时间:2023-07-19 16:57:33
序论:在您撰写云计算节能技术时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
关键词:能源短缺;空调节能技术;云计算与智能化
中图分类号:TU831.7
文献标识码:B文章编号:1674-9944(2016)22-0081-05
1引言
自工业革命以来,随着人类科技水平的不断发展进步,世界对能源的需求与日俱增。根据国际能源署数据:1990~2008年,人均能源消耗增加10%,世界人口增长了27%,这意味着世界能源消费总量增长了39%[1]。中国自改革开放以来,对能源的需求不断增加,据国际能源署预测,至2035年,中国将超过欧洲,成为世界上最大的能源购买国[2]。
目前主要使用的能源物质是煤炭、石油和天然气等化石能源。例如,据2008年统计,供应能源分别是:石油占33.5%,煤占26.8%,天然气占20.8%(化石能源共占81%)和“其他能源”(包括水电、太阳能、风能、地热能、生物燃料和核能等)占19%[3]。化石能源的使用将导致大量温室气体排放,尤其是二氧化碳,将会加剧温室效应带来环境问题。并且这些化石能源都属于不可再生资源,一旦消耗完毕短期内不可再生,全球已探明的能源储量是有限的:石油将在50年左右枯竭,天然气能用7年左右,煤炭能够支持200年[4]。随着能源资源的捉襟见肘,能源的价格也直线上升,如美国普通零售汽油价格增长了3倍,从1990年的每加仑1.2美元到2014年的每加仑3.6美元,这一趋势仍在增加[5]。能源资源的有限性使得开发新能源和发展新的节能技术成为人类解决能源短缺问题的最有效途径。
建筑的能量转换系统,特别是加热、通风和空调系统,是今天主要的能源消费单位。仅在美国,住宅和商业建筑的能源消耗占总能量的39.6%[6]。建筑能耗占我国能源消耗的比例如图1所示。
在欧美国家,大约一半的总能量用于建筑,国家能源总量的20%被用于加热、通风、空调和制冷系统[7]。一般在工业发达的国家,建筑能耗占总能耗的30%~50%,而空调能耗又能占建筑能耗的50%[8],大约全球15%的电力是被用于各种制冷和空调的使用方面[9,10]。
因为空调的普及率与日俱增,各个国家也逐渐意识到了空调使用对节能减排的重要性,大多数国家高层决策委员会也设置了相关的政策降低空调能耗[11~13]。我国人口众多,地域辽阔,空调使用数量巨大。因此,大力研发和发展空调节能技术对贯彻我国可持续发展战略有着十分重要的意义。目前,我国空调节能领域正处于稳健发展的状态,但受到了技术障碍、政策障碍、市场障碍和其他诸多因素的制约[14~18]。在诸多障碍中,如何寻找到真正有效并切合中国基本国情的节能方式,是促进中国空调节能领域发展的工作重点。
通过调查发现,在酒店、宾馆和KTV等场所多采用分体式空调与中央空调结合的模式。这些场所通常需要保持着空调整天工作,有时还要满足个别顾客对空调过低温度或者过高囟鹊囊求。而制冷温度每降低或者制热温度每增高1℃,电功率就会增加5%~10%[19~21]。不合理地使用空调不仅增加了空调的能耗,还减少了空调的使用寿命,直接增加了城市的能源消耗,不利于贯彻我国的可持续发展战略。引进分体空调智能节能控制器和中央空调控制器,并将其与现代云计算技术结合起来,将能够通过互联网在手机、平板电脑等移动设备上实现远程控制空调运行状况,达到智能控制的目的,可以直接降低空调使用中不必要的能耗,对我国空调节能产业的发展有重大意义。
2中国空调产业现状
2.1空调的历史
在1902年,美国人威利斯・开利为了保持印刷机工作时稳定的湿度和温度,最先成功设计了第一个空调系统。最初的空调系统被广泛应用于调节化工业、制药业和军火业等各个工业生产中的温度和湿度。1922年开利工程公司研制成功了空调史上具有里程碑地位的产品―离心式空调机,大大提高了空调系统的效率,从此人开始成为空调服务的对象[22]。
2.2空调产业在中国的发展
自改革开放以来,中国经济走上了飞速发展的道路。随着人们生活水平的不断提高,空调的使用变得普遍起来。全国各大城市兴建的公共建筑,大多都配备了空调设备来提高环境的舒适度[23,24]。目前,空调在我国建筑物中普及率仍在不断提高,使得我国已经成为继美国、日本之后世界第三大空调市场,占全世界空调市场利用率的12%[25]。
空调的使用在中国发展到今天已经形成了一个规模巨大的产业。随着科技水平的不断提高和节能环保意识的不断增强,国家也迫切希望能够通过提高空调能耗的质量等级来实现节能减排的目的。希望能够在满足人民日益增长的物质需要的同时,减少能源消耗和碳排放,建立环境友好型和资源节约型社会,坚持贯彻我国可持续发展战略。因此,国家相关政策的制定与实施也在向着更为节能环保的方面倾斜。随着能源的短缺,节能逐步受到更为广泛的注意和重视[26]。
节能空调,通俗地说就是用更少的电达到居室的温度、湿度环境要求而且是达到消费者希望的居室内的条件要求[27]。节能空调能否实现节电的目的,不仅取决于产品本身的设计和制造,同时也取决于用户的使用方式。
但是,目前我国节能空调还存在着生产技术、产品质量以及宣传推广等方面的不足。例如缺乏足够的高效节能空调的技术研发和产业化支持政策,缺乏高效变频压缩机制造核心技术等高端技术,这些是需要我们克服的在技术层面的不足。而许多空调购买者不选择节能空调的原因主要有以下几点:价格相对普通空调偏高;节能效果不明显,短期收益低;需要维护保养,容易出故障,节能不节钱;对节能产品缺乏足够的了解等。这些则是我们要克服的在产品质量、宣传推广等方面的不足。
当前,我国已经出台的空调节能标准有:2010年6月1日实施的《空调强制性国家标准》、2011年11月1日实施的《中央空调水系统节能控制装置技术规范》等[28,29]。虽然国家已经制定了相关的规范政策,但受到政府监督困难、企业违规操作等问题影响,一些建筑工程在选用主机以及末端空调设备时,仍然没有按照规定设计的要求进行选型。此外,一些数据也表明,在一些大型超市或者公共场合当中,冬季的供暖热量和夏季的制冷量超过了标准。这些存在的问题都造成空调制冷取暖浪费了大量的能源[30]。
与国际相关标准相比,我国空调能效比还有很大发展空间,所以我国也在不断改进并提高空调能效相关标准。因为能效等级越高的产品,生产成本往往高于能效较低的产品。投资者往往忽略了能耗指标的计算,而只重视投资成本,投资成本高的高效节能空调反而不受生产企业青睐[31]。相对应的高效节能空调的市场销售价格也比较高,再加上人们对高效节能空调所得的节电长远效益认识不清楚,往往只比较了购买时的价格差异,导致高效节能空调在整个空调市场的占有份额并不高[32]。为了提高高效节能的推广,我国也对企业所生产高能效等级空调进行了相应的补贴,直接降低了高能效等级空调的市场销售价格,在一定程度上提高了节能空调的普及率[33]。
在中国社会主义市场经济条件下,作为消费者,首先关注的肯定是产品的价格和质量,优先选择性价比高的商品。而作为生产企业,则是追求最大的利润。国家作为管理者,有正确引导产业发展方向的义务。在最开始很长的一段时间里,我国对节能空调的推广只是处于教育道德层面的宣传,并没有充分使用社会主义市场经济中的价格杠杆来调节,结果是大家在意识层面认同节能空调的情况下继续选择了较高能耗、较低价格的空调。而在社会主义市场经济下,价格杠杆往往比行政宣传的效果更为直接和明显。目前,我国直接按照生产空调能级相关标准给予企业相应补贴,使得企业在不涨价的前提下也能有钱赚,有效提高了企业生产节能空调的积极性。消费者间接享受到一定程度的优惠,其购买节能空调的积极性也得到了的提升。国家实现了节能减排的期望,企业的销售量和盈利水平也没有下降,消费者节约了金钱和电费,实现了多方共赢,促进了我国的可持续发展[34]。
在政府的大力支持下,2009年开始,国家对高效定频空调器进行了补贴,2010年家发改委、财政部印发了关于调整高效节能空调,推广财政部补贴政策的通知[35]。这说明了国家政策支持的体现无处不在,近几年来“家电下乡”、“以旧换新”等财政补贴政策相继推出,在各大家电销售地点均有出现。在主要针对推广空调能效1、2级产品的“节能惠民工程”启动后,为缩小节能与非节能产品的价格差距,106款1级产品扣除补贴后价格从1230~3500元不等,提高了群众的消费积极性。有调查显示,在湖南省节能空调的推广使用中,共有20家空调生产企业参与,其中销售数量最多的品牌是格力,购买节能空调的用户中,机关及企事业单位所占的比例较大,为37.52%,其次为个人用户,占10.23%,在一定程度上也可以反映出中国绝大多数城市的空调用户分配状况[36]。
3空调节能技术在中国的发展
在空调普及率大幅上升的情况下,空调用电量占我国总用电量的20%左右,占大中型城市夏季用电高峰负荷的40%左右。随着能源问题日益凸显和社会节能环保意识的不断提高,我国也越来越重视发展空调节能技术。
空调节能技术,相对于其他较早引入空调并率先萌生节能意识的发达国家来说,我国发展比较晚,所以我国的节能空调技术相对于其他的国家来说经验、技术方面略有不足。再加上我国的节能空调的市场份额不高,所以导致我国的空调节能技术相对于其他的国家来说还是有差距。但是随着能源问题凸显,国家愈来愈重视发展节能技术,不断借鉴国外先进科技,加大促进了对空调节能技术的研究,我国的节能空调技术得到了蓬勃的发展[37]。虽然与发达国家还有一定的差距,但是我国空调节能技术已经取得了一定的成果,并得到相应的应用。
随着时代的发展与进步,我国的空调生产企业也逐渐意识到了发展空调节能技术的重要性和趋势性,在产品节能技术研发和整体质量水平提高方面更加重视,企业在产品开发和节能技术研究方面的投入正在逐渐加大,围绕产品生产的基础技术、系统开发设计、测试分析、专业配套、节能减排和制冷剂替代技术等方面开展了全方位、深层次的长期性开发研究,不断提高自主研发和创新能力。在众多企业的共同努力下,一项项具备世界级技术水平的新技术、新产品在行业内接连推出并直接服务于市场,实现了空调行业整体节能技术水平的稳步提高[38]。
但是,总体来看我国空调能效等级整体水平依然较低,缺少前瞻性的未来空调技术方式。例如独立除湿空调技术(包括除湿部分和新型的显热空调技术)、局部空调供冷技术、变频空调技术、蓄冷空调技术、绿色数据中心空调节能技术、合理的热电冷联供技术、太阳能空调技术、热声制冷技术、热泵技术、降低空调负荷等相关技术等[39~49]。这些技术虽然获得了一定的研究成果,但尚不成熟且使用范围较小,无法投入大大规模的工业生产中。
由于空调生产厂家的多元化,企业出于商业原因往往不会共享节能空调的规格参数和生产技术,这直接影响了空调市场整体能效的提高。不同空调生产企业所生产的空调往往具有不同的规格参数,难以统一标准。如果能够结合现代智能技术和云计算功能,通过手机、平板电脑等移动设备在特定的APP实现便捷的智能化控制,就能直接实现降低空调能耗的目的。
4智能化与云计算结合技术
云计算是一种利用互联网实现随时随地、按需求、便捷地访问共享资源池(如计算设施、储存设备、应用程序等)。云计算的基本原理是,通过计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。这使得企业能够将资源切换到需要的应用上,根据需求访这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统[50,51]。
鉴于难以统一不同企业生产规格参数相一致的空调,结合现代智能技术和云计算功能引入智能空调节能控制器。智能空调节能控制器为一独立辅助控制器,适用于市场上绝大多数类型的空调。通过智能空调节能控制器,可以实时监测空调的工作状态,然后使用者或管理者可以在手机、平板电脑等移动设备上通过互联网在特定APP上远程调控空调的运行状态。实现合理的使用空调,避免不必要的能耗,这样不仅可以增加空调寿命,还可以有效的实现节能减排的目的。
4.1智能空调节能控制器功能参数
通过智能空调节能控制器,可实时监控并调整空调的运行状态。主要功能参数包括定时开关机、智能温度锁定、智能感应温度开关机、智能人体感应开关和空调状态查询与设置。
4.1.1定时开关机
控制参数:空调状态(开关机)、空调模式(制冷或制热)、空调温度、风门状态(摆风或不摆风)、执行时段、执行日期。
通过此功能可以减少空调人工管理成本,并便捷有效达到合理控制的目的。
4.1.2智能温度锁定
将锁定温度打开状态,在空调开机的状态下,分体节能模块在5min内若检测到空调的设置温度比制冷标准温度低,或者空调的设置温度比制热标准温度要高,那么分体节能控制器会将空调锁定到标准温度(若空调是制冷的情况下,锁定到制冷标准温度。若空调是制热的情况下,锁定到制热标准温度)。在打开锁定温度的情况下,需要查看一下节能器的节能参数中制冷标准温度、制热标准温度是否是符合锁定温度要求。
通过此功能可以根据智能感应温度变化调整空调设定温度,减少了空调额外的能耗。
4.1.3智能感应温度开关机
将空调打开时,分体节能模块检测到的室温在禁止开机温度区间内,分体节能模块将禁止开机,会将空调关机。
通过此功能可以根据智能感应温度判断空调的是否需要工作,智能化的实现了空调开启与关闭,减少了空调不必要的能耗。
4.1.4智能人体感应开关设置
(1)智能人体感应开设置:当人体感应开功能打开后,如果分体节能模块接入智能人体感应装置,连续5min均有检测到人体后执行开机命令。
(2)智能人体感应关设置:当人体感应关功能打开后,如果分体节能模K接入智能人体感应装置,连续30min未检测到有人后执行关机命令。
通过此功能可以根据监测环境内是否有人而智能选择空调工作状态,有效避免了人离开而忘记关闭空调所造成的能耗。
4.1.5空调状态查询与设置
可以查询并设置空调状态、空调模式、风门状态、室内温度、设置温度、出风温度、传感器的状态、节能器状态等。
通过此功能可实时在线了解空调工作状态,并可根据个人需要和环境变化作出相应的调整,实现了便捷合理控制空调工作状态。
4.2技术应用实例
与某环保公司合作,在某企业员工宿舍实践所得数据见表1。
仅员工宿舍楼一间宿舍一天理论可节电量平均为:160330÷6÷30÷189=4.7(kW・h);公司宿舍楼A,B,C,D栋实际入住189间宿舍,5~10月份预计可节电量160330kW・h,节能效果显著。如果能够大范围广泛推广到城市,节能潜力巨大。
5讨论与结论
面对中国空调市场企业品牌繁多、产品生产参数规格不一的局面,结合现代智能化和云计算结合的功能,在手机、平板电脑等移动设备上通过互联网实现实时监控、远程操作和智能控制的目的。有效地降低了因不合理使用空调所产生的额外能源消耗,并且适用于市场上绝大多数空调,有利于提高我国空调节能领域整体的节能水平。
与传统空调节能技术相比,最大的创新就是改变了过去“遥控器是唯一控制空调运行的工具”的观念,实现了手机、平板电脑等多种互联网端口控制的功能。智能空调产品正是通过把空调运行控制系统链接到互联网操作平台上来实现的。未来生活中实现对家中所有设备的控制定是朝着无线化、可移动化的方向发展。如今,随着移动互联网的飞速发展,让我们的无线传输及控制变得无比简单。基于无线网络系统开发出的适用于用户控制的智能家居就变得相对简单起来。这也就意味着用户只需通过手机、平板电脑等智能移动设备,甚至是当前比较流行的可穿戴设备等就可轻松实现对家里的一切控制,不仅为人们的日常生活提供了极大的便利,还有效地减少了能源的消耗。
随着生活水平的不断提高,空调已经成为高普及率的高能耗设备。现今,能源问题凸显,节能减排已经成为21世纪发展的重要主题之一。国家和企业为了提高节能空调的市场占有率,也纷纷都加大了对空调节能技术的投入和相应的政策补贴与推广。由此,发展空调节能技术对我国实施可持续发展战略和提升我国企业竞争力有着深远意义。
考虑到目前缺乏统一的、前沿性的、易于推广实施的空调节能技术。结合当今正广泛使用并快速向前发展的智能化与云计算结合的技术,确定了该技术的的功能特性及可行性,并通过实例一定程度上反映了该技术应用所产生的显著节能效果。若能将此空调节能技术在全国范围内大规模推广,必将有效地降低我国城市能耗总量和减少碳排放,达到节能减排的目的,有利于实施我国可持续发展战略。
参考文献:
[1]http:///wiki/Wiedemann%E2%80%93Franz_law(accessedJanuary2014).
[2]莫应强.关于空调系统节能措施的讨论[J].企业导报,2016(10):187
[3]DresselhausMS,ChenG,TangMY,etal.NewdirectionsforLow-DimensionalThermoelectricmaterials[J].ChemInform,2007,38(26):1043~1053.
[4]沈建芳.节能―空调行业的大趋势[J].制冷技术,2005(4):32~35
[5]LiuH,ShiX,XuF,etal.Copperionliquid-likethermoelectrics[J].NatureMaterials,2012,11(5):422~425.
[6]DiSalvoFJ.Thermoelectriccoolingandpowergeneration[J].Science,1999(285):703~706.
[7]Pérez-LombardL,OrtizJ,PoutC.Areviewonbuildingsenergyconsumptioninformation[J].EnergyBuild,2008,40(3):394~8.
[8]劳文慧.空调节能技术分析[J].制冷,2002,21(1):79~80
[9]BellLE.Cooling,Heating,GeneratingPower,andRecoveringWasteHeatwithThermoelectricSystems[J].Science,2008(321):1457~1461.
[10]BagheriF,FayazbakhshMA,ThimmaiahPC,etal.Theoreticalandexperimentalinvestigationintoanti-idlingA/Csystemfortrucks[J].EnergyConversManage,2015(98):173~183.
[11]FarringtonR,RughJ.Impactofvehicleair-conditioningonfueleconomy,tailpipeemissions,andelectricvehiclerange[J].Earthtechnologiesforum,2000(5).
[12]LongW,ZhongT,ZhangB.China:theissueofresidentialair-conditioning[J].IntInstRefrigBull,2004(4):1~7.
[13]WanKSY,YikFWH.Buildingdesignandenergyend-usecharacteristicsofhigh-riseresidentialbuildingsinHongKong[J].AppliedEnergy,2004,78(1):19~36.
[14]康艳兵,尹志芳,张扬,等.中国空调节能发展现状、趋势展望和政策建议(上)[J].节能与环保,2010(7):11~13.
[15]康艳兵,尹志芳,张扬,等.中国空调节能发展现状、趋势展望和政策建议(下)[J].节能与环保,2010(8):11~13.
[16]罗继杰.节能减排―暖通空调(设计)行业面临的机遇和挑战[J].暖通空调HV&AC,2012,42(1):1~7.
[17]商利斌,高喜玲.建筑中央空调节能技术探讨[J].能源与环境,2009(14):24~25.
[18]陈友.中央空调节能技g的应用[J].中国新技术新产品,2016(10):140~141.
[19]张恩祥,李春旺,陈淑琴,等.办公建筑空调系统能耗评价及节能潜力分析[J].节能技术,2008,26(4):295~299.
[20]曾昭向,卢清华.中央空调节能技术分析与探讨[J].制冷与空调,2013,27(1):45~48.
[21]徐涛,陆超平,王轶虹.建筑暖通空调系统节能措施分析[J].机电信息,2016(16):71~72.
[22]葛建东.空调产业在中国的发展状况及节能环保[J].湖南农机,2011,38(11):189~190.
[23]江华,刘宪英,黄忠.中央空调能耗现状调查与分析[J].制冷与空调,2005,(z1):31~36.
[24]刘思刚.空调发展的永恒主题:能耗与节能[J].大陆桥视野,2012(6):35~36.
[25]徐伟.空调能耗及节能方向[J].建设科技,2004(5):20~21.
[26]吕天文.2014―2015年度机房空调市场回顾与展望[J].制冷与空调,2014(9):94~99.
[27]白滨.科学认识节能空调[J].现代家电,2004(10):37~38.
[28]中国广播网.我国中央空调节能国标批准11月1日起正式实施,2011.
[29]中国节能建筑网.6月1日起我国开始实施《空调强制性国家标准》,2010.
[30]靳琼.谈空调节能及其节能措施中的若干问题[J].价值工程,2015(7):16~17.
[31]韩志财.中央空调节能技术探析[J].资源节约与环保,2013(8):28.
[32]韩敏.苏宁推广节能空调成绩斐然[J].电器,2006(9):42.
[33]“节能产品惠民工程”――高效节能房间空调器推广实施情况介绍[J].标准生活,2010(5):50~54.
[34]李开钰.用价格杠杆撬动节能空调市场[J].机电信息,2009(18):14-15.
[35]财政部国家发展改革委印发关于调整高效节能空调推广财政补贴政策的通知[J].节能与环保,2010(6):7.
[36]翟威锋,周永芳,李海鸽,等.湖南省高效节能空调推广情况调查[J].节能,2011(6):7~-10.
[37]刘忠玉.关于制冷空调节能技术的思考[J].商品与质量,2016(5):220-221.
[38]李刚,张仙平,朱全志,等.浅析我国制冷空调行业的转型升级研究[J].橡塑技术与装备,2015,41(24):173~174.
[39]戎卫国,孟繁晋.空调节能技术的热力学分析与思考[J].暖通空调,2008,38(12):58~60.
[40]王克勇,王丽,徐靖文,等.绿色数据中心空调节能技术研究[J].能源研究与利用,2012(2):29~31.
[41]刘春杰,陈正刚.暖通空调节能技术研究[J].真空与低温,2014,20(5):302~306.
[42]本刊记者(整理).空调技术发展方向:环保与产品升级[J].电器,2011(11):66~68.
[43]江亿.我国建筑能耗状况及有效的节能途径[J].暖通空调,2005,35(5):30~40.
[44]钱晓栋,李震.数据中心空调系统节能研究[J].暖通空调,2012,42(3):91~96.
[45]LaD,DaiYJ,LiY,etal.Technicaldevelopmentofrotarydesiccantdehumidificationandairconditioning:Areview[J].RenewableandSustainableEnergyReviews,2010(14):130~147.
[46]HundyGF,TrottAR,WelchTC.“RefrigerationandAirConditioning,”4thEdition[J].Butterworth-Heinemann,2008.
[47]ViriyautsahakulW,PanacharoenwongW,PongpiriyakijkulW,etal.ASimulationStudyofInverterAirConditionerControlledtoSupplyReactivePower[J].ProcediaComputerScience,2016(86):305~308.
[48]HaQP,VakiloroayaV.Anovelsolar-assistedair-conditionersystemforenergysavingswithperformanceenhancement[J].ProcediaEngineering,2012(49):116~123.
[49]ShahareS,HarinarayanaT.EnergyEfficientAirConditioningSystemUsingGeothermalCooling-SolarHeatinginGujarat,India[J].JournalofPowerandEnergyEngineering,2016:57~71.
【关键词】云计算 数据中心 探讨
随着“云计算时代”的来临,越来越多的政府机关、企事业单位开始逐步将各自的业务信息系统向“云”上迁移,云计算行业已经成为未来ICT((Information Communication Technology)领域中发展的重要方向。随着云计算需求量的增大,越来越多的数据中心开始在各地建立起来。尽管云计算本身能够提高效率,避免计算资源的浪费,但同时,云计算自身的能耗问题也逐步凸显出来。
根据权威机构的研究结果表明,数据中心耗费了全球1.5%至2%的电力,并且以每年12%的增长率增长。全球数据中心耗电量同样惊人,据IDC报告,2005年全球数据中心的耗电量是全球用电量的0.8%。2007年全球数据中心耗费的总能量达到了3300亿千瓦时,相当于整个英国的电力需求。美国环保署报告,2011年美国的数据中心全年累计耗电1000亿千瓦时,占全美当年总耗电量的1.5%,电费约74亿美元。数据中心已经成为名副其实的“电老虎”。同时,数据中心电力的消耗会带来大量的碳排放,自2008年以来,全球数据中心每年都产生大约8000万吨二氧化碳,据预估,在2020年碳排放将达到3.4亿吨。
作为发展中国家,中国未来经济的发展必须走节能环保之路。云计算作为当前ICT发展重点方向,也必须寻找出一整套行之有效的节能技术手段。在数据中心的建设过程中,综合当前技术发展现状,应从以下三个方面开展技术革新,节约能源,建设更“绿色”的数据中心。
1 IT节能技术的革新
IT技术是云计算技术的核心,目前业界对于IT技术的研究重心已经由发展初期关注如何提高计算系统的高速度高性能,转向如何提高计算系统的计算效率(提高能耗比)。云计算的数据中心是所有计算和存储的中心,因此要构建“绿色”的数据中心,首先从IT节能技术的革新开始。
CPU体系结构的变化。CPU作为计算机的“心脏”主要有CISC(Complex Instruction Set Computer,复杂指令系统计算机)和RISC(Reduced Instruction Set Computer,精简指令系统计算机)两种体系结构。Intel公司出品的X86系列CPU就是典型的CISC产品,其特点是指令复杂,指令长度较长,编解码复杂,需要分解成多个微指令去执行,虽然便于提高计算机性能,但导致能耗大,相对而言,能耗比偏低。相对于此,大家常用的手机、PAD等智能移动终端多以ARM系列CPU为主,特点是性能相对较差,能耗低。随着近年来,电子技术飞速发展,以ARM为代表的CPU已经在能耗比上逐渐超越X86,并在计算密集型应用中逐渐崭露头角,逐渐引入到数据中心建设中。以百度为例,2012年底,该公司实现ARM Server全球首次规模化应用。并将GPU应用于机器学习领域。通过对程序的重构和优化,实现CPU单核加速400倍,将每瓦特的计算能力提升34倍的成果,大幅降低数据中心能耗。
存储技术的改进。当前计算机系统主要采用机械式硬盘,优点是技术成熟、价格低廉、使用方便,缺点是能耗较高。通过引入固态硬盘(Solid State Drive)将极大地缓解存储设备的能耗问题。固态硬盘,使用闪存颗粒作为存储单元,不再采用传统的机械存储方法,使用模拟的方式虚拟出传统硬盘存取方式和扇区等,区别于传统机械式硬盘,突出特点是没有机械结构,利用传统的NAND Flash特性,以区块写入和抹除的方式来作读写的功能,因此在读写的效率上,非常依赖闪存技术的发展。与传统机械式硬盘比较,具有低耗电、耐震、稳定性高、耐低温等优点。IBM近期推出“FlashSystem”系列全闪存存储服务器,有关负责人指出:数据中心建设中,采用SSD建设方案不仅有性能优势,也更省电,且在散热措施上的投资也要比传统硬盘小很多,综合来看,采用SSD技术是符合当前技术发展潮流的。
研发低能耗操作系统。随着基础硬件平台的演变,低能耗的ARM系列CPU和SSD硬盘的广泛使用,操作系统也需要全面调整体系结构,应将“低能耗,高效率、适度资源使用”原则作为未来计算机操作系统的重要设计原则。例如,微软在Windows 7操作系统中推出ReadyBoost的技术,通过闪存减少常用软件从较慢的机械硬盘中调用的次数,把读取延误减至最低,相应提高性能的同时,降低了能耗。未来在服务器操作系统中,将出现更多的新技术,为降低服务器功耗提供更多的技术支持。
2 机房系统的技术革新
根据最新统计,机房系统占整个数据中心的电耗比例已经达到45%,其中冷源部分占到2/3。绿色数据中心的构建,机房系统的节能解决方案成了重中之重,刻不容缓。
采用自然冷却的冷水机组。数据中心通常都需要常年不间断供冷,常规的制冷系统,室外温度即使是低于或远低于其循环冷冻水温的情况下冷水机组也需要照常运行。自然冷却(Freecooling)机组与常规冷水机组最大的区别在于它带有独特的风冷自然冷却换热器,其运行优先利用天然环境的低温空气冷却循环冷冻水,可以实现无压缩机运行制冷,显著节省压缩机的电耗。在夏季,自然冷却机组与常规空调一样仍旧采用压缩机制冷。在过渡季,当环境温度达到比冷冻水回水温度低2℃或以上时,开起自然冷却,利用冷空气的冷量预冷冷冻水,无需压缩机功耗;自然冷却不足部分,再由常规压缩制冷接力,从而减少了系统功耗。在冬季,完全靠自然冷却冷却冷冻水,不需压缩机开起,只需少量风扇电耗,能效比高达20以上。通过自然冷却技术,在过渡季和冬季减少了压缩机工作时间和强度,有效降低了制冷功耗。与常规的冷水机组相比,据计算,北京所在纬度地区为例,常年节电达到30%-38%。
热回收技术利用。大型数据中心常年需要不间断的冷源,需要冷水机组高效制冷完成。而与数据中心配套的周边办公、运维和宿舍在冬季却同时需要大量的热量来解决供暖问题。在常规设计中,供暖需要锅炉或热泵解决,需要消耗大量的能源。新的热回收技术,免费利用制冷机组在制冷时候向环境中排放的冷凝热来加热供暖系统,从而不需要锅炉或热泵系统。在冬季需要供暖时,系统回收冷凝热来实现,多余的冷凝热仍旧排放到环境中去。由于实现制冷机组的冷热联供,空调综合能效比达到9-10,这是其他任何冷机效率所无法比拟的。采用这种热回收技术,一个数据中心的上万平方米的办公、运维和宿舍都可以实现免费供暖。
高效磁悬浮变频离心冷水机组。磁悬浮离心压缩机代表了当今最先进的压缩机技术趋势。变频驱动的高效磁悬浮无油离心式压缩机采用磁悬浮轴承技术,高性能脉宽调制(PWM)永磁同步电动机,其转速随负荷变化而自动调节,确保机组在各工况下始终处于最佳运行状态,使机组在满负荷及部分负荷时均能高效运行。无油磁悬浮轴承,无任何接触摩擦,无需油系统,显著增加机组可靠性,保养简单方便;无换热器油膜热阻,可提高蒸发、冷凝换热效率达15%左右,提升离心机组运行效率。采用该技术建设的空调机组具有当前最高的使用效率,无论在满负荷下,还是在部分负荷下,机组都有非常高的能效系数,空调综合能效比值达到10。
3 数据中心建设的技术革新
解决计算时代数据中心的能耗问题,除了在IT技术和机房系统的节能方面做出努力外,还需要在数据中心建设上做出整体的节能考虑,目前主要数据中心建设节能技术革新主要体现在以下两个方面:
全面使用DCIM软件。传统数据中心的基础设施运行效率低下是运维中的长期困扰,企业在初期缺少合理的规模设计,并在后期未能提高总体的管控能力是关键因素。为此多功能的数据中心基础设施管理(DCIM)软件作为一种解决方案被引入进了企业,全球已有上百家公司提供数据中心基础设施解决方案。DCIM 解决方案可帮助CIO收集个人设备的电源和冷却系统信息以及测量的能源消耗情况,动态配置能源使用方案。如艾默生电气公司的Trellis平台,被康普收购的iTRACS公司,都可以帮助企业积极主动地管理能源使用和自动执行的内部任务计划,以降低运营成本。DCIM软件管理让IT管理人员与设备管理人员可以更好地交流并协同工作,显而易见的好处是可以实现至少30%的节能效果,有助于让PUE(Power Usage Effectiveness,衡量数据中心能源效率指标)值降至1.22甚至更低。根据IDC研究,DCIM有望在未来几年保持稳健的增长态势。在2011年, DCIM软件和服务的市场总额达2.47亿美元。到2016年,DCIM市场将增长到6.9亿美元,年增长率为22.8%。
加强能源效率审计。近年来,企业对能效审计工作越来越关注,国外的很多成功经验也表明,能效管理将成为决定企业发展的“软实力”。德国能效博士柯文诺表示:“高能耗企业发展到今天,年产值已经不再是企业强大与否的唯一指标,重不重视节能技术正成为决定企业成败的关键因素。”数据中心运维过程中,信息化部门可通过定期审计并分析有关数据,实时掌握能耗情况,便于确定能耗突出点,从而有针对性地完善方案,优化配置。数据中心通过引入能源效率审计,有助于进一步节能工作的开展。
目前,信息技术正在日新月异的发展,云计算逐步在我国落地。从资源节约角度,云计算为我们的节能、环保提供了一个非常好的发展方向,但是大规模的云计算数据中心的建设又给我们带来了数据中心能耗突出的实际问题。因此,我们既要用好云计算,同时也要管好云计算,只有通过IT技术革新、机房系统建设技术革新、数据中心技术革新等多项节能举措并行,才能更好的将云计算为我们建设服务,才能真正的享受云计算带来的种种好处。
参考文献
[1]舒尔茨著.韩毅刚等译.绿色虚拟数据中心[M].北京:人民邮电出版社.
[2]领先腾讯阿里.百度云数据中心国内PUE第一.http://.cn IT专家网论坛[Z].2014,04,17
[3]解读云计算时代欧洲数据中心节能新技术.http:///yjs2568 6.shtml.2011-07-01.
[4]王珂.数据中心节能的前沿高招.畅享网,[Z].2013.
作者单位
1.中国五矿集团公司 北京市 100044
2.中节能科技投资有限公司 北京市 100082
根据权威机构的研究结果表明,数据中心耗费了全球1.5%至2%的电力,并且以每年12%的增长率增长。全球数据中心耗电量同样惊人,据IDC报告,2005年全球数据中心的耗电量是全球用电量的0.8%。2007年全球数据中心耗费的总能量达到了3300亿千瓦时,相当于整个英国的电力需求。美国环保署报告,2011年美国的数据中心全年累计耗电1000亿千瓦时,占全美当年总耗电量的1.5%,电费约74亿美元。数据中心已经成为名副其实的“电老虎”。同时,数据中心电力的消耗会带来大量的碳排放,自2008年以来,全球数据中心每年都产生大约8000万吨二氧化碳,据预估,在2020年碳排放将达到3.4亿吨。
作为发展中国家,中国未来经济的发展必须走节能环保之路。云计算作为当前ICT发展重点方向,也必须寻找出一整套行之有效的节能技术手段。在数据中心的建设过程中,综合当前技术发展现状,应从以下三个方面开展技术革新,节约能源,建设更“绿色”的数据中心。
1 IT节能技术的革新
IT技术是云计算技术的核心,目前业界对于IT技术的研究重心已经由发展初期关注如何提高计算系统的高速度高性能,转向如何提高计算系统的计算效率(提高能耗比)。云计算的数据中心是所有计算和存储的中心,因此要构建“绿色”的数据中心,首先从IT节能技术的革新开始。
CPU体系结构的变化。CPU作为计算机的“心脏”主要有CISC(Complex Instruction Set Computer,复杂指令系统计算机)和RISC(Reduced Instruction Set Computer,精简指令系统计算机)两种体系结构。Intel公司出品的X86系列CPU就是典型的CISC产品,其特点是指令复杂,指令长度较长,编解码复杂,需要分解成多个微指令去执行,虽然便于提高计算机性能,但导致能耗大,相对而言,能耗比偏低。相对于此,大家常用的手机、PAD等智能移动终端多以ARM系列CPU为主,特点是性能相对较差,能耗低。随着近年来,电子技术飞速发展,以ARM为代表的CPU已经在能耗比上逐渐超越X86,并在计算密集型应用中逐渐崭露头角,逐渐引入到数据中心建设中。以百度为例,2012年底,该公司实现ARM Server全球首次规模化应用。并将GPU应用于机器学习领域。通过对程序的重构和优化,实现CPU单核加速400倍,将每瓦特的计算能力提升34倍的成果,大幅降低数据中心能耗。
存储技术的改进。当前计算机系统主要采用机械式硬盘,优点是技术成熟、价格低廉、使用方便,缺点是能耗较高。通过引入固态硬盘(Solid State Drive)将极大地缓解存储设备的能耗问题。固态硬盘,使用闪存颗粒作为存储单元,不再采用传统的机械存储方法,使用模拟的方式虚拟出传统硬盘存取方式和扇区等,区别于传统机械式硬盘,突出特点是没有机械结构,利用传统的NAND Flash特性,以区块写入和抹除的方式来作读写的功能,因此在读写的效率上,非常依赖闪存技术的发展。与传统机械式硬盘比较,具有低耗电、耐震、稳定性高、耐低温等优点。IBM近期推出“FlashSystem”系列全闪存存储服务器,有关负责人指出:数据中心建设中,采用SSD建设方案不仅有性能优势,也更省电,且在散热措施上的投资也要比传统硬盘小很多,综合来看,采用SSD技术是符合当前技术发展潮流的。
研发低能耗操作系统。随着基础硬件平台的演变,低能耗的ARM系列CPU和SSD硬盘的广泛使用,操作系统也需要全面调整体系结构,应将“低能耗,高效率、适度资源使用”原则作为未来计算机操作系统的重要设计原则。例如,微软在Windows 7操作系统中推出ReadyBoost的技术,通过闪存减少常用软件从较慢的机械硬盘中调用的次数,把读取延误减至最低,相应提高性能的同时,降低了能耗。未来在服务器操作系统中,将出现更多的新技术,为降低服务器功耗提供更多的技术支持。
2 机房系统的技术革新
根据最新统计,机房系统占整个数据中心的电耗比例已经达到45%,其中冷源部分占到2/3。绿色数据中心的构建,机房系统的节能解决方案成了重中之重,刻不容缓。
采用自然冷却的冷水机组。数据中心通常都需要常年不间断供冷,常规的制冷系统,室外温度即使是低于或远低于其循环冷冻水温的情况下冷水机组也需要照常运行。自然冷却(Freecooling)机组与常规冷水机组最大的区别在于它带有独特的风冷自然冷却换热器,其运行优先利用天然环境的低温空气冷却循环冷冻水,可以实现无压缩机运行制冷,显著节省压缩机的电耗。在夏季,自然冷却机组与常规空调一样仍旧采用压缩机制冷。在过渡季,当环境温度达到比冷冻水回水温度低2℃或以上时,开起自然冷却,利用冷空气的冷量预冷冷冻水,无需压缩机功耗;自然冷却不足部分,再由常规压缩制冷接力,从而减少了系统功耗。在冬季,完全靠自然冷却冷却冷冻水,不需压缩机开起,只需少量风扇电耗,能效比高达20以上。通过自然冷却技术,在过渡季和冬季减少了压缩机工作时间和强度,有效降低了制冷功耗。与常规的冷水机组相比,据计算,北京所在纬度地区为例,常年节电达到30%-38%。
热回收技术利用。大型数据中心常年需要不间断的冷源,需要冷水机组高效制冷完成。而与数据中心配套的周边办公、运维和宿舍在冬季却同时需要大量的热量来解决供暖问题。在常规设计中,供暖需要锅炉或热泵解决,需要消耗大量的能源。新的热回收技术,免费利用制冷机组在制冷时候向环境中排放的冷凝热来加热供暖系统,从而不需要锅炉或热泵系统。在冬季需要供暖时,系统回收冷凝热来实现,多余的冷凝热仍旧排放到环境中去。由于实现制冷机组的冷热联供,空调综合能效比达到9-10,这是其他任何冷机效率所无法比拟的。采用这种热回收技术,一个数据中心的上万平方米的办公、运维和宿舍都可以实现免费供暖。
高效磁悬浮变频离心冷水机组。 磁悬浮离心压缩机代表了当今最先进的压缩机技术趋势。变频驱动的高效磁悬浮无油离心式压缩机采用磁悬浮轴承技术,高性能脉宽调制(PWM)永磁同步电动机,其转速随负荷变化而自动调节,确保机组在各工况下始终处于最佳运行状态,使机组在满负荷及部分负荷时均能高效运行。无油磁悬浮轴承,无任何接触摩擦,无需油系统,显著增加机组可靠性,保养简单方便;无换热器油膜热阻,可提高蒸发、冷凝换热效率达15%左右,提升离心机组运行效率。采用该技术建设的空调机组具有当前最高的使用效率,无论在满负荷下,还是在部分负荷下,机组都有非常高的能效系数,空调综合能效比值达到10。
3 数据中心建设的技术革新
解决计算时代数据中心的能耗问题,除了在IT技术和机房系统的节能方面做出努力外,还需要在数据中心建设上做出整体的节能考虑,目前主要数据中心建设节能技术革新主要体现在以下两个方面:
全面使用DCIM软件。传统数据中心的基础设施运行效率低下是运维中的长期困扰,企业在初期缺少合理的规模设计,并在后期未能提高总体的管控能力是关键因素。为此多功能的数据中心基础设施管理(DCIM)软件作为一种解决方案被引入进了企业,全球已有上百家公司提供数据中心基础设施解决方案。DCIM 解决方案可帮助CIO收集个人设备的电源和冷却系统信息以及测量的能源消耗情况,动态配置能源使用方案。如艾默生电气公司的Trellis平台,被康普收购的iTRACS公司,都可以帮助企业积极主动地管理能源使用和自动执行的内部任务计划,以降低运营成本。DCIM软件管理让IT管理人员与设备管理人员可以更好地交流并协同工作,显而易见的好处是可以实现至少30%的节能效果,有助于让PUE(Power Usage Effectiveness,衡量数据中心能源效率指标)值降至1.22甚至更低。根据IDC研究,DCIM有望在未来几年保持稳健的增长态势。在2011年, DCIM软件和服务的市场总额达2.47亿美元。到2016年,DCIM市场将增长到6.9亿美元,年增长率为22.8%。
加强能源效率审计。近年来,企业对能效审计工作越来越关注,国外的很多成功经验也表明,能效管理将成为决定企业发展的“软实力”。德国能效博士柯文诺表示:“高能耗企业发展到今天,年产值已经不再是企业强大与否的唯一指标,重不重视节能技术正成为决定企业成败的关键因素。”数据中心运维过程中,信息化部门可通过定期审计并分析有关数据,实时掌握能耗情况,便于确定能耗突出点,从而有针对性地完善方案,优化配置。数据中心通过引入能源效率审计,有助于进一步节能工作的开展。
目前,信息技术正在日新月异的发展,云计算逐步在我国落地。从资源节约角度,云计算为我们的节能、环保提供了一个非常好的发展方向,但是大规模的云计算数据中心的建设又给我们带来了数据中心能耗突出的实际问题。因此,我们既要用好云计算,同时也要管好云计算,只有通过IT技术革新、机房系统建设技术革新、数据中心技术革新等多项节能举措并行,才能更好的将云计算为我们建设服务,才能真正的享受云计算带来的种种好处。
参考文献
[1]舒尔茨著.韩毅刚等译.绿色虚拟数据中心[M].北京:人民邮电出版社.
[2]领先腾讯阿里.百度云数据中心国内PUE第一.http://datacenter.ctocio.com.cn IT专家网论坛[Z].2014,04,17
[3]解读云计算时代欧洲数据中心节能新技术.http://cloud.idcquan.com/yjs2568 6.shtml.2011-07-01.
[4]王珂.数据中心节能的前沿高招.畅享网,[Z].2013.
关键词:云存储;MapReduce;数据分类;节能算法;存储模型
中图分类号: TP393.09; TP274
文献标志码:A
Abstract: Constant expansion and that energy consumption factors are ignored with its design process, bring the problem of high energy consumption and low efficiency of the cloud storage system. And this problem has become a main bottleneck in the development of cloud computing and big data. Most of previous studies had been mostly used to adjust the entire storage node to the lowpower mode to save energy. According to the repetition of data and access rules, new storage model based on data classification was proposed. The storage area was divided into HotZone, ColdZone and ReduplicationZone so as to divisionally store the data according to the repetition and activity factor characteristics of each data file. Based on the new storage model, an energyefficient storage algorithm was designed and a new storage model was constructed. The experimental results show that, the new storage model improves the energy utilization rate of the distributed storage system nearly 25%, especially when the system load is lower than the given threshold.
Key words: cloud storage; MapReduce; data classification; energyefficient algorithm; storage model
0引言
据文献[1]统计,2007年全球数据量达到281EB,而2007年到2011年这5年时间内,全球数据量增长了10倍。数据量的高速增长伴随而来的是存储系统规模的不断扩大,这使得运营成本不断提高,其成本不仅包括硬件、机房、冷却设备等固定成本,还包括IT设备与冷却设备的电能消耗等其他开销;并且,系统的高能耗将导致过量温室气体的排放并引发环境问题。在能源价格上涨、数据中心存储规模不断扩大的今天,高能耗已逐渐成为制约大数据快速发展的一个主要瓶颈[2]。据文献[3]统计,目前IT领域的二氧化碳排放量占全球的2%,而到2020年这一比例将翻番。2008年路由器、交换机、服务器、冷却设备、数据中心等互联网设备总共消耗8680亿度电,占全球总耗电量的5.3%。纽约时报与麦肯锡在经过一年的联合调查,最终在《纽约时报》上发表了“Power,pollution and the Internet”[4],调查显示Google数据中心年耗电量约3000000W,而Facebook则达到了600000W,而巨大的能耗中却只有6%~12%的能耗被用于响应是相应,还是响应,请明确。用户的请求。云存储系统是云计算的重要组成部分,是各种云计算服务的基础,云存储在云计算中心的整个能耗组成中占有相当大的比例。据文献[5-6],云存储系统占整个云计算中心能耗的27%~40%,所以无论从降低大数据服务提供商的运营成本,还是从降低能耗以保护环境的角度出发,研究云存储系统中的节能技术都具有很大的现实意义与应用前景。
1相关研究
分布存储系统一方面通过超额的资源供给与冗余设计以保障多维服务质量(Quality of Service, QoS)与系统可靠性;另一方面系统负载均衡算法专注于将用户请求平均分发给系统中所有的服务器以提高系统的可用性。这些设计原则都没有考虑到存储系统的能耗因素,导致云存储系统的能量利用日益暴露出高能耗、低效率的问题。
研究分布式存储系统节能方面,根据软硬件角度进行划分,可分为硬件节能与软件节能两个方面[7]。硬件节能主要通过低能耗高效率的硬件设备或体系结构,对现有的高能耗存储设备进行替换,从而达到节能的目的。硬件节能方法效果立竿见影,且不需要复杂的能耗管理组件;但是对于已经部署的大规模应用系统,大批量的硬件替换面临成本过高的问题。软件节能通过对存储资源的有效调度,在不影响系统性能的前提条件下将部分存储节点调整到低能耗模式,以达到节能的目的。由于不需要对现有硬件体系进行改变,软件节能是目前云存储节能技术的研究热点。软件节能研究主要集中在基于节点管理与数据管理两方面。节点管理主要研究如何选择存储系统中的部分节点或磁盘为上层应用提供数据服务,并让其他节点进入低能耗模式以达到降低能耗的目的。节点管理中被关闭节点的选择与数据管理技术紧密相关,而目前已有的数据管理技术主要有基于静态数据放置、动态数据放置与缓存预取三种。其中:基于静态数据放置的数据管理根据固定的数据放置策略将数据存储到系统中各节点上后,将不再改变其存储结构;基于动态数据放置的数据管理根据数据访问频度动态调整数据存放的位置,将访问频度高与频度低的数据迁移到不同磁盘上,对存储低频度数据的磁盘进行节能处理以降低系统能耗;基于缓存预取的数据管理[8]借鉴内存中的数据缓存思想,将磁盘中的数据取到内存或其他低能耗辅助存储设备并使原磁盘进入低能耗模式以此达到节能的目的。
为了提高分布存储系统的能耗利用率,根据数据的重复性及访问规律,本文将数据进行分类存储,在新的存储结构下设计了适应节能的数据存储及读取算法。已有文献[9-15]大多采用的是节点级的节能策略,即将整个存储节点调整到低能耗模式以达到节能的目的。本文则主要采用将磁盘调整到休眠模式以达到节能的模式。而现有的磁盘级的节能研究[16-20]又主要采用基于硬件节能改进的方法,并没有与存储系统或系统负载特点进行有机的结合。与节点级的节能策略相比,磁盘级的节能策略在节能效率上不如前者。这是因为节点级的节能策略是对整个节点实施节能,而磁盘级的节能策略则是对节点的部分存储设备实施节能处理。
2适应节能的数据存储结构及算法
2.1基于数据分类的存储结构
文献[10]中将Rack划分为ActiveZone与SleepZone两个存储区域,根据不同数据的访问频率与规律计算活动因子以配置数据的存储区域,通过数据中心负载规律适时对SleepZone区域中的服务器进行休眠处理以达到节能的目的,此方法属于节点级的节能方法。节点级的节能方法通过对整个存储节点进行节能处理达到节能的目的,为了不影响系统数据的可用性并适应数据块的访问规律,需要周期性地对系统存储结构进行重配置,在存储结构重配置的过程中需要在节点间进行大量的数据传输操作。当系统规模较为庞大时,网络传输成本较高。将存储结构重配置时的数据传输操作控制在同一个节点内,可以有效地节省网络传输成本。另外,当本文对存储系统中数据文件建立MD5值索引时,发现系统中存在着大量的重复数据。实际上,据文献[21]研究发现,应用系统所保存的数据中高达60%是冗余的,而且随着时间的推移越来越多。基于以上考虑,本文提出基于数据分类的存储结构区域划分方法(定义1),首先将数据按照数据文件重复性与数据块活动因子[10]将数据分为3种:重复数据文件、热数据块与冷数据块。将这3种类型的文件分别存储到重复文件区、热数据块区与冷数据块区,如图1所示为一个拥有8块磁盘的DataNode节点的存储结构划分方式,其中:热数据块区有4块磁盘,冷数据块区域重复文件区分别占2块磁盘。
定义1基于数据分类的存储结构。将基于数据分类的存储区域划分定义为三元组:
StorageZone=〈HotZone,ColdZone,ReduplicationZone〉
其中HotZone、ColdZone与ReduplicationZone分别表示系统中各存储节点中处于热数据块区、冷数据块区与重复文件区中所有磁盘的集合。节能模式下(系统负载较低时),系统可将ColdZone与ReduplicationZone中的磁盘进行休眠处理。ReduplicationZone中用于存储冗余的数据文件的数据块(ReduplicationZone中,如采用原文件存储方式代替数据块副本存储机制可大幅度节约存储资源)。对于判断数据块是应该存储在ColdZone还是在HotZone区域的问题,采用文献[10]中提出的数据块活动因子与存储结构重配置相互结合的方法,本文不对此问题进行进一步的讨论。下文将对适应节能的数据存储策略及适应节能的数据块读取策略进行介绍。
2.2适应节能数据存储策略
由于基于机架感知的数据块存储策略没有考虑到节能状态下的节点(或磁盘)的当前状态、节能的存储结构,出现与现有算法的不适应问题。在2.1节存储结构区域划分的基础上,本节提出了适应节能的数据存储算法,其中矩阵F表示文件分块矩阵(文献[10]定义3)。
4.2适应节能的磁盘级存储结构分析
4.2.1ReduplicationZone存储区域
由于ReduplicationZone中用于直接存储冗余的数据文件,所以系统文件冗余率越高,ReduplicationZone区域磁盘数量越多。ColdZone与HotZone区域磁盘数量取决于平均活动因子[10],而平均活动因子由数据块的访问频率决定。系统中的数据块访问越频繁,数据块平均活动因子越大,HotZone区域磁盘数量越大,ColdZone区域磁盘数量越小;反之则相反。所以,为了测试存储区域结构的划分,实验分为两步:1)向实验环境中随机存储有一定冗余率的数据文件,进行ReduplicationZone与HotZone存储区域的划分;2)模拟不同的数据块访问频率,计算不同数据文件的活动因子,进行HotZone与ColdZone存储区域的划分。实验利用CloudSim模拟出大量的DataNode节点,每个DataNode节点拥有多个磁盘。实验中实现了ReduplicationZone区域基于副本的与原文件的两种存储方法,采用原文件存储方式代替数据块副本存储机制可大幅度节约存储资源。
4.2.2ColdZone存储区域
文献[10]中定义9对数据块活动因子af进行了定义,活动因子af用于度量节能环境下数据文件的数据块处于活动存储节点(HotZone区域)中的备份数,当数据活跃程度越高(同一时间段内被访问次数多)时,af值越高越能适应该数据块的访问性能;相反数据活动程度低时可通过调低活动因子来达到节能的目的。af可根据数据块的访问频率或规律计算。系统平均活动因子af可用于度量系统中数据的整体活跃程度,af值越高说明系统中数据越活跃。
4.3节能效果分析
通过第3章能耗模型的分析可知,系统节能效率由处于节能状态的磁盘数量与时间决定。其中磁盘数量为ColdZone与ReduplicationZone区域磁盘数之和,而时间由系统节能模式切换算法决定。通过上文分析可知,系统数据冗余率越高,系统平均活动因子af越小,可节能的磁盘数越大;系统一天中负载低于阈值μ的时间越长,节能模式时间越长,则系统节能效率越高。极端情况下,当系统整天负载都大于阈值μ时,系统不能进入节能模式,节能效率为0;当系统整天负载都小于阈值μ时,系统节能效率达到最大。
5结语
为了提高分布存储系统的能耗利用率,根据数据的重复性及访问规律,本文设计了基于数据分类的存储模型,能够有效地减小已有节能算法在存储结构重配置过程中的数据传输成本。围绕新的存储模型,设计了适应节能的数据存储算法并建立了能耗模型。实验结果表明:新的存储模型能够提高系统磁盘级的能耗利用率,适应节能的数据存储算法能够很好地解决传统算法对节能模式的适应问题。已有研究主要采用基于硬件节能改进的方法,并没有与存储系统或系统负载特点进行有机的结合。虽然,与节点级的节能策略相比,磁盘级的节能策略在节能效率上不如前者,但在实际的大数据应用环境下,节点级的节能策略需要考虑的不仅仅是数据存储层的QoS保障问题,并且需要考虑任务执行层的QoS保障问题。因为节点级的节能策略使得数据存储层(磁盘)与计算层(CPU与内存)同时不能立即响应任务的请求,这样使得节点级的节能策略需要考虑的问题更多、更复杂。与此相反,磁盘级的节能策略在节能模式下系统中所有节点的CPU与内存都处于工作状态,能够对任务进行立即响应,并不需要关心任务执行层的QoS保障问题,这样使得云存储系统只需要考虑职责范围内的数据存储层的QoS保障问题即可,具有良好的功能任务分层控制,有利于工程实现。
参考文献:
[1]GANTZ J, CHUTE C, MANFREDIZ A, et al. The diverse and exploding digital universe: an updated forecast of worldwide information growth through 2011 [EB/OL]. [20130525]. .
[5]U.S. Environmental Protection Agency. EPA report on server and data center energy efficiency [EB/OL]. [20140118]. http://energystar.gov/index.cfm?c=prod_development.server_efficiency_study.
[6]BATTLES B, BELLEVILLE C, GRABAU S, et al. Reducing data center power consumption through efficient storage [EB/OL]. [20140105]. http://bnrg.eecs.berkeley.edu/~randy/Courses/CS294.F07/NetApp2.pdf.
[7]WANG X, WANG Y. Coordinating power control and performance management for virtualized server cluster [J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(2): 245-259.
[8]SONG Y, WANG H, LI Y, et al. Multitiered ondemand resource scheduling for VMbased data center [C]// CCGRID 2009: Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. Washington, DC: IEEE Computer Society: 148-155.
[9]LIAO B, YU J, ZHANG T, et al. Energyefficient algorithms for distributed file system HDFS [J]. Chinese Journal of Computers, 2013, 36(5): 1047-1064.(廖彬,于炯,张陶,等.基于分布式文件系统HDFS的节能算法[J].计算机学报,2013,36(5):1047-1064.)
[10]LIAO B, YU J, SUN H, et al. Energyefficient algorithms for distributed storage system based on data storage structure reconfiguration [J]. Journal of Computer Research and Development, 2013, 50(1): 3-18.(廖彬,于炯,孙华,等.基于存储结构重配置的分布式存储系统节能算法[J].计算机研究与发展,2013,50(1):3-18.)
[11]PINHEIRO E, BIANCHINI R, DUBNICKI C. Exploiting redundancy to conserve energy in storage systems [C]// Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems. New York: ACM Press, 2006: 15-26.
[12]COLARELLI D, GRUNWALD D. Massive arrays of idle disks for storage archives [C]// Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. Washington, DC: IEEE Computer Society, 2002:1-11.
[13]HARNIK D, NAOR D, SEGALL I. Low power mode in cloud storage systems [C]// IPDPS 2009: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. Piscataway: IEEE Press, 2009: 1-8.
[14]LEVERICH J, KOZYRAKIS C. On the energy (in) efficiency of Hadoop clusters [J]. ACM SIGOPS Operating Systems Review. 2010, 44(1): 61-65.
[15]NITESH M, NANDURI R, VARMA V. Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework [J]. Future Generation Computer Systems, 2011, 28(1): 119-127.
[16]NARAYANAN D, DONNELLY A, ROWSTRON A. Write offloading: practical power management for enterprise storage [J]. ACM Transactions on Storage, 2008, 4(3): 253-267.
[17]HAMILTON J. Cooperative Expendable MicroSlice Servers (CEMS): low cost, low power servers for Internetscale services [EB/OL]. [20140111]. http:///jrh/talksandpapers/jameshamilton_cems.pdf.
[18]VASUDEVAN V, FRANKLIN J, ANDERSEN D, et al. FAWNdamentally powerefficient clusters [C]// Proceedings of the 12th Conference on Hot Topics in Operating Systems. Berkeley: USENIX Association, 2009: 22.
[19]SZALAYY A S, BELL G, HUANGZ H H, et al. Lowpower Amdahlbalanced blades for data intensive computing [J]. ACM SIGOPS Operating Systems Review, 2009, 44(1): 71-75.
[20]LIM K, RANGANATHAN P, CHANG J, et al. Understanding and designing new server architectures for emerging warehousecomputing environments [C]// Proceedings of the 35th Annual International Symposium on Computer Architecture. Washington, DC: IEEE Computer Society, 2008: 315-326.
减法的简便运算。减法的简便运算主要是运用减法的运算性质,即连减两个数等于减去这两个数的和。
乘法的简便运算之一——巧用乘法交换律和乘法结合律进行简便运算。其基本方法也是通过交换和结合达到凑成整十、整百、整千的数,便于我们口算出结果。
乘法的简便运算之二——巧用乘法分配律。对乘法分配律的运用有正用乘法分配律和倒用乘法分配律两种形式。
乘法的简便运算之二——乘法分配律的复杂用法。有些看似不能直接运用乘法分配律的简便运算题目,需要通过变形处理,才能运用乘法分配律解决问题。
作为全球领先的网络解决方案提供商,思科一直致力于数字化医院的规划与建设,拥有在全球范围医疗行业信息化建设合作的成功经验,自2005年以来已经连续八年参加中华医院信息网络大会。思科非常重视在中国医疗领域的投资和发展,致力于同各级政府、医疗单位和行业合作伙伴一起推动医疗改革发展。为了进一步提高中国医疗信息化建设与应用水平,推动中国医疗卫生信息化事业的创新发展,思科于2010年与CHIMA签署了合作备忘录。
思科一直致力于成为云计算和云服务方面的引领者与核心驱动者之一。思科全球副总裁兼大中华区企业事业部总裁张思华先生表示:“思科的云战略就是使用户居于中心,将网络作为云的运作平台,通过为用户部署云服务,来确保其协同、创新和安全地开展业务,从而进一步加速云服务业务的不断发展。同时,思科还将通过丰富的云生态系统,帮助客户部署经过全面测试、行业最佳的整体云解决方案,并最终将自身打造成为基于网络平台优势提供云服务的市场领导者。”
随着云计算技术应用的不断成熟,思科着力研发将云计算技术运用于医疗行业的数字化解决方案。思科在此次大会上展示了其创新的基于云计算技术的智能互联医院解决方案,包括基于云计算技术的数据中心和虚拟终端、智能互联-思科移动和无线解决方案和医院内外统一协作医疗解决方案,以及协作式医疗技术(包括远程医疗和院内互联)和区域协作医疗网络云技术在思科“思蜀援川”项目中的应用。
对医疗机构而言,大量的业务应用数据、临床检验数据、医学影像数据对网络的带宽、可靠性等都提出非常高的要求。思科基于云计算技术的数据中心和虚拟终端技术,先进的高速万兆级局域数据网络技术以及数据、语音、视频、楼宇观察等各类信息网络的全面融合技术,能够为医疗机构提供面向未来的网络基础设施,从根本上保证数字化医院的运行。
与此同时,思科的移动和无线解决方案为医护人员、管理人员和访客提供无所不在的移动网络接入服务,集成化安全特性可以为保护敏感的患者数据提供先进的身份验证和加密技术。全面的思科网络和先进的管理工具可以提供集中、经济有效的管理并确保可靠性。
思科提供的统一通信(基于IP网络的多功能语音及视频电话技术)、思科网真(高清数字视频会议技术)、数字媒体系统(基于IP网络的信息发送与显示平台)等主要协同技术优化了医院工作人员的工作流程,为医护人员提供无缝整合的数据,使医护人员能够更加便捷地随时随地获得所需的业务信息,进而为患者提供更可靠的、更高质量的医疗服务。
1.教会学生读懂题目
(1)题目冗长。应用题中对事件的过多赘述,往往造成学生对题目的阅读产生疲惫感,以至于无法在题目中及时有效地把握正确的信息进行解答,甚至做出错误的判断。(2)给出的已知条件表述不直接。应用题中或许不总会正面给出学生做题所需的已知量,缺乏分析能力的学生也许就不能正确找到隐含条件,并运用此已知量来求得答案。(3)不能正确判断比较量。在一些应用题中,往往出现A 物比B 物大多少,B 物比C 物大多少,已知A 物,求C 物等题。在处理这些问题中,学生们往往不能清晰辨认出各方之间的关系,导致做题困难。(4)概念不清。在一些应用题中,已知条件给出的是半径还是直径,求半圆周长抑或是圆周长,学生们也不时会弄错。但这除了是概念不清外,也有可能是粗心导致的结果。(5)错误的习惯性思维。部分学生认为给出的条件都有用,给出的条件都只用一次。但这并不总是如此。相反,有些题目给出的条件就是混淆视听、而有些条件却需要用上两次才能解决。
2.教会学生运用直观式方法解答小学数学应用题
2.1 会借助图形解答应用题
在小学数学应用题的解答过程中,动用线段等图形辅助工具解答题目是最直观且准确率最高的方法之一。小学生的思维正处于以具体形象思维为主,向以抽象逻辑思维为主的过渡阶段。思考总是离不开形象的材料作为辅助手段,对于抽象的总是理解起来比较困难。而这一转变往往依靠一定量的直观思维做基础,学生才可以在遇到相类似题目时迅速反应过来。而当学生们在面对此类题目也无需再依靠画图便能准备理清各者之间的关系时,便是抽象思维的培养。例1:十棵树苗,要栽五行,每行四棵,请你想法。解符合题目要求的图形应是一个五角星。4×5÷2=10。因为五角星的5条边交叉重复,应减去一半。
2.2 会利用方程解答应用题
同任何一种知识点的学习一样,利用方程解决实际问题的教学也决不能仅仅停留在“会”的层面,而应该以“会”为依托支点 ,追求更为深入的数学化, 只有这样方程思维模型的抽象构建才能实现。方程这个名词在小学生看来像是一个极其复杂的内容,为此,老师务必引导学生正确接受方程这一解题方法,使学生从图像思维模式过渡到运用准确的数学语言解答小学数学应用题。算术算法的特点是未知数不参加列式,根据题里的数量关系,确定是怎样用已知数算出未知数,再列式计算;而方程算法的特点是,未知数是用字母表示,然后参加列式,根据题意找出数量间的相等关系,再列方程解。
3.训练小学生加、减、乘、除运算能力