筑是两者兼而使用,而对于更高的多功能使用的超高层建筑,它不只每15层设一个避难层兼设备层即可,还需要设有机电设备层。对于这些安放有设备的楼层设计除考虑实际的荷载之外,更需考虑设备的振动对相邻楼层使用的影响。
2、超高层建筑的平面形状多为方形或近似,对于矩形平面其长宽比也是在2以内,尤其抗震设防的高烈度地区更应采用规则对称平面。否则,在地震作用时由于扭转效应大,易受到损坏。
3、超高层建筑的基础形式除等厚板筏基和箱基外,由于平面为框架-核心筒或筒中筒,基本没有一般高层建筑中所采用的梁板筏基。同时,由于基底压力大要求地基承载力很高,除了基岩埋藏较浅可选择天然地基外,一般均采用桩基。
4、房屋高度超过150m的超高层建筑结构应具有良好的使用条件,满足风荷作用下舒适度要求,结构顶点最大加速度的控制满足相关规定要求。
二、超高层建筑结构设计要点
1、平面设计
从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意味着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
在满足地下室车库层和底层架空或者底层商铺的前提下,遵循对称、均匀、周边、拐角的原则,在结构周边、拐角和核心筒等部位对落地剪力墙进行较合理布置,主体结构抗震等级为三级(低于140m)和二级(高于140m)。对结构薄弱部位如楼电梯周围,内庭院周围均设置了120mm厚楼板,采用双层双向拉通钢筋予以加强;对少量肢长受到限制的短肢剪力墙(墙肢长度∶墙厚
2、基础设计
超高层建筑一般多设二层或更多层的地下室,其基础的埋置深度均能满足稳定要求。而对于基岩埋藏较浅无法建造多层地下室不能满足埋置深度要求的,则可设置嵌岩锚杆来满足稳定要求。
(1)天然地基基础。对于基底砌置在砂、卵石层的建筑,多是采用等厚板筏形基础。但也有工程采用箱形基础。
(2)桩基基础的设计。超高层建筑的桩基础,由于基底压力大,要求的单桩竖向承载力较高,因此,均采用大直径钻孔灌注桩或有条件的工程场地采用大直径人工挖孔扩底灌注桩。桩端持力层的选择应考虑层厚较大和密实的砂、卵石层或中风化、微风化基岩,以减少桩端沉降变形。
3、核心筒外墙的连梁设计
核心筒外墙的连梁纵筋计算超筋是非常普遍的情况,《高规》对连梁超筋有专门的处理措施,而且研究文献也不少,但计算模型的选取也是重要因素之一。《高规》规定,跨高比小于5时按连梁考虑,即连梁属于深弯梁和深梁的范畴,其正截面承载力计算时,已不能按杆系考虑,也就是已不符合平截假定,但许多分析软件仍然把连梁按杆系计算,其计算偏差当然是很大了。按“强墙弱梁”和“强剪弱弯”原则进行连梁设计时,虽然《高规》对连梁设计有具体要求,但这个“弱”要到什么程度,还是取决于设计者的理解和经验。本工程核心筒外墙的连梁按《高规》要求进行设计,除连梁均配置了交叉暗撑外,对非底部加强部位剪力墙的边缘构件也进行了加强处理,以满足“多道抗震防线”和“强墙弱梁”的要求。
4、转换层设计
高层建筑应保证大空间的需求的房间具有足够的刚度,从而防止转换层沿竖向的刚度变化过大,应建立严格的转换层上部和下部结构的侧向刚度比例。高层建筑的转换层抗震的结构设计中,转换层结构的侧向刚度不小于上一层结构侧向高度的百分之七十,并且根据高层建筑的指数设计的规范要求。控制转换层结构的下部与上部的等效侧向刚度比宜接近于1。同时还应保证一定比例剪刀墙的落地,加大落地厚度,从而提高剪刀墙混凝土的强度等级,减小洞口的尺寸,从而尽量使纵横墙形成筒体。整体结构的分析过程,应对转换层的薄弱部位的楼板平面的变形对建筑结构受力的印象程度。并通过剪刀墙的布置方式的调整,从而使相应的结构与刚性相接近,避免了扭转,实现平面布置的规范。合理地加强框支剪力墙转换层以下竖向构件的配筋率,按相关规定确保整体稳定和结构抗倾覆;同时,使用现浇钢筋混凝土楼板来达到增强结构整体性的目的。保证核心筒内部楼板厚为150mm,并且是双层双向的配筋以及相关围护材料为新型轻质材料,从而有利于减小地震反应,减轻建筑自身重量。
5、电梯设计
超高层建筑内主要竖向交通由多部高速电梯承担着人的竖向动线运动。由于甲级办公楼行业规定,电梯等候时间和电梯的运输能力(5分钟内运送人员占总人数的比例:HC5)是另一个重要指标,对其产生直接影响的是电梯的速度、数量和载客人数。另外,电梯的数量和大小又直接影响着建筑面积的大小。
此外,超高层内按照《高层民用建筑设计防火规范》规定,还需布置消防电梯,电梯数量按照标准层单层面积决定。除了客运、消防关系着电梯的设计外,整栋建筑中的所有货运流线,也需通过建筑的竖向交通解决。因此,超高层建筑肩负着整栋建筑的客运流线、货运流线、消防疏散三个重要的方面。
三、新技术的推广和应用
为执行国家建筑技术经济政策,积极推广建设部推广的建筑十大新技术,根据本工程的实际情况,在保证工程总造价不超出投资限额的情况下积极推广使用建筑新技术和新材料。
1、使用高强度钢筋。采用高强度钢筋,充分利用钢筋的抗拉性能,减少钢筋用量,减小构件配筋率,节约工程造价,总体经济效益明显。
2、竖向钢筋接驳采用埋弧对焊或机械连接,可保证钢筋的连接接头的质量。
3、采用高强和高性能混凝土。下部楼层柱及剪力墙混凝土强度等级采用C55;地下室底板、外侧墙及后浇带采用微膨胀抗渗混凝土,以增加混凝土的抗裂性能,取得较好的防水效果。
4、砌体采用新型轻质墙砌体材料,减轻结构自重,减少地震作用,降低基础造价。
结语
超高层建筑自身特点大大增加了超高层建筑的不稳定因素,因此,不能将超高层建筑视为普通建筑的拉伸和重叠,以免影响到建筑的使用效果。在实际设计过程当中,要根据超高层建筑的特点开展相应施工环节的加强,减少安全隐患,确保超高层建筑整体质量,确保我国建筑行业的健康发展。
参考文献
【1】秦荣.高层与超高层建筑结构[M].北京:科学出版社,2012.
【2】范跃虹,黄宗襄,林振声.超高层和大型公共建筑设计、施工与研究[M].上海:同济大学出版社,2012.