时间:2022-06-02 06:08:30
序论:在您撰写太阳能发电技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:太阳能发电绿色照明一体化
太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solarcells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。
1太阳能发电原理
太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。
1.1太阳能电源系统
太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
(1)电池单元:
由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。
理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。
(2)电能储存单元:
太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。
1.2控制器
控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。
1.3DC-AC逆变器
逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流
电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照
明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。
2太阳能发电系统的效率
在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。几种太阳能电池的转换效率。
充分利用太阳能是绿色照明的重要内容之一。而真正意义上的绿色照明至少还包括:照明系统的高效率,高稳定性,高效节能的绿色光源等。
3.1发电--建筑照明一体化
目前成功地把太阳能组件和建筑构件加以整合,如太阳能屋面(顶)、墙壁及门窗等,实现了"光伏--建筑照明一体化(BIPV)"。1997年6月,美国宣布了以总统命名的"太阳能百万屋顶计划",在2010年以前为100万座住宅实施太阳能发电系统。日本"新阳光计划"已在2000年以前将光伏建筑组件装机成本降到170~210日元/W,太阳能电池年产量达10MW,电池成本降到25~30日元/W。1999年5月14日,德国仅用一年两个月建成了全球首座零排放太阳能电池组件厂,完全用可再生能源提供电力,生产中不排放CO2。工厂的南墙面为约10m高的PV阵列玻璃幕墙,包括屋顶PV组件,整个工厂建筑装有575m2的太阳能电池组件,仅此可为该建筑提供三分之一以上的电能,其墙面和屋顶PV组件造型、色彩、建筑风格与建筑物的结合,与周围的自然环境的整合达到了十分完美的协调。该建筑另有约45kW容量,由以自然状态的菜子油作燃料的热电厂提供,经设计燃烧菜子油时产生的CO2与油菜生长所需的CO2基本平衡,是一座真正意义上的零排放工厂。BIPV还注重建筑装饰艺术方面的研究,在捷克由德国WIP公司和捷克合作,建成了世界第一面彩色PV幕墙。印度西孟加拉邦为一无电岛117家村民安装了12.5kW的BIPV。国内常州天合铝板幕墙制造有限公司研制成功一种"太阳房",把发电、节能、环保、增值融于一房,成功地把光电技术与建筑技术结合起来,称为太阳能建筑系统(SPBS),SPBS已于2000年9月20日通过专家论证。近日在上海浦东建成了国内首座太阳能--照明一体化的公厕,所有用电由屋顶太阳能电池提供。这将有力地推动太阳能建筑节能产业化与市场化的进程。
3.2绿色照明光源研究
绿色照明系统优化设计,要求低能耗下获得高的光效输出,并延长灯的使用寿命。因此DC-AC逆变器设计,应获得合理的灯丝预热时间和激励灯管的电压和电流波形。目前处在研究开发中的太阳能照明光源激励方式有四种典型电路:①自激推挽振荡电路,通过灯丝串联启辉器预热启动。该光源系统的主要参数是:输入电压DC=12V,输出光效>495Lm/支,灯管额定效率9W,有效寿命3200h,连续开启次数>1000次。②自激推挽振荡(简单式)电路,该光源系统的主要参数是:输入电压DC=12V,灯管功率9W,输出光效315Lm/支,连续启动次数>1500次。③自激单管振荡电路,灯丝串联继电器预热启动方式。④自激单管振荡(简单式)电路等方式的高效节能绿色光源。
关键词:光伏发电技术;教学模式;课堂实验教学;校企合作教学
中图分类号:G646 文献标志码:A 文章编号:1674-9324(2015)03-0161-02
人类社会的可持续发展面临着环境恶化、资源短缺的严峻挑战,而取之不尽用之不竭的太阳能则成为新能源的首选之一。曾经在全球光伏产业的推动下,中国光伏产品已占据国际市场的大半壁江山,但却一直面临市场在外的困局。光伏产业经过数年爆发式增长,最终多个环节产能面临严重产能过剩。随着欧美对中国太阳能电池板的“双反”实施,近几年是中国光伏产业发展过程中的一个“寒冬”。光伏企业要应对“寒冬”,一是上游制造企业要提高自身的技术水平和产品质量;二是下游应用企业要抓住机遇,通过技术创新不断提高系统集成能力,致力于为客户提供优质可靠的系统设计方案。依据国家新能源政策的战略部署,结合上海电力学院的专业特色,我校相关太阳能光伏发电专业力图培养出合乎国家和社会需要的、满足光伏产业结构调整的市场需求的光伏材料及光伏系统设计专业方面的人才。有关专业以物理学为基础,系统学习基础物理学、固体物理、半导体物理等,使学生牢固掌握物理学基础理论。同时结合电力教学的优势,将太阳能电池技术、太阳能发电技术、电力分析基础、逆变器原理等作为专业必修课,培养太阳能发电技术行业的高层次专业人才。这样,学生在掌握光伏发电系统设计专门技能的同时具备更加扎实的理论知识基础和科技创新的潜力。其中《太阳能发电技术》包含了太阳辐射、光伏系统设计原理、部件选型、系统安装维护等内容,其教学目标是希望通过该课程的学习能使同学们能掌握太阳能发电系统的设计开发,为今后从事相关工作打下坚实的理论基础。作为最早开设《太阳能发电技术》课程的高等院校,由于该课程属于新课程教学,教学过程中受到教材、实验设备等各方面条件的限制,使用传统的教学方法效果不很理想。本文就近年教学过程中遇到的一些问题,针对目前的教学模式进行探讨。
一、加强课堂实验教学
《太阳能发电技术》作为光伏产业人才培养的基础性课程,主要讲述太阳辐射的相关知识、光伏发电系统的原理、系统设计、配件选型及系统安装维护等相关专业知识,这是一门实践性十分强的专业课程。在目前的教学过程中发现,单纯依靠理论知识讲解,学生很难对光伏系统有深入的理解。总结教学过程发现,在学习理论知识的同时如果能结合相关的实验、实践教学,则可大幅度提高教学质量与课堂教学效果,也能加深学生对知识点的理解与掌握,这就凸显了课程教学中实验环节的重要性。由于《太阳能发电技术》属于新课程,受到实验设备、实验条件和人员的限制,短时间内开展丰富实验教学有着一定的困难。但是,使用计算机软件仿真虚拟实验和设计就没有这方面的限制。因此,着手开发该课程的虚拟实验教学环境也是一种重要的方法。此外,在教学的过程中也可以根据教学的需要,动员学生与老师一起自行设计一些简单可行的实验设备,既可以加深学生对所学理论知识的理解,又能使学生能够得到全面的实际训练,还可以丰富该课程的教学资料。另外,在这个过程中,除了简单的验证性实验,还与控制类、综合设计类的实验相结合,提高了学生对已学知识的综合运用能力,加强了学生的动手能力和实践能力,使学生在走入社会后,能较快适应市场发展需要,提高就业竞争力。此前北京信息科技大学的白连平等[1]针对该课程就设计了一些可行性实验,如光伏阵列设计实验、太阳能路灯照明系统设计等。
二、开展校企合作教学
由于工科课程的实践特性,除了课堂的理论与实验之外,开展校企合作教学则是提高该课程教学效果的制胜法宝[2]。在前期的教学过程中作为实践教学曾经带学生到相关的光伏企业见习,在企业参观实习的结束之后,有些学生反映“公司实习4天比在学校2年学的东西都多”,这句话也让作为教育工作者的我们陷入沉思。现在学生学习知识的途径很多,他们更喜欢看到实际的操作而不是“纸上谈兵”。例如课堂上讲过单晶硅、多晶硅、薄膜太阳电池,而很多学生到了现场仍然分不清楚是什么类型的太阳电池组件;课堂上学习了晶体硅太阳电池的制备工艺,参观的时候学生还是提出为什么这些电池都是蓝色的,不能做成其他颜色呢?虽然这些基础的知识都已经在课堂上讲授过了,明显部分学生不知道或者不懂却从来没有人提出过,而在参观过程中他们都想到了这些问题,通过参观学习对这些知识有了更进一步的理解,充分说明了仅有课堂教学远远无法满足该课程的设置目标。因此,除了辅助的课堂实验教学或者视频演示之外,与相关企业开展校企合作教学也是提高学生认知能力的一项重要教学手段。这就要求在该课程的教学过程中,除了加强实验教学还必须加强学校和企业之间的合作,开展合作教育方可取得更好的教学成果。
三、将科研与新技术融入教学培养学生的科技创新能力
素质教育已经是高等院校的重中之重,学校有很多项目都涉及鼓励大学生科技创新,从近代科学技术的发展史我们也可以看出,年轻人在科技创新上有着巨大的潜力。而如何通过有效途径提高工科学生的科技创新能力也困扰着不少教师。同时作为高校教师大多也同时肩负着科研工作,怎么样将自己的科研工作融入日常教学并以此为基础培养学生的科技创新能力也是一个应该认真考虑的重要问题。大学生在科研领域的创新在国际上屡见不鲜,比如在超导领域,MgB2合金超导体以及NaCoO.H2O超导体都是由日本的本科生首先发现的。《太阳能电池技术》及《太阳能发电技术》课程的开设,为科研融入教学提供了良好的载体。太阳电池材料的研究是目前材料科学的一大热门研究领域,这样可以在教学过程中使学生了解到最新的材料研究,从而让学生了解到了什么是科研,科研对实际生活又有着怎样的影响,从而激发学生的学习兴趣。而《太阳能发电技术》主要包括太阳辐射、电池制造、组件制造、系统原理、系统设计、部件选型以及控制器逆变器原理等技术。它包含了多门理论性和实践性都很强的专业课程,涉及的知识面广、内容概念多,为大学生创新提供了一个良好的平台。学生在老师的指导下开展太阳能电池及发电技术的研究,查阅资料、进行光伏发电方案的设计,促使学生将所学的电学、材料学、物理学等学科联系起来。有利于调动学生的学习积极性,激发学生的科技创新兴趣,培养学生分析和解决问题的能力[3]。
四、课程考核形式多样化
基于该课程的实践性特点和教学目的,可以在传统卷面理论知识考核的基础上增加多样化的考核形式,比如系统设计作品展示、成果汇报等多种方式进行考核,综合考核专业知识、专业技能等方面。对采取不同方式、对各个不同方面进行考核的结果,通过一定的加权系数评定课程最终成绩。
五、小项目形式完成课程设计
在网络化的今天,课程设计面临的一大问题就是论文在网络上复制粘贴完成。而作为实践性较强的太阳能发电方向的毕业生,我们是否可以改变思路,课程设计不再局限于理论推导而转向实践性课程设计。指导老师可以根据地理情况和电网分布情况选择合适的条件用于学生自主设计光伏发电站,包括太阳能电站地点选择、可行性分析、电站规模及组成、蓄电池容量、光伏电站年发电量及经济效益、光伏电站整体布局(组件串并连设计、汇流箱排布、电缆连接、线管地槽整体排布、电缆规格及用量计算、线管规格及用量计算、配电房及看守房布置、支架定点图等)、系统防雷及监测、电网安全性等部分内容[4]。相信完成这样的课程设计,可以培养学生查阅文献和市场调研能力,对其今后独立从事光伏产业内业务是非常有帮助的。这样的课程设计比普通的论文撰写更能提高学生的专业水平,从而使学生的能力达到甚至超越该学科的培养目标。
本文根据《太阳能发电技术》的实际教学经验以及该课程的教学目标,探讨了在现有教学模式基础上需要进行的一些改进。作为工科应用型创新人才,最重要的是应该具有很强的独立获取和应用知识的能力,而传统的理论教学为主模式则很难让学生将书本知识与实际光伏工程结合起来,也就无法真正理解光伏发电系统。本文提出了加强实验教学、开展校企合作教学、将大学生创新融入教学以及改变传统的考核方式等,其实质都是为了改变目前理论教学为主体的教学模式,将实验、实践教学等过去不被重视的教学方式引入这些实践性较强的课程,探索新的教学模式,从而培养出更适合现代企业、社会所需的高层次人才,达到开设该专业的最终目标。
参考文献:
[1]白连平,张巧杰.光伏发电实验设计探讨[C].第五届全国高校电气工程及其自动化专业教学改革研讨会论文集(2):602-605,2008-04,中国陕西西安.
[2]赵涛,李国强.独立学院校企合作人才培养模式探索与实践[J].实验室科学,2012,(6):1.
关键词:新能源发电太阳能,风能,发展前景
0引言
自第三次工业革命以来,人类社会在经济和科技方面取得了空前的发展,伴随而来的是常规化石能源的大量消耗及其引起的环境污染和资源短缺等一系列问题,迫使人类不得不开始寻找清洁的可再生能源,也即新能源。相对于传统的煤、石油、天然气等化石能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界日益严重的环境污染和资源匮乏等问题具有十分重要的意义[1]。资源与环境的压力也给电力系统带来了新的挑战,利用新能源逐步取代传统能源进行发电将是今后电力工业发展的趋势,可见新能源发电具有良好的发展前景和实用价值。
1 新能源发电的类型及其原理特点
新能源发电主要包括太阳能发电、风力发电、生物质能发电、地热发电、潮汐发电等方面。
1.1太阳能发电
太阳能是指太阳内部连续不断的核聚变反应过程所产生的能量,它是一个巨大的能源,据估计,我国陆地面积每年接收到的太阳能辐射能相当于亿吨煤[2]。太阳能发电又叫光伏发电,它的基本原理是利用光伏效应,通过光照产生电动势,进而输出电能,实现光电转换。简单地说,太阳能发电就是通过太阳能电池直接将太阳光转换成电能,太阳能电池是由各种具有不同电子特性的半导体材料薄膜制成的平展晶体,可以产生强大的内部电场[2],主要包括单晶硅电池、多晶硅电池和非晶硅电池三种类型。免费论文参考网。
常见的太阳能发电系统由太阳能电池、控制器和逆变器三部分构成,按其运行方式可分为独立太阳能发电系统和并网太阳能发电系统,其中后者是目前的主流发展趋势,即太阳能电池发出的直流电,通过逆变装置转换成交流,进而并入电网使用。太阳能发电安全可靠,具有许多优点,如能源充足,太阳能无处不在,不受地域限制;建设周期短,运行成本低;不需要消耗燃料,无环境污染;结构简单,维护方便,适合无人值守。但是,太阳能发电受气候条件影响,具有间歇性,且价格昂贵。
1.2 风力发电
风力发电是将风能转换成机械能,再转换为电能,其基本原理是利用风吹动风轮,通过风轮的机械转动驱动发电机转子旋转,进而产生电能。风能是清洁的可再生能源,风力发电与常规发电相比,具有能源充足、不消耗燃料、无环境污染、占地面积小、工程建设周期短、发电技术成熟等优点。在当今世界的新能源开发技术中,风力发电是最成熟、最有商业利用价值的发电方式,其装机容量正在不断扩大,全球风电发电量占总发电量的比例也在逐步增加。
1.3生物质能发电
生物质能是绿色植物通过光合作用,将太阳能转化为化学能而储存在生物质内部的一种能量形式,是一种资源丰富、无污染的能源。生物质能发电包括农林废弃物燃烧发电、生物质燃气发电、城市垃圾焚烧发电、沼气发电等方面。生物质能发电具有电能质量好、可靠性高等优点,具有较高的经济价值。
1.4 地热发电
地球内部蕴藏着巨大的热能,地热能就是地球内部的热释放到地表的能量,地热发电就是将地热能转变为机械能,再将机械能转变为电能,它是利用地下热水和蒸汽为动力源的一种新型发电技术,其原理与火力发电基本一样,即将蒸汽的热能通过汽轮机转变为机械能,然后带动发电机发电[2]。
1.5潮汐发电
潮汐能,顾名思义,就是潮汐所蕴含的能量,同样是一种取之不尽、用之不竭的新能源。潮汐发电,就是利用海水涨落及其引起的水位差来推动水轮机,由水轮机带动发电机进行发电,其原理与一般的水力发电差别不大。即在海湾或有潮汐的河口修建大坝,构成水库,利用坝内外涨潮、落潮时的水位差进行发电。潮汐发电受潮汐周期变化的影响,具有间歇性。
2 中国新能源发电的前景展望
改革开放以来,我国经济高速发展,经济规模跃居世界前列,与此同时,能源消费结构的不合理引起的资源环境问题日益突出,大力发展新能源发电技术,是调整能源结构、促进节能减排、实现可持续发展的要求。我国可再生能源资源丰富,通过近年来的发展,新能源发电已经取得了一定进展,已经形成了一定规模、体系相对完善的新能源产业。中国新能源发电虽然刚刚起步,但是却有着广阔的发展前景。免费论文参考网。
(1)风力发电和太阳能发电发展迅速。中国风能资源丰富且风力发电技术较为成熟,目前正在以“建设大基地,融入大电网”的方式进行规划和布局。太阳能发电同样也具有较好的发展前景,我国的太阳能电池制造水平较高,应该大规模推广太阳能发电。免费论文参考网。根据国家能源局制定的《新能源产业振兴发展规划》,到2011年,新能源在能源结构中的比重达到2%(含水电为10%),新能源发电占电力总装机容量的比重达到5%(含水电为25%)。而风电装机容量将达到3500万千瓦(陆地风电3000万千瓦,海上风电500万千瓦),太阳能发电装机容量将达到200万千瓦[1]。除此之外,《2008年中国风电发展报告》预言,到2020年末,全国风电开发建设规模有望达到1亿kW。
(2)生物质能发电优势明显,前景较好。相对于风力发电和太阳能发电的间歇性特点,生物质能发电具有突出的优点,经济价值较高。2002年,我国可再生能源发电装机容量3234.6万kW,其中生物质能发电装机容量80万kW,在众多新能源和可再生能源发电中仅次于小水电。预计到2020年,可再生能源发电将达0.9~1亿kW,其中生物质能发电为1000万kW;另一种估计结果是2020年可再生能源发电装机容量将达到1.21亿kW,其中生物质能为2000万kW。
(3)在有条件的区域发展地热发电和潮汐发电。受地理条件的限制,地热发电和潮汐发电均具有地域性。目前,中国高温地热电站主要集中在西藏地区,总装机容量为27.18MW,其中羊八井地热电站装机容量25.18MW,其发电量已经占到拉萨电网的40%以上,对缓和拉萨地区电力紧缺的情况起到了重要的作用。今后,可继续在西藏地区大力发展地热发电。我国潮汐能蕴藏量中可开发利用部分的92%集中在经济发达、能源需求迫切的华东沿海地区[3],发展潮汐发电可缓解这些地区的电力不足。但是,潮汐发电由于开发成本较高和技术上的原因,目前发展并不是很快,我国江厦潮汐电站装机容量为3200kW,年发电量1070万kWh[4],今后可视情况适当发展潮汐发电。
3 结语
能源短缺和环境恶化已经成为威胁人类生存的全球化问题,发展新能源是实现人类可持续发展的必经之路,中国应该加快开发利用新能源的步伐,大力发展新能源发电,逐步实现从常规能源向清洁能源转变。目前,我国的新能源发电已经取得了一定的进展,但同时还存在着一些亟待解决的问题,主要表现在技术基础薄弱、相关体制尚不规范等方面。为此,提出一些建议:(1)制定发展目标,科学规划布局。新能源发电必须进行合理规划和布局,有必要将其纳入国家经济社会发展总体规划。(2)加快体系建设,规范行业发展。对于新能源发电的设备要求和并网技术标准,应该尽快制定相关准则。(3)加大投资力度,鼓励自主创新。目前,我国新能源研究力量分散,缺乏跨学科的交流,有必要对各类科研机构进行整合。除此之外,新能源发电是智能电网的一个重要组成部分,必须构建全国统一的新能源电网,以促进我国智能电网的建设。
参考文献
[1] 赵新一. 新能源发展展望[J]. 电力技术,2009,10(10):7-14.
[2] 孙元章,李裕能. 走进电世界——电气工程与自动化(专业)概论[M]. 北京:中国电力出版社.2009.
[3] 刑运民,张文娟. 新能源与可再生能源发电技术的发展[J]. 西华大学学报,2007,1(26):50-52.
[4] 叶峰. 新能源发电——实现人类的可持续发展[J].能源与环境,2008,3:55-57,62.
论文摘要:从技术创新生态系统的定义出发,阐述其特征与功能结构,并由此发展出全球化自然生态系统的概念,阐述其特征结构与实施必要性。并在当前提倡低碳社会的背景下,以太阳能产业为例,对GIES环境下的我国太阳能产业发展进行分析,并提出建议。
1、创新生态系统
创新是指以科学技术为基础创造出新型的经济价值和社会价值。为了强化国际竞争力,解决地球规模的问题,就必须将科学知识、技术、手段转化为经济和社会层面的价值,其原动力即为创新。在创新的过程中,构思设想于各阶段间循环反馈发展进化,将牵涉到大量的经济要素与社会要素,具有复杂性和不确定性。这种综合性的复杂系统表现为创新生态系统。
创新生态系统是"面向客户需求、协作R&D、知识产权许可、技术标准合作、战略联盟"为核心的基于构件模块的知识异化、共存共生、协同进化的创新体系,具有类似自然生态系统的基本特征。
创新生态系统的结构,由起点的研发理论,战略构想为基础,通过大学,企业,学术机构等各领域的研究开发,确立创新思维体系的核心部分。而创新思维的实证,则在各式各样的创新型网络相互作用的"场"内进行。创新型网络是围绕创新思维形成的各种正式与非正式协作关系的总结构,连同各种各样的经济要素和社会要素形成了"场"。在网络化的"场"中,人才,资金,情报等创新要素相互作用,促进创新的进程,同时相应的"场"也随之变化。即在动态变化的"场"中进行创新过程。
2、全球化创新生态系统的结构
2.1通过创新生态系统解决全球化问题
在全球化进程加速和愈演愈烈的国际竞争背景下,各个国家为了维持自身发展,争相推进国家创新生态系统(National Innovation Ecosystem,NIES)的结构扩展。为了解决全球性问题,实现可持续发展的目标,各国的创新生态系统推广到国家所在地域范围,进一步推广到全球层面,构筑全球化创新生态系统,成了当务之急。
2.2全球化创新生态系统的框架结构
全球化创新生态系统(Global Innovation EcoSystem,GIES)不局限于各国国内,在世界规模的系统环境下,科学技术、市场、社会、人才、制度、资金等积极地相互作用,积极推进国际性的生态系统结构的形成,实现社会和地球的可持续发展。
GIES主要由三方面的要素构成。
(1)"场"的推动要素,即科学技术、市场和社会。
(2)"场"的构成要素,即人才、制度、资金。
(3)"场"的构成要素的调整,国际协作框架下的公共部门以及企业部门。
三方面的要素相互作用,促成创新过程,通过对已有实例的分析,把握动态要素的活动方向,可以对GIES下的新型创新项目提供支持。
3、全球化创新生态系统环境下中国太阳能产业的发展动向
3.1 GIES环境下中国太阳能产业的不均衡问题
中国太阳能产业近几年来虽呈现出较快的发展势头,但发展速度依然缓慢,太阳能产业与市场间存在着巨大的不均衡,不符合可持续发展前提下的能源计划与环境产业的步调。总结起来,主要有以下两个方面:
国内太阳能市场的发展程度远低于产业自身发展,对中国能源产业产生不利因素的同时,也不利于维持太阳能产业的健康发展。太阳能产业的成长不仅需要一个良好的国际市场环境,更重要的是拥有一个良好的国内市场。国内市场的成长不仅为国内产业提供新的成长空间,还将解决非太阳能用电区域内的电力问题,对改善中国能源结构有着重要的意义。
研究开发能力和自主创新能力的脆弱。近年来,多数企业设置自身的研发中心,并与国内外的大学和科研机关进行紧密的合作,各级政府在太阳能的研究领域投入也明显加大。中国太阳能领域的科研能力不足,产学研交流不足的情况得到了一定的缓解。但是技术水平和人才培养结构的落后,中国太阳能产业的研发能力依然很薄弱,同时存在自主创新不足的问题。企业技术人才的明显不足,导致了对国际先进技术的消化,吸收和更新更加困难。在激烈的国际竞争氛围下,加速人才培养,提高中国自主创新能力是当务之急,也是重要的战略性任务。
3.2 GIES环境下对中国太阳能产业发展的建议
GIES是NIES基础上的逐步扩展,当前国际太阳能产业的高速发展带动了中国太阳能产业,给中国太阳能产业提供了一个良好的国际氛围。这也要求中国太阳能产业在拓展海外市场的同时,应该优先健全国内市场,积极调整国内市场结构,加强投入力度,加大政策扶持,以内在市场推动海外市场发展,真正成为太阳能产业的大国强国。所以,针对GIES环境下,中国太阳能产业提出以下建议:
强化太阳能发电的战略研究。集合专家学者对世界与中国的能源形势进行深入研究,准确捕捉世界太阳能发电的发展趋势和行进路线。据此规划中国太阳能发电产业的中长期科学发展计划,并且该计划与低碳社会和可持续发展的要求相一致。
强化支援太阳能发电技术,科学技术的进步是太阳能发电成本削减的重要因素之一,加大科技投入,加强中国太阳能技术力,加速太阳能成本的削减。重点支援多晶硅制造的核心技术开发,提高中国太阳能电池多晶硅制造技术水准。
建设国家级的太阳能技术研究机构,提高中国太阳能自主研发能力。设立国家级的太阳能技术研发机关,是提高中国自主研发能力的重要途径,从技术面和政策面上对太阳能发电技术和产业提供最直接的科学指导。
强化太阳能发电的宣传普及和教育,提高全民对太阳能发电的认识,同时应在大学等教育机构设立与太阳能相关联的专门学科,培养优秀人才。
强化太阳能技术的国际交流合作,尤其是在法制层面上,使中国太阳能发电的法律构造和体系健全化,强化中国太阳能发电相关法规以及实施细则的科学性和实用性。在科技,人才,资源和协议加强国际交流合作,不仅可以促进中国太阳能发电技术水平和产业水准的提高,同时也将对中国和世界的能源可持续发展和低碳社会建设做出积极的贡献。
4、结论
在全球性问题日益突出的今天,全球化创新生态系统寻求联合性的技术创新,产品交流,政策上的,推动世界市场的发展,解决社会问题。通过对太阳能产业发展动向的分析,根据先进国的动向发现中国太阳能产业尚存在的问题,结合GIES的诸要素基准,不断完善发展国内市场环境,使中国太阳能产业发展更加均衡,更加切合低碳社会和可持续发展的准则。
参考文献
【1】竹下寿英:「エネルギー技術開発政策の評価,エネルギー??資源,Vol.20, No.2 131-138 (平11-3)
【2】生駒俊明, イノベーションと国際競争力, 学術の動向, 2006 年12 月号 (2006).
【3】 David PA, Hall BH, Toole AA. Is public R&D a complement or substitute for private R&D? A review of the econometric evidence (2000).
【4】中国新能源网newenergy.org.cn/2009-2-19.
【5】李建海.太阳能的开发与我国的可持续发展(J).兰州教育学院学报2003.3:45-48.
关键词:风力发电;光伏发电系统;小干扰稳定
Abstract: the small signal stability analysis for wind power and photovoltaic power generation, have very important significance, because of wind and solar are characterized, instability, therefore, wind turbine in a photovoltaic battery will generally by means of power electronic converter and grid connected to the load, therefore, small disturbance stability presents the new features, this paper mainly research on small disturbance wind power and photovoltaic power system stability.
Keywords: wind power generation; photovoltaic power system small signal stability
[中图分类号] TM614 [文献标识码]A[文章编号]
一、引言
近些年来,对着自然环境的恶化和能源的枯竭,可再生能源日益受到了社会各界的重视,作为可再生能源的重要组成部分,风力和太阳能发电也得到了一定程度的发展,在风力和太阳能发电发展过程中,较为成熟的技术当属风力发电技术以及太阳能光伏发电技术,但是,随着近些年来风力发电以及光伏发电容量的增加,这两种技术带来的小干扰稳定问题也受到了专家学者的关注,对于风力发电与光伏发电系统小干扰稳定的问题,国外的专家学者已经进行了深入的研究,取得了良好的研究成效,下面就对风力发电系统小干扰稳定及光伏发电系统小干扰稳定分别进行阐述。
二、风力发电与光伏发电简介
就目前来看,风力发电技术是现阶段对于可再生能源发电技术中发展形势最好的技术之一,风力发电最早发源于丹麦,近些年来,由于环境资源的枯竭问题,风力发电这项新技术渐渐受到了各国的关注,在1995年之后,风力发电在世界范围内得到了迅速的发展,目前,兆瓦级的风机成为发展的主流,海上风机也得到了一定程度的发展,我国的风力发电最为起源于上世纪50年代,在1995年以后,风力发电也逐渐呈现出了产业化的发展趋势,但是就现阶段来看,我国的风力发电技术还不够完善,核心的元器件都需要依赖进口,电能的造价也较高,主要依靠国家的补助来维持,因此,在下一阶段,必须要发展风力发电的核心技术。
光伏发电是太阳能发电的一种,最早起源于上世纪50年代中期,我国的光伏发电于上世纪80年代以后得到了迅速的发展,近些年来也取得了一定的发展成效,作为光伏电池的生产大国,我国在其运用方面还有一些不足之处,也有着巨大的市场潜力。
三、风力发电小干扰稳定
对于风力发电的小干扰稳定需要从单机系统入手研究,为了研究风力发电的小干扰稳定,需要建立小信号模型,并在模型的基础上探讨风力发电系统的小干扰稳定性,并通过各种参与因子分析控制器参数与状态变量以及震荡模型之间的关系,从而揭示出小干扰稳定的原理。目前,在我国研究较多的是异步风力发电系统、直驱式永磁同步风力发电系统以及双馈风力发电系统,相关的研究数据表明,当风力发电系统的风电机处在额定转速十,其桨距角可以使风机获得最大的转距,在风速超过额定速度时,可以控制其桨距角使风机可以获得恒定的输出功率,但是,在实际的工作过程中,风机存在着延时的情况,因此,在控制中除了使用桨距角,还要利用其他的因素,通过建立单机模型对其进行分析,并根据不同参与因子的计算,利用状态矩阵元素对风力发电小干扰稳定进行研究,可以获知,同永磁同步发电机转速相关的模态都属于衰减状态,通过对起衰减状态的研究证实,整个风力发电系统在运行的过程中,遭受干扰后表现的也较为稳定,也有良好的动态性能。
四、光伏发电系统小干扰稳定
一般情况下,光伏发电系统主要由光伏电池,滤波电容,逆变器,线路,变压器,电网等部分组成,在研究光伏发电系统小干扰稳定的过程中,选择风速的阶跃上升以及风速的阶跃下降作为干扰,并建立仿真波形图以及小信号模型,小信号模型包括电力电子变换器模型,光伏电池模型,控制器模型,电网接口部分模型以及直流部分模型,经过仿真波形图的计算,并将这些模型进行联立,可以得出,当风速发生阶跃的情况下,整个光伏发电系统的动态稳定性能较好,系统运行也较为稳定。在计算的过程中,对起运行过程中的参与因子进行分析可计算,可以得出当控制器的参数发生变化时,会对状态产生不同的影响,在这其中,主导特征值对整个系统运行的动态性能有着极为重要的影响,当主导特征值为15.4时,整个系统呈现出衰减的状态,当主导特征值为14.7时,整个系统呈现出震荡的状态,
五、结语
随着近些年来风力发电以及光伏发电的发展,其小干扰稳定问题也逐渐引起了相关专家学者的关注,小干扰稳定的分析对于风力发电与光伏发电而言,都有着十分重要的意义,由于风能及太阳能都具有不稳定性的特征,因此,风力发电机组于光伏电池组一般会通过电力电子变换的装置于负荷以及电网相连,因此,小干扰稳定也呈现出了新的特点,对于风力发电机组而言,整个风力发电系统在运行的过程中,遭受干扰后表现的也较为稳定,也有良好的动态性能,对于光伏电池组而言,当风速发生阶跃的情况下,整个光伏发电系统的动态稳定性能较好,系统运行也较为稳定,同时,主导特征值对整个系统运行的动态性能有着极为重要的影响。
参考文献:
[1] 黄汉奇:风力发电与光伏发电系统小干扰稳定研究[博士论文],华中科技大学 ,2012,05(01)
[2] 范伟,赵书强:考虑风力发电的电力系统小干扰稳定性分析[博士论文],华北电力大学学报(自然科学版),2009,03(30)
【关键词】温室大棚;太阳能光伏技术;节能环保
0.引言
我国的光伏产业目前仍处在初级阶段,但近年来太阳能产业发展非常迅猛,特别是太阳能电池产品已成功进入欧洲市场。太阳能光伏技术也越来越多的应用于各个行业,大到工业,农业,国防,通信等领域,小至家居生活,光伏技术无处不在。而农业生产中光伏技术的应用还相对较少,传统农业温室大棚的能源方式:一是供暖炉,二是电网电能。这已远远不能满足现代农业生产高效,环保节能的理念,因此将太阳能光伏技术引入温室大棚控制系统是发展现代农业推动农业科技创新的必由之路。
1.太阳能光伏技术
目前太阳能发电主要有两种形式:一种是光热转换发电,二是光伏发电(Photovoltaic Generation,PV)。太阳能光伏发电是通过太阳能电池的福特效应直接将光能转化为电能过程。优点是不需燃料,无污染,节能、安全、无噪音、容易获取。近年来,在太阳能有效利用中太阳能光伏发电式发展最快最具活力的一种。
1.1太阳能光伏系统的应用领域及特点
太阳能是一种环保清洁的能源,我国的太阳能资源非常丰富,多数地区平均日照射量在4kwh/m2以上,地区可达7kwh/m2。我国的光伏技术应用还处于初级阶段,太阳能主要应用于太阳能热水系统、太阳能暖房、太阳能发电,太阳能卫星电池,太阳能路灯等。
太阳能光伏系统的特点:
优点:
(1)普遍性:是指太阳能在地球上随处都有,没有地域限制且不用开采运输。
(2)环保性:是指太阳能无毒,无害,清洁、绿色、环保,对于环境污染日趋严重的中国,是一种宝贵的资源。
(3)充裕性:太阳能每年到达地球的辐射量非常的充裕,相当于130亿万吨煤所产生的能量。
(4)长久性:科学家根据目前太阳产生的核能速率估算,太阳能的储量足够维持上百十亿年,地球的寿命也达几十亿年,对于地球人来讲太阳能的时间是长久的,无限期的。
(5)前瞻性:对于愈来愈枯竭的地球能源,太阳能无疑是最具开发潜力的绿色环保能源之一,从能源开发的意义上来讲太阳能的开发更具有可持续性和前瞻性。
缺点:
(1)分布零散:太阳能在地球表面每年的辐射量很大,但分布广,密度小,所以利用率低。
(2)稳定性差:太阳能的强弱容易受天气因素及昼夜交替的影响,所以稳定性较差。
(3)转换效率低,应用成本高:受材料和技术水平限制,多数太阳能产品转换率低,从而增加了其应用的成本,经济性一直是困扰太阳能普及的重要因素。
1.2太阳能光伏系统性能与组成
每个太阳能基片都是一个光电二极管,光伏发电是利用半导体材料的光伏效应,将太阳能转化为电能的一种形式。而第一个使用的单晶硅光伏电池(Solar Cell),是美国人在1956年研制成功的,从此就有了光伏发电技术。
太阳能光伏发电系统分为独立(离网)太阳能光伏发电系统和并网太阳能发电系统。独立太阳能发电系统是由光伏电池板,控制器和电能存储部件及逆变器组成的发电与电能变换系统。而并网太阳能发电系统,除了上述组件外还必须有并网逆变器与国家电网并网。
(1)独立太阳能发电系统的系统如下图1示:
(2)太阳能并网发电系统如图2所示:
图2 并网太阳能发电系统结构框图
其中光伏电池板第一代产品是由硅片为基础的光电转换系统,为了提高太阳能电池光转换效率,降低光伏电池生产成本,相继出现了基于薄膜技术的第二代光伏电池产品,这种产品使用很薄的光电材料附着在非硅材料的衬底上,降低了生产成本,适合于批量生产;进而第三代太阳能电池产品也将问世,它是以先进薄膜制造技术为基础的理论极限光电转化效率可达93%。主要有量子点、多层多结、染料敏化的太阳能电池、有机聚合物电池、纳米电池等。
电能储存部件主要是指太阳能蓄电池,太阳能蓄电池一般采用铅酸电池,常用的有DC12V,DC24V,DC48V三种,在微型系统中也可用镍氢电池、镍镉电池或锂电池。蓄电池的主要作用是在有光照时将光能由太阳能电池板转换成电能储存起来,以备使用。
太阳能控制器主要对太阳能基板输出的电能进行调节和控制,把调整后电能分为两个途径输送,一方面直接送往直流负载或交流负载,另一方面将剩余能量送往蓄电池组储存,当太阳能基板发出的电能不能满足负载需要时,太阳能控制器便将蓄电池中储存的电能量送往负载。
太阳能光伏逆变器是光伏发电系统的核心设备之一,也称为DC-AC逆变器。在太阳能光伏发电系统中,可将太阳能通过太阳电池转化为DC12V、DC24V、DC48V的直流电能,通过光伏逆变器中的功率变换及控制系统转化为符合电网电能质量要求的110V或220V交流电。太阳能逆变器可分为DC-AC和DC-DC两种,可将太阳电池性能最大限度地发挥,并为系统提供强有力的保护功能。太阳能并网逆变器是光伏发电系统与国家电网并网的核心部件。
2.太阳能光伏系统在温室大棚控制系统的设计方案
2.1太阳能光伏技术在温室大棚控制系统中应用设计的背景和可行性
日本、美国、荷兰、以色列等国外农业设施栽培综合环境控制技术较先进的几个国家, 由于其地理位置、自然环境和经济基础不同, 其发展的侧重点也不同。
目前我国农业正处于从传统型农业向优质、高效、高产为目的的现代化农业转化的新阶段。要发展具有我国特色的温室自动控制系统,充分发挥温室农业的高效性,必须综合应用各种现代化控制和管理技术,通过各项设施的有效运作给温室栽培物创造最适宜的环境条件,最大限度的减少外界不利环境和气候条件对农业生产的影响, 获得作物最佳生长条件, 从而达到增加作物产量、改善品质、延长生长季节的目的。而面对现代社会能源日益枯竭的现实状况,开发利用新型能源已成为农业生产可持续发展的基本保障方式之一。
本设计针对中国北方天气干旱、日照时间充足的特点,将太阳能光伏技术引入农业温室大棚系统设计中,不仅可以解决系统的部分能源问题,而且可以提高现代农业生产的绿色、高效、节能环保进程。目前我国有些省份已经在一些地方率先使用太阳能并网发电系统,如无锡机场800kW屋顶光伏并网系统工程,镇江、丹江两个城市的2个4KW光伏并网系统等。从系统的可行性方面来讲,首先,中国是个农业大国,这种新型能源的在现代农业生产中的推广使用,将会为国家节省大量的资源;其次,中国的光伏技术近年来发展迅猛,光伏技术日趋成熟;第三,光伏技术在农业温室控制系统的应用,将能有效推动高效环保现代农业生产。第四,温室大棚多建在光照充足的区域,屋顶平坦,便于安装且空间充裕。
2.2光伏技术在温室大棚控制系统中的设计方案
2.2.1系统总体设计思路
本系统设计是基于PLC控制的农业温室大棚控制系统,通过PLC对温室中作物生长的环境因子光照、湿度、温度、CO2浓度等进行调节和影响,从而达到不同农作物生长所要求的环境条件。系统的输入控制因素主要是传感器所测试的光照、湿度、温度及CO2浓度,通过系统运算驱动执行机构动作(喷淋系统、遮阳网、补温系统控制、CO2补气控制、补光灯控制及通风系统控制等)来达到控制的目的。温室系统控制结构如图3所示:
2.2.2 温室能源系统创新设计
传统的温室设计系统,所有的电能均由系统电网供给。本设计将传统单一的电网能源供给,变为太能阳能光伏并网发电的形式,当阳光充足时,系统的电能有光伏发电系统供给,当夜晚、阴天光照不充足时,电网中的电能通过并网逆变器和控制器自动补给系统。系统设计拟用太阳能电池板、太阳能控制器和并网逆变器组成并网太阳能发电系统。并网逆变器同时兼有控制器和系统保护的功能。因为并网太阳能发电系统中蓄电池几乎不用,所以系统没有选用蓄电池。设计思路结构图如图4所示:
图4 温室光伏发电系统与控制系统结构图
光照充足时光伏发电系统产生的电能充足,逆变器自动给温室控制系统PLC及上位机、温室系统的传感系统(温度传感器、湿度传感器、CO2浓度传感器、光照度传感器等)、温室系统执行机构(遮阳帘、天窗、风扇、补光系统等)提供电能,因为系统是按照所有执行机构同时工作时的最大功率设计的,在同一时刻不是所有机构都同时工作,此时多余的电能由并网逆变器送给输电网;当光照不充足时,并网逆变器自动转换,系统将从电网中使用电能,此时转为电网供电状态。
3.结论
经过对北京农业科技学院的农业科技园和西北农林科技大学新天地设施农业开发有新公司的农业科技园的参观考察,获悉这些大棚系统设计均采用现代化先进的控制技术,设计理念新,工艺成熟,能源多采用输电网供给模式,设计中均未将光伏技术引入农业大棚生产中,其中最大的原因是成本太高。近年来,我国太阳能电池生产日趋成熟,二代、三代产品的相继问世,是太阳能电池的生产成本大大降低,但控制器和逆变器的生产技术尚不成熟,要实现高效的转换率,控制器和逆变器仍主要依靠进口。经过对国内外温室控制系统研究分析,结合现代农业高效清洁的理念,本设计有利于推动我国农业生产对清洁、环保能源的开发和利用,符合绿色、高效农业的先进生产理念。光伏太阳能技术以其永久性、清洁性和普遍性,必将成为我国现代农业生产的必由之路。
【参考文献】
[1]张立文,张聚伟.太阳能发电技术及其应用[J].应用能源技术,2010.3.
[2]李蔚.太阳能发电技术,太阳能发电技术的应用及发展前景[J].论文荟萃,2011.4.
摘要:本文概述了目前全球能源现状,表明了太阳能发电的重要性和前景,详细介绍了各种太阳能发电方式和它们的优点,并对这几种发电方式作了参数对比。同时指出太阳能发电面临的困难和解决措施,以及我国太阳能发电的有利条件和难点,对未来我国太阳能发电进行了展望。
关键词:太阳能发电方式规模化
人类社会已进入21世纪,在新千年开始之际,热门正面临着一系列重大的挑战,全球经济发展,人口迅速增加,需要提供更多的食物、住房和原料,因而对能源的需求量也不断增加。在过去20年中,全世界能源消耗量增加了40%,其中85%以上使用的是矿物燃料。这些矿物燃料燃烧时要产生大量温室气体,全球单是CO2排放量每年就超过500亿吨,而且还在不断扩大。形成的酸雨造成土壤退化,危害动植物。全球气候变暖可能会产生灾难性后果,必须采取坚决措施,减少温室气体的排放。因此,治理环境污染,已成为当务之急。同时,矿物燃料的储藏量是有限的,按目前探明的储藏与开发速度的比例计算,地球上可再开采的能源,石油为40年,天然气约为60年,煤炭为200年。如不采取有效措施,到本世纪中叶,人类必将面临矿物燃料枯竭的严重局面。
为了减少大气污染、保护人类生态环境、保证能源的长期稳定供应,必须实施可持续发展战略,逐步改变现有的能源结构,大力开发利用新能源。这已成为各国的共识。
在新能源中,公认技术含量最高、最有发展前途的是太阳能发电。下面就这两大类太阳能发电方式逐一介绍。
1.太阳能发电的类型及其优点
太阳能发电可分为太阳能热发电和太阳能光发电两大类。
1.1太阳能热发电
聚光式系统的集热部分由聚光器、跟踪定位器、吸收器构成,不同的技术常在此部分有所区别;传输部分由管道和介质构成,介质常是空气或水;储热部分用来保证发电的连续性,介质多为熔盐。聚光式系统可分为塔式太阳能热发电系统、槽式太阳能热发电系统以及碟式太阳能热发电系统。
1.1.1塔式太阳能热发电系统
塔式太阳能热发电系统也称为集中式太阳能热发电系统。它利用定日镜将太阳光聚焦在中心吸热塔的吸热器上,在那里将聚焦的辐射能转变成热能,然后将热能传递给热力循环的工质,再驱动热机做功发电。
1.1.2槽式太阳能热发电系统
槽式太阳能热发电系统是利用槽式抛物面反射镜聚光的太阳能热发电系统的简称。该聚光镜面从几何上看是将抛物线平移而形成的槽式抛物面,它将太阳光聚在一条线上,在这条焦线上安装有管状集热器,以吸收聚焦后的太阳辐射能,并常常将众多的槽式抛物面串并联成聚光集热器阵列。该系统中机热油回路和动力蒸汽回路分离开来,经过一系列换热器来交换热量。当太阳能供应不足时,利用一个辅助加热器将油回路中的导热油加热,从而实现系统的稳定连续运行。
1.1.3碟式太阳能热发电系统
碟式太阳能热发电系统借助双轴跟踪,利用旋转抛物面反射镜,将入射的太阳辐射进行点聚集,聚光点的温度一般为500—1000℃,吸热器洗手这部分辐射能并将其转换成热能,加热工质以驱动热机(如燃气轮机、斯特林发动机或其他类型透平等),从而将热能转换成电能。该方式的优点是:转化效率最高;可模块化;可以混合发电。
除了上述几种聚光式太阳能热发电方式以外,太阳池发电、太阳能塔热气流发电等新领域的研究也有进展。
1.2太阳能光发电
太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电。光伏发电是利用太阳能级半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是的那股劲太阳光发电的主流。目前世界上应用最广泛的太阳电池是单晶体硅太阳电池、多晶硅太阳能电池、薄膜太阳能电池等。
1.2.1单晶硅电池
单晶硅电池是建立在高质量单晶硅材料和相关的加工处理工艺基础上的。它的转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%。硅电池进展的重要原因之一是表面钝化技术的提高。此外,倒金字塔技术、双层减反射膜技术以及陷光理论的完善也是高晶硅电池发展的主要原因。
1.2.2多晶硅电池
多晶硅电池与单晶硅比较,由于所使用的硅远比单晶硅少,其成本远低于单晶硅电池,具有独特的优势。但是由于它存在着晶粒界面和晶格错位的明显缺陷,造成多晶硅电池光电转换率一直无法突破20%的关口,低于单晶硅电池。薄膜太阳能电池
薄膜太阳能电池发电是另一种光伏发电方式。由于受到原材料、加工工艺和制造过程的制约,若要再大幅度地降低单晶硅太阳电池成本是非常困难的。作为单晶硅电池的替代产品,现在发展了薄膜太阳电池。目前薄膜电池主要有硅基薄膜太阳电池、化合物半导体薄膜电池、燃料敏化TiO2太阳电池等。
太阳能光伏发电系统的主要优点是:可以有效利用建筑物屋顶和幕墙,无需占用土地资源;可原地发电,原地使用,减少电力输送的线路损耗;各种彩色光伏组件可取代和节约外饰材料(如玻璃幕墙等)在白天用电高峰期供电,从而舒缓高峰电力需求;配备蓄电池后,还能满足安全用电设施的不断电要求;太阳能发电板阵列直接吸收太阳能,降低墙面及屋顶的温升,减轻建筑空调负荷。
2.太阳能发电面临的困难和解决措施
前面介绍了几种太阳能热发电技术,除碟式发电系统外,都属于大规模发电系统,只有做成几十到几百兆瓦级的发电站,成本才可能降下来。太阳能塔热气流发电和太阳池发电占地面积大,利用效率不高,仅仅在1%左右。因此太阳能塔热气流发电应放在土地广阔、人口稀少的沙漠地区使用;而太阳池发电应适合放在日照条件好、盐资源比较丰富的地区使用。总体来看,槽式发电系统技术上最为成熟,且其跟踪机构比较简单易于实现,总体成本最低。太阳能热发电系统要实现的是低成本的投资和技术上的高可靠性运行。这要求未来在技术上要进行新型集热材料的研究和开发,快速提高跟踪机构的技术并降低其实现成本。同时发电产业要努力实现规模化,建立大规模的并网系统,既节约成本,又保证系统平稳安全运行。
对于光伏发电来说,总体来看,该产业尚处于起步阶段,主要是由于太阳能发电初期投资大,控制成本高,而太阳能转化效率比较低,且容易受天气等多种因素影响。根据目前光伏发电发展状况和其技术难点,未来的光伏发电研究需要重视以下几个方面:一是加快太阳能原材料晶体硅生产技术的研究和新型替代材料的开发,降低材料成本并提高其转化效率;二是提高系统控制技术,如达到光伏电池阵列的最优化排列组合、实现太阳光最大功率跟踪等;三是研究光伏发电的并网技术,减少光伏电能对电网的冲击;四是研究光伏发电与其他可再生能源发电技术的结合应用,保证供电持续性。
3.我国太阳能发电的优势和难点
发展太阳能发电的需求主要来自满足农村和边远地区的生产与生活用电和21世纪中持续发展我国电力事业两个方面。在太阳能发电上我国具有得天独厚的有利条件:
(1)丰富的太阳能资源。我国总面积2/3以上的地区年平均日照时数在2000h以上,年平均日辐射量在4000MJ/m2以上,要优于欧洲和日本,与美国相近。如此丰富的太阳能资源可以节省太阳能电池的用量,有利于太阳能发电在较低成本下加以推广。
(2)我国太阳能电池的生产能力超过日本、美国和欧洲,居世界第一位,2007年我国太阳能电池的产量约为1180兆瓦。2007年在全球太阳能生产企业16强中,我国占据了6席。(3)逆变技术是太阳能发电的关键技术之一,由于在大功率开关器件开发和逆变技术的应用等方面,我国已取得长足进步,生产出适用于光伏并网、高效率、高可靠性、低污染、低成本的逆变器成为可能。
但为了太阳能发电产业的快速发展,必须解决以下几个问题:
(1)我国生产太阳能电池的原材料主要依靠进口,而绝大多数太阳能电池和切片用于出口,这种不利于产业发展的加工业局面必须尽快扭转。
(2)太阳能发电的成本在每千瓦小时3元以上,远远高于目前居民电网用店家的每千瓦小时0.5元。这也是发展太阳能发电的不利一面。
(3)目前,太阳能电池的光电转换效率比较低,比如小尺寸(1cm2)多晶硅太阳能电池的光电转换效率为19.8%,而大尺寸(1000cm2)多晶硅太阳能电池的光电转换效率为12%,为了降低太阳能发电的成本必须提高太阳能电池的光电转换效率。
(4)我国的太阳能发电产业起步于独立型太阳能发电设备(10kW以下),主要用于解决太阳能资源丰富而又无电的边远地区的居民用电。而更大容量(MW级)的并网型太阳能发电设备的投产是降低成本的途径之一。
(5)截止到2005年,我国的风力发电总装机容量为1500MW左右,是太阳能发电总装机容量的20倍,到2020年规划总装机容量为30000MW,也是规划太阳能发电总装机容量的15倍。但两者特点各异。夏季日照足风速低,冬季日照弱风速强;同样白天日照强时风小,夜晚无光照时风大。太阳能发电与风力发电并网是提高电能质量和降低成本的另一途径。