欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

量化投资与基本面分析方法范文

时间:2023-07-16 08:24:12

序论:在您撰写量化投资与基本面分析方法时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

量化投资与基本面分析方法

第1篇

【关键词】量化投资;量化投资体系;证券市场

一、量化投资及量化投资体系的定义

什么是量化投资?简单来讲,量化投资就是利用计算机科技并结合一定的数学模型去实现投资理念与投资策略的过程。与传统的投资方法不同的是:传统的方法主要有基本面分析法和技术分析法这两种,而量化投资主要依靠数据和模型来寻找投资标的和投资策略。量化投资系统则是由人设定出某种规则,在计算机当中根据规则构建这种模型,而后由计算机自己去根据市场的情况进行一些投资机会的判断。从他们投资方式的区别当中可以看出,量化投资更依赖于数据,传统投资则更依赖于人的主观判断。从这点上来说,量化投资可以有效的规避一些人为的错误判断。

二、我国量化投资体系的发展

在美国,量化投资方法的发展己经有将近年的历史,量化方法从允嫉较衷谡嫉矫拦市场30%上以上的比重。而在中国,量化投资只是刚刚起步而己。但是已经有很多基金公司允即罅Υ蛟熳约旱牧炕投资团队,期望在传统的基本面研究之外源匆黄新的投资天地。国内证券市场上成立比较早的量化投资基金主要包括:嘉实基金――嘉实量化阿尔法股票、上投摩根基金管理有限公司――上投摩根阿尔法、光大保德信基金――光大量化、富国基金管理有限公司――富国沪深增强、国泰君安资产管理公司――君享量化。近年来,一些公募基金、私募基金也都不断加快了布局量化投资基金的方法。这些量化投资基金,主要研究了基于基本面的多因子选股模型,这些投资组合因子主要包括:公司财务基本面数据,市场行情数据,行业数据等,并在实证中不断完善量化投资指标因子的选取。研究行业以及个股的价格趋势,运用道氏理论、K线理论、波浪理论、切线理论、形态理论等一些常用的技术分析方法建立不同风格的投资模型和投资组合。

三、量化投资的优点

量化投资作为一种有效的主动投资工具,是对定性投资方式的继承和发展。实践中的定性投资是指,以深入的宏观经济和市场基本面分析为核心,辅以对上市公司的实地调研、与上市公司管理层经营理念的交流,发表各类研究报告作为交流手段和决策依据。因此,定性投资基金的组合决策过程是由基金经理在综合各方面的市场信息后,依赖个人主观判断、直觉以及市场经验来优选个股,构建投资组合,以获取市场的超额收益。与定性投资相同,量化投资的基础也是对市场基本面的深度研究和详尽分析,其本质是一种定性投资思想的理性应用。但是,与定性投资中投资人仅依靠几个指标做出结论相比,量化投资中投资人更关注大量数据所体现出来的特征,特别是挖掘数据中的统计特征,以寻找经济和个股的运行路径,进而找出阿尔法盈利空间。与定性投资相比,量化投资具有以下优势:

(一)量化投资可以让理性得到充分发挥

量化投资以数学统计和建模技术代替个人主观判断和直觉,能够保持客观、理性以及一致性,克服市场心理的影响。将投资决策过程数量化能够极大地减少投资者情绪对投资决策的影响,避免在市场悲观或非理性繁荣的情况下做出不理智的投资决策,因而避免了不当的市场择时倾向。

(二)是量化投资可以实现全市场范围内的择股和高效率处理

量化投资可以利用一定数量化模型对全市场范围内的投资对象进行筛选,把握市场中每个可能的投资机会。而定性投资受人力、精力和专业水平的限制,其选股的覆盖面和正确性远远无法和量化投资相比。

(三)是量化投资更注重组合风险管理

量化投资的三步选择过程,本身就是在严格的风险控制约束条件下选择投资组合的过程,能够保证在实现期望收益的同时有效地控制风险水平。另外,由于量化投资方式比定性投资方式更少的依赖投资者的个人主观判断,就避免了由于人为误判和偏见产生的交易风险。当然,无论是定性投资还是量化投资,只要得当的应用都可以获取阿尔法超额收益,二者之间并不矛盾,相反可以互相补充。量化投资的理性投资风格恰可作为传统投资方式的补充。

四、量化投资的局限性

量化投资是一种非常高效的工具,其本身的有效性依赖于投资思想是否合理有效,因此换言之,只要投资思想是正确的,量化投资本身并不存在缺陷。但是在对量化投资的应用中,确实存在过度依赖的风险。量化投资本身是一种对基本面的分析,与定性分析相比,量化分析是一种高效、无偏的方式,但是应用的范围较为狭窄。例如,某项技术在特定行业、特定市场中的发展前景就难以用量化的方式加以表达。通常量化投资的选股范围涵盖整个市场,因此获得的行业和个股配置中很可能包含投资者不熟悉的上市公司。这时盲目的依赖量化投资的结论,依赖历史的回归结论以及一定指标的筛选,就有可能忽略不能量化的基本面,产生巨大的投资失误。因此,基金经理在投资的时候一定要注意不能单纯依赖量化投资,一定要结合对国内市场基本面的了解。

五、量化投资对中国的启示

通过研究国外市场的发展和中国市场的特点,对中国市场上的监管创新,制定相关的法律法规也势在必行。由于市场结构的差异,国内量化投资情况与国外有很大不同。技术型量化投资的应用主要是集中在期货市场,并且有较高的推崇程度;金融型量化投资的应用主要集中在股票市场,由于需要应用的时间数据周期相对较长,实际中应用并不普遍。目前,中国金融市场正处于迅速发展的阶段,很多新的金融工具在不断被引进,用量化投资方式来捕捉这种机会,也是非常合理的。与国外相比,目前国内股票市场仅属于非有效或弱有效市场,非理性投资行为依然普遍存在,将行为金融理论引入国内证券市场是非常有意义的。国内有很多实证文献讨论国内A股市场未达到半强势有效市场。

目前对中国市场特点的一般共识包括:首先,中国市场是一个个人投资者比例非常高的市场,这意味着市场情绪可能对中国市场的影响特别大。其次,中国作为一个新兴市场,各方面的信息搜集有很大难度,有些在国外成熟市场唾手可得的数据,在中国市场可能需要自主开发。这尽管加大了工作量,但也往往意味着某些指标关注的人群少,存在很大机会。其三,中国上市公司的主营比较繁杂,而且变化较快,这意味着行业层面的指标可能效率较低。而中国的量化投资实际上就是从不同的层面验证这几点,并从中赢利。例如,考虑到国内A股市场个人投资者较多的情况,我们可以通过分析市场情绪因素的来源和特征指标,构建市场泡沫度模型,并以此判断市场泡沫度,作为资产配置和市场择时的重要依据。

在中国金融市场的不断发展阶段,融资融券和股指期货的推出结束了中国金融市场不能做空的历史,量化投资策略面临着重大机遇。运用量化投资的机理和方法,将成为中国市场未来投资策略的一个重要发展趋势。量化投资在给投资者进行规避风险和套利的同时,也会带来一定的风险,对证券具有助涨助跌的作用。由于国内股票市场还不够成熟,量化投资在中国的适用性很大程度上取决于投资小组的决策能力和创造力。以经济政策对中国量化投资的影响为例。中国的股市有“政策市”之称,中国股市的变化极大的依赖于政府经济政策的调节,但是经济政策本身是无法量化的。基金建仓应早于经济政策的施行,而基于对经济政策的预期,但预期的影响比经济政策的影响更难以量化。例如,在现阶段劳动力成本不断上升、国际局势动荡、国际大宗商品价格上升的情况下,央行何时采取什么力度的加息手段,对市场有何种程度的影响,这一冲击是既重要又无法量化的。为解决这个在中国利率非市场化特点下出现的问题,需要基金投资小组采取创造性的方式,将对中国经济多年的定性经验和定量的指标体系结合起来,方能提高投资业绩。

参考文献:

[1]方军雄.我国证券投资基金投资策略及绩效的实证研究[J].经济科学,2002.04

第2篇

在BGI的主动投资领域中, “市场中性”策略取得了巨大成功。黎海威开发的香港、新加坡市场的量化模型正是运用到此类市场中性基金,它们采用的是后来名满天下的基本面量化投资方法。简要地说,基本面量化投资即借助一系列基本面因子构建的量化模型筛选股票,以融资融券的方式实现多空对冲,从市场中获得绝对收益。除此以外,相关模型也运用到指数增强和130/30基金。

在黎海威看来,投资是个概率问题,通过基本面分析,提高找出好股票从而跑赢市场的概率,即赢面。如果挑选的每只股票的赢面在55%,而投资组合由100只这样的股票构成,整个投资组合战胜市场的概率就会接近100%。

量化投资的核心在于维持一个稳定的赢面,而在比较大的范围(即投资的宽度)内运用它。挑选出好股票,需要从合适的维度来筛选,比如估值、盈利质量、情绪等等。这些因子都不是随意挑选的,它们一般有金融理论背景(价值投资、行为金融等)支持, 并结合了当地市场的实际情况。

基本面量化投资并非像人们想象的只是靠跑系统选股和交易,事实上,它的本质是主动投资。这样的投资方法,关注基本面和市场演变,需要基金经理的经验、判断和对市场的理解。黎海威认为,关键在对市场黎海威在量化投资的世界里,华人迄今掌管的最成功基金之一是巴克莱亚洲(除日本)市场中性股票投资基金。2012年8月,曾在巴克莱工作时间最长的华人基金经理黎海威,回国进入景顺长城基金,担任景顺长城基金的量化及ETF投资总监。他即将启动其在国内的第一个量化投资产品——景顺长城沪深300指数增强基金。的理解, 在把量化框架和当地市场的实际情况结合起来,在强调纪律性的前提下, 坚持以量化模型为依托, 不断地将新出现的现象和发现的规律抽象出来,添加到模型中。

与此同时,对于特殊事件,比如数据错误、 收购兼并等量化模型无法及时处理的情况, 需要基金经理在投资组合中控制相关风险。更为重要的是,因子的研究和权重的调整要有前瞻性。例如在次贷危机发生后很长一段时间里,人们对价值股没有任何兴趣,但随着违约风险逐步降低,价值股在2010年迎来了相当强劲的行情。当时,由黎海威担任基金经理的亚洲(除日本)市场中性股票投资基金及时调整了价值股权重,获得很好的业绩。

当然,基本面量化投资有着量化的纪律性,这是业绩稳定性的保障。黎海威认为,量化投资的纪律性首先表现在量化研究的严谨性上。做量化投资并非像大家想象中的多空对决的精彩,反而有点像做金融的博士论文,整个研究过程从课题的提出到研究、回测都是在严密的框架下进行的,是可重复验证的。

第3篇

外面这么热闹,金融业内对此却颇显冷漠。某金融工程师在接受媒体采访时表示,平时不怎么关注迪马克,:“技术分析只是决策中的一个方面,做投资时,会辅助使用一些技术指标,但不会像迪马克那样精细化,而会看一些市场底部或顶部的特征,包括成交量、形态等。”

事实上,迪马克的指标并非横空出世,两年之前,就有券商提出了TD的中国改进版,行内简称TD模型。最开始这家券商还热热闹闹地经常报信号,然后就不怎么跟了。至于其他技术模型,也没有一个能得到长久关注的。笔者在同业交流时常抛出技术分析的话题,很多人常常只是笑笑,“技术这事嘛,仁者见仁……”。

虽然近几年里,技术分析在业内并非主流,但在早些年,技术分析的市场要大的多。90年代做股票,连公募界也多谈的是均线和趋势。那时候,市场规模小,波动大;公司少,可选的蓝筹股不多;散户多,投资追涨杀跌的多。发展到如今,至少在机构,看基本面的多,看技术分析的少,这也是市场自身的一种适应与变化吧。

到底谁对谁错,该看基本面还是技术分析?这不是本文可以得到的结论。事实上,基本面投资和技术面投资的实质没有区别。所有的投资,都是从历史规律中学习和总结经验。基本面看的是公司的财务、管理、发展等的规律,技术面看的是股票价格的规律。有效市场假说认为,证券价格已充分地反映了投资者可以获得的信息,包括基本面信息。所以光看价格也不能说它不科学,这只是某种尚有争议的科学假说而已。

对于量化投资者而言,重要的是对各类投资方法保持一种开放的心态。金融工程师们不必耻于谈技术。而对于那些流传在民间的各位技术大师,不可全信,也不可否定,有甄别的学习才是一种科学的态度。而对于散户,也不必过于盲从所谓的技术大师。现在出了个迪马克,以后就跟着他的观点走,他说牛我就买,他说熊我就卖?这不是一种明智的投资方法。

投资方法应该是一套科学的体系。评价投资方法要考察足够多的样本,测试足够多的环境,对于那些几次成功就拿来忽悠的某些指标或模型,风险太大。而单论技术择时,如果仅仅是对上证指数,由于时间不够长,种类也单一,样本数是偏少的,很难做出成功的模型。这也是量化投资很少做大盘择时的原因。

回到迪马克的观点。“沪指未来六个月将继续反弹至2900点(迪马克在去年12月初预测大盘将反弹48%至2900)”?我不认为有足够大的可能性。至少在我个人自认为科学的逻辑体系下,迪马克预测准确的可能性只有25%。具体而言,对于一个行权价高出现价(2328点)500多点的美式看涨期权来说,在年化40%波动率的假设下,半年内行权的概率仅为25%。

第4篇

量化投资,正在A股市场掀起一股热潮。

今年7月中下旬以来,尽管对于未来股市究竟能冲到多高点位,市场分歧一直不断,但一直保持较高仓位的量化产品,已经呈现出越来越明显的赚钱效应。相关数据表明,量化基金今年以来整体业绩平均回报已经占胜了主动权益产品。据Wind数据统计,自2004年国内诞生第一只量化基金以来,目前市场有24只主动量化概念基金产品,涉及19家基金公司。截至9月12日,量化基金今年以来平均收益为12.46%,而同期全部权益类产品的平均收益为9.48%。其中,华泰柏瑞量化指数今年以来收益20.37%,排名前十分之一。

此前,“量化投资”这个词虽还不为大多数投资者熟悉,相对海外量化基金,国内公募的量化基金起步较晚,之后的发展也一直非常缓慢。但在2005年~2009年指数型基金带动公募量化崛起之后,随着融资融券的成熟及期权的推出以及量化基金在A股市场现今的优异表现,市场人士预计,必然将再度在中国资本市场催生第二波“量化投资”热。

有鉴于此,《投资者报》“基金经理面对面栏目”本期特别邀请到华泰柏瑞量化指数基金的基金经理卿女士,就当下量化投资的一些热点问题、投资技巧以及四季度行情的走势判断等相关问题进行交流。

卿认为,量化投资不能做加法,人为将某个个股加入买入清单;又必须经常结合基本面,对量化模型进行合理的改善。同时她还指出,A股主板市场经历了长时间低迷,估值已经反映经济中的问题和增长的放缓,除非经济发生重大或系统性风险,下行空间有限。

华泰柏瑞量化初露峥嵘

《投资者报》:我们关注到,华泰柏瑞量化指数自2013年8月2日成立以来,特别是自今年2月成立满6个月以来,已经连续5个月蝉联海通证券超额收益榜“增强股票指数型基金”冠军。截至9月19日,在短短一年多点的时间里取得了24%的收益,在同类产品中遥遥领先。请问是什么原因让华泰柏瑞量化指数业绩回报如此出色?

卿:我们的量化模型一年多运作下来比较成功,除了模型本身设计上的优越性之外,也归功于我们团队的努力。我们开发的量化模型是基于基本面的量化选股模型,并且针对A股市场的特点作了调整,加入了一些独特的基本面因子。这些因子是华泰柏瑞团队投资技能的体现,希望以此区别于市场中其他的量化投资策略,华泰柏瑞未来也会进一步研究新的因子,并加入到投资模型中去。

我们的投资目标有两个,一是战胜市场,二是提高单位风险带来的收益。事实证明,基金成立以来的回撤数据和信息比率都十分良好。

量化投资不能做“加法”

《投资者报》:您曾称目前业内一线的量化投资思路是做“聪明的量化投资”,即既要坚守量化投资的流程底线和投资本质,也要做必要主动决策和风险管理。请问您是如何把握这个主动的动作幅度和范围的?换言之,这个主动的动作幅度具体是什么比例?多大范围?

卿:这里我们所说的聪明量化是指和基本面相结合的量化。主要体现在三个层面:一是模型构建方面跟踪市场变化做出适时调整。在有市场观察验证并有数据支持的情况下,调整模型不同因子间的权重,并淘汰不再适用的因子,根据反映市场独特特点的基本面信息,开发新的独有的因子,不断改进完善模型。二是结合基本面信息,在投资组合构建过程中,控制组合对一些模型尚未反映的风险因素的暴露,并把个别交易标的从交易清单中剔除,以反应模型尚未捕捉的重要信息,像临时重大信息披露、涨停板等,但决不会人为挑选个股加入交易清单,以坚守量化投资的纪律性。三是在极端情况下为保护投资人利益需要尽最大能力做出对投资人最为有利的决策,以应对市场大的转折。主要是指危机状态下,不会机械地固守模型,如果是只做多的策略,会相应做出减仓等应对措施,而不是为坚守不择时的纪律而让投资人蒙受损失。这主要是来自2008年金融危机的教训。

同时,我们与基本面结合,不以牺牲纪律为代价。正常情况下,主要以改善模型为主,把基本面观点通过模型反映到投资组合中。在个股层面,只能结合市场信息,从模型给出的交易清单中剔除个股,而不可以人为将某个个股加入买入清单,以坚守纪律性。

量化投资在国外被广泛应用

《投资者报》:在您眼里,中国的量化投资才刚刚起步。您曾表示“中国的量化投资管理的资产规模至少5年内还看不到发展的天花板”。那么,时至今日,您认为中国的量化投资管理的资产规模的天花板应在什么位置?为什么?

卿:国际市场上,量化投资是区别于基本面投资的另一种主要投资模式,和基本面投资相比,有它自身的优势。量化分析在境外资产管理公司中得到非常广泛的应用。一些资产管理公司像过去的BGI(巴克莱旗下资产管理部门巴克莱全球投资者)和AQR(华尔街表现最突出的量化对冲基金之一)等等,全部采用量化投资策略;另外一些公司,像GMO(知名的全球投资管理公司,管理规模上千亿美元),Pimco(全球最大债券基金――太平洋投资管理公司)和Citadel(美国芝加哥大城堡对冲基金公司)等则把量化分析和基本面分析结合在一起运用。 总的来说,境外几乎所有大的资产管理公司都会或多或少依赖量化分析的方法。

目前,A股市场绝大部分投资策略都是基本面投资,真正做量化投资的资金很少,其获得超额收益的市场机会很多,发展空间很大;并且国内市场样本多,利用量化手段来捕捉超额收益的胜率也有保障,因此未来的前景是比较乐观的。

量化投资能够战胜A股市场

《投资者报》:今年以来量化基金的杰出表现,让不少投资人惊呼“量化的春天已经到来”,对于市场上的这种乐观情绪,田总又是怎么看的?

卿:在国际市场,量化投资在投资领域已经占有了重要的一席之地。当前的A股市场中量化分析的运用程度还非常低,所以我们相信量化投资的市场份额一定会逐步增大,未来的发展空间是巨大的。另外,随着市场的完善,量化投资有机会为市场提供像绝对收益等的新产品,使得市场中的投资产品更加丰富,投资人可以有更多的选择。

《投资者报》:相对于其它主动管理的基金,量化基金在A股市场具有哪些优势,以致其能在今年的A股市场整体领先?

卿:A股市场的特性十分适合基本面量化投资。

第一个原因是A股市场处于弱有效状态,战胜市场的机会较大。A股市场的发展历史较短,市场效率相比发达经济体低很多,因此有很多发现阿尔法因子的机会。

第二个特点是目前量化投资的市场份额小。国内目前的基本面量化产品规模总体不大,其中严格遵循量化投资理念的基金更少,因此有很大的市场空间和盈利机会。

第三是A股市场容量大,而且还在快速扩容中,给量化投资提供了足够的投资宽度和行业宽度。

第四是A股的数据质量不断提高。供应商提供的数据以及识别数据可靠性的技术手段不断得到提升,使得以数据为基础的量化投资的投资环境也不断得到加强。

第5篇

数量化投资理念成就了一大批数量化基金经理,詹姆斯•西蒙斯无疑是其中的佼佼者。他所管理的大奖章基金对冲基金,从1989年到2006年的17年间,平均年收益率达到了38.5%,而股神巴菲特过去20年的平均年回报率为20%。

国内的公募量化基金在沉寂4年之后重现江湖:2月份,嘉实量化阿尔法发行,于4月成立;5月份中海量化发行,于6月份成立。私募基金也不甘落后,中国第一只量化阳光私募产品――“山东信托•红色量化一号”证券投资集合资金信托计划6月1日正式成立。

据悉,国内一些公司正在积极申报量化产品不久将还会有量化基金发行。

作为“舶来品”的量化基金,其前世今生如何?

国外量化基金发展迅速

量化基金即以数量化投资来进行管理的基金,数量化投资区别于基本面投资,它不是通过“信息和个人判断”来管理资产,而是遵循固定规则,由计算机模型产生投资决策。量化投资并不是基本面分析的对立者,90%的模型是基于基本面因素,同时考虑技术因素。由此可见,它也不是技术分析,而是基于对市场深入理解形成的合乎逻辑的投资方法。

数量化技术发源于20世纪70年代,以1971年富国银行发行跟踪纽约证券交易所1500只股票的指数基金为标志,此后随着计算机处理能力的提高,越来越多的物理学家和数学家离开学校被华尔街雇佣,基金经理们开始依靠电脑来筛选股票。

1979年巴克菜全球投资成立了第一支主动数量投资基金标志着量化投资由草根实践走到了公募基金历史舞台聚光灯下。

根据Bloomberg的数据,截至2008年底,1184只数量化基金管理的总资产高达1848亿美元,相比1998年21只数量化基金管理的80亿美元资产来说,平均增长速度高达20%,而同期非数量化基金的年增长速度仅为8%。

2000年之后是数量化基金发展的黄金时期,无论是个数还是管理规模都有了跨越式的发展。1998年数量化基金仅136只,至2002年增长一倍多,达316只,2008年底更是达到1848只,1988年至1998年年平均增长率为46%,2000年至2008年年平均增长幅度达54%。从规模上来看,1988年至1998年年平均增长率为32%,2000年至2008年年平均增长幅度达49%。

其中的原因有二:一是,2000年之后计算机技术飞速发展,为数量化的应用提供了良好的平台。更为主要的是主动管理型基金很难战胜大盘,于是投资指数基金以及采用数量化方法筛选股票逐渐流行起来。而且数量化基金的表现也非常不错。2002年至2007年5年间,相比美国市场主动型管理基金每年5.93%的超额收益,那些覆盖所有资产的数量化基金每年的超额收益可以达到6.95%。二是,有研究表明,2004年至2007年,投资美国大盘股的数量化基金产品的表现平均超越非大盘主动型基金103个基点。

量化基金的心脏

数量化基金的兴起,建立在数量化投资技术的发展之上。

数量化基金最明显的优势之一就是计算机处理数据的能力远远胜过人脑,这使电脑在海量股票选择中占有绝对优势。例如,在嘉信证券的股票评级系统跟踪的股票超过3000只,并且每只股票都综合了基本面、估值、动量和风险因素进行打分,并按分数高低给A至F不同的评级。其次,量化基金是以定量投资为主,用纪律性较强的精细化定量模型,代替了基金经理或分析师在定性层面的主观判断,使投资业绩较少受到个人“熟悉度偏好”的影响。最后,数量化基金收取的费率及管理费用比传统的主动型基金低很多,因为他们需要的研究人员更少,成本更低。据Lipper调查,数量化基金的平均费用是1.32%,相比而言,主动型基金的管理费用平均达到1.46%。

针对不同市场设计数量化的投资管理模型,以电脑运算为主导,并在全球各种市场上进行短线交易,正是西蒙斯的成功秘诀。

然而量化基金并非在所有市场都能有效战胜非量化基金。Lipper把基金分为4类型,将每一类型的量化投资与传统投资进行比较,2005年量化投资基金全面战胜传统基金,而2006年在增强指数型基金中,量化投资落后于传统型基金,到2007年则情况发生较大转弯,除市场中立基金外,其余量化投资基金全部跑输传统型基金。在考虑了风险、跟踪误差后,数量化投资具有更小的跟踪误差和更高的回报。研究表明数量投资基金业绩具有很强的轮动特点。大部分数量投资基金具有很强的价值投资偏好,因此,他们在价值型市场下表现良好,而1998-1999年是成长型市场,数量化投资基金大部分跑输传统型基金。2001-2005年是价值型市场,数量化投资基金普遍表现优异。

国内量化基金端倪

目前,国内基金市场上有4只量化基金,光大保德信量化核心、上投摩根阿尔法、嘉实量化阿尔法、中海量化策略,其中后两只均是今年才成立,前两只分别成立于2004年8月和2005年10月。

光大保德信量化核心一方面通过光大保德信的多因素数量模型对股票的预期收益率进行估算,个股预期收益率的高低决定投资组合是否持有股票;另一方面,投资团队从风险控制角度,重点关注数据以来的信息,通过行业分析和个股分析形成对量化的补充;最后由投资组合优化器根据预先设计的风险构建组合。

上投摩根阿尔法基金的描述则是同步以“成长”与“价值”双重量化指标进行股票选择,然后研究团队将对个股进行基本面审核,结合跟踪误差的紧密监控,以求不论指数高低,市场多空皆创造主动管理回报。投研团队最终决定进入组合的股票,量化分析是辅助和基础。

嘉实量化基金“定量投资”为主,辅以“定性投资”。通过行业选择模型,捕捉具有投资吸引力的行业,然后再在所选行业中运用Alpha多因素模型筛选个股。定性的辅助作用表现在利用基本面研究成果,对模型自动选股的结果进行复核,剔除掉满足某些特殊条件的股票。

中海量化策略以量化模型作为资产配置与构建投资组合的基础。根据量化指标实行从一级股票库初选、二级股票库精选,再根据相关模型计算行业配置权重。结合行业配置权重,组合中每只股票的配置比例。

第6篇

关键词:分析 短线

中图分类号:F832 文献标识码:A 文章编号:1672-3791(2012)09(c)-0252-02

2012年以来,以量化分析技术投资著称的量化基金表现得一枝独秀,逐渐从振荡市中脱颖而出。一季度,上证综指上涨2.88%,同期标准股票型基金平均业绩为0.31%,而按照Wind分类的13只量化基金,其平均业绩为2.92%,五行基金更是取得7.65%的正收益,在亚洲量化基金中排名第一,超越同期上证指数4.77个百分点。

美国私募基金复兴科技公司的第一支纯粹的量化投资基金—— 大奖章基金,从1988年3月成立至2008年的21年里,平均年度净收益高达36%,远远跑赢同期道指年均8.81%的涨幅,比索罗斯、巴菲特同期的业绩高出10%,原因:一是数学家基金经理;二是量化分析技术。

1 基本面分析量化分析是投资机构先后采用的2种投资技术

基本面分析,是分析员和基金经理通常采用研究财务报表,与公司高层会谈,与相关人员荷香业专家讨论等方式,对少数几家公司股票(约10到100只股票)进行非常深入的研究分析,来决定要投资哪些股票以及如何投资。在基本面分析分类中,会根据行业不同,有专员长期跟踪和深入研究其中一个行业,而这几名专员最后则会成投资这个行业的专家。在股票市场成立以来长期采用的较为传统的分析和投资方式就是基本面分析。基本面投资,通过企业内部财务报表的形式,来发现企业的潜在价值,以求企业得到稳定持续的高额收益,一旦买入,长期持有。

量化分析,借助数学、物理学、几何学、心理学甚至仿生学的知识,通过建立模型,进行估值、择时选股。量化分析员和量化基金经理,通常会同时研究全盘数千支股票,分析的方式也可以是基于公司基本面的,但是会强调量化财务指标。量化的指标(又称因子)也可以是其他更有特色的数据。从事量化分析投资的基金经理通常不去上市公司实地调研,而是将精力放在不断完善模型上,量化分析投资的模型是决定投资业绩的关键,投资模型始终处于绝密状态,不同市场设计不同的量化分析投资管理模型,在全球各种市场上进行短线交易。

2 量化分析技术获取超额投资收益之道

在变幻莫测的市场经济中,能否理性思考投资、不受情绪影响,将是成功的关键。而利用计算机的筛选得出的量化分析基金,不受投资中非理性因素影响,使投资更有计划行、纪律性、规律性,基金管理人要做到不贪婪、不恐惧、不放弃,不受情绪影响,以一颗平常心追求利益瘦小。

量化分析,有一套完整、科学的投资体系。严格的纪律性是量化投资明显区别于主动投资的重要特征。在量化分析基金的运作中,主观判断也会出现和量化分析模型相左的情兄,但会坚持量化分析投资的纪律,相信模型判断的长期稳定性,不会盲目去调整改变。与传统偏股型基金不同,量化分析基金采用独特的投资组合管理方式,渐进动态调整基金组合。这样不仅可以顺应瞬息万变的市场,还可以降低个股集中度,平稳投资业绩。因此,这种方式并不会产生传统意义的重仓股,也就大大降低了重仓个股的风险。

量化分析业绩,来自于量化分析模型批量选股的成功率大于失败率。量化分析的模型敏锐的“发觉”了开场环境的转变,自动调高了评估因子、预期因子及市场反转因子的权重,量化分析模型依此逻辑选择的股票大部分取得较好收益,提升了整体业绩。

3 量化分析技术创始人并非经济学家。

量化分析技术并非发端于华尔街,不少人最初并非经济学家,如巴契里耶和布莱克原先是数学家,夏普则从事医学,奥斯伯恩为天文学家,沃金与坎德尔是统计学家,而特雷诺则是数学家兼物理学家。1970年代美国债券市场和股票市场全面崩盘,当时提出用量化分析方法管理投资组合的人是作家彼得·伯恩斯坦。1952年3月发表“投资组合选择”论文、提出现代财务和投资理论最著名远见的马克维茨,以该理论勉强通过博士答辩,到1990年10月,这些人中才有三位获得诺贝尔经济学奖。

2012年,美国伦斯理工学院金融工程硕士李炬澎,依据5000年中国古老的《易经八卦数理》研发立体数量模型分析微观经济,用超高频率政治外交词汇、交易数据、股票期权数据、公司债务数据来做个股分析,用《五行相克相生原理》来分析自然、社会、政治、人文如何影响宏观经济。比如用计算机分析新闻报道中天地雷风水火山泽8中自然天文现象与宏观经济关联程度,使五行基金取得亚洲量化分析投资行业第一名的业绩。

4 量化分析技术应用的载体是计算机软硬件技术的发展

马克维茨的投资组合现代金融理论,提出了风险报酬和效率边界概念,并据此建立了模型,成为奠基之作。托宾随后提出了分离理论,但仍需要利用马克维茨的系统执行高难度的运算,1961年,与马克维茨共同获得1990年诺贝尔奖的夏普用IBM最好的商用电脑,解出含有100只证券的问题也需要33mim。夏普1963年1月提出了“投资组合的简化模型”(单一指数模型),简化模型只用30s。1964年夏普又开发出资本资产定价模型(CAPM),不仅可以作为预测风险和预期回报的工具,还可以衡量投资组合的绩效,以及衍生出在指数型基金、企业财务和企业投资、市场行为和资产评价等多领域的应用和理论创新。1976年,罗斯在CAPM的基础上,提出“套利定价理论”(APT),提供一个方法评估影响股价变化的多种经济因素。布莱克和斯克尔斯提出了“期权定价理论”。莫顿则发明了“跨期的资本资产定价模型”。

5 量化分析应用的关键是基本面分析无法快速精确处理丰富的金融产品和巨大交易量

1970年代以前,华尔街认为投资管理需要天赋、直觉以及独特的驾驭市场的能力,基本面分析师、基金经理可以独力打败市场,而无需依靠那些缺乏灵魂、怪异的数学符号和缥缈虚幻的模型。华尔街对学术界把投资管理的艺术,转化成通篇晦涩难懂的数学方程式一直持有敌意,1970年代初期,美国表现最佳的基金经理人从未听过贝塔值,并认为那些拥有数学和电脑背景的学者只是一群骗子。

量化分析投资不会出现在个人投资者为主的时代。个人投资者既缺乏闲暇的时间,也普遍无此能力。仅有现资理论的建立,及各类模型的完善与推陈出新,并不会直接催生出量化分析投资,它还需要其他几个重要前提条件,比如:机构投资者在市场中占据主导,随着社保基金和共同基金资产的大幅增加,成为市场上的主要机构投资者,专业机构管理大规模资产,需要新的运作方式和金融创新技术,专业的投资管理人有能力和精力专注地研究、运用这些量化分析技术。

1970年代后期的Wells Fargo银行,率先用量化分析技术管理投资组合,投资高股息股票,用较少的风险获得了较大的收益,不用这些模型,不用电脑运算这些公式,会陷于困境。1980年代以来,面对数不胜数的各类证券产品和期权类产品,以及庞大的成交量,许多复杂的证券定价,必须靠大容量高速运算的电脑来完成。到2007年美国股市近一半的机构基金都是由量化模型来管理的。从2000年初到2007年全球量化分析基金市场连续8年表现远远超过其他投资方式。

6 量化分析在应对经济危机和突发经济事件中开拓前进

1987年10月大股灾,当天股市和期货成交量高达令人吃惊的410亿美元,价值瞬间缩水6000亿美元。很多股票直接通过电脑而不是经由交易所交易。一些采用投资组合保险策略的公司,在电脑模式的驱使下,不问价格机械卖出股票。很多交易员清楚这些投资组合会有大单卖出,宁愿走在前面争相出逃,加剧了恐慌。针对整个投资组合而非单个证券,机械式的交易,电脑的自动操作,大量的空单在瞬间涌出,将市场彻底砸垮。

1997年至1998年亚洲金融危机股市暴跌,量化分析投资的算法交易也起到了同样的坏作用。著名的长期资本管理公司,遭遇俄罗斯国债违约这一小概率事件,也陷入破产之境,迫使美联储集华尔街诸多投资银行之力,加以救助。

2007年8月金融危机中,许多量化基金出现巨额损失。其原因主要是几家大型对冲基金大量卖出它们的量化分析基金股票,去弥补其在其他投资方式上的损失。由于很大相同仓位的股票在很短的时间内被廉价卖出,从而加剧了很多投资指标的损失,尤其是价值和动量指标的损失。

2011年即使欧债金融危机发生,量化分析基金也再次表现优异,超过其他投资方式,虽然能否就此再度复兴仍属未知,此一趋势已不可逆转。

7 量化分析技术今后几年全球应用的热点在中国的A股市场

中国金融、资本、股市投资者结构很不合理,A股市场的专业投资机构持有市值的15.6%,而发达市场这一比例大致为70%。更为不合理的是交易结构,A股市场个人投资者持有市值占比26%,但却完成了85%的交易。根据Wind分类,目前我国市场上共有13只量化基金,包含11只普通股票型基金,1只指数基金和1只偏股混合基金。

中国现有的人才和技术都难以支持完全的量化分析投资,在缺乏国际化人才和成熟模型的情况下,经营业绩自然也差强人意。

量化分析今后几年全球热点在中国的A股市场。现在主要发达国家的股市很大程度上由量化基金所控制。为了寻找更高收益的市场,很多大型量化基金也开始大量投资于发展中国家市场,中国的A股市场是今后几年全球量化分析投资热点,所以近年来很多北美和欧洲的高层量化分析基金经理和分析员纷纷到中国大陆、香港和新加坡推广量化投资技术。这是国际国内的金融市场和投资者,都要面对的机会和挑战。

量化分析基金2002年才在中国刚刚起步,到2009年和2010年,才真正进入快速发展期,2010年末量化基金的总规模达到了779亿元。虽然规模有显著提升,但是与国外市场量化分析基金占共同基金总资产16%相比,国内量化分析基金还有非常大的发展空间。

第7篇

华尔街从来不乏传奇。2006年,全球最高薪酬收入再次落入一个华尔街人士之手。前数学家、定量化对冲基金经理西蒙斯年收入达到惊人的15亿美元。2009年,另外一群人――高频交易者――帮高盛银行等金融机构赚得盆满钵溢。

这些人,因其使用高等数学手段决定亿万计资金的投向,而在30年前赢得“火箭科学家”名声。在外人看来,他们有些像中世纪的炼金术师:给他们数据,他们还给你美元!

华尔街的数学传说

实际上,在华尔街上管理资金规模最大的量化技术,并非那么不可捉摸:众多公司使用“因子加总模型”辅助他们选择股票。

这种方法大多基于Fama-French的开创性论文,其基本思想很简单:依据各项基本面指标对于历史上超额回报的贡献程度,来决定这些基本面指标在选出“超级股票”上的“有效性”,并据此赋予这些指标不同的权重;按照上市公司指标在全部篮子股票中的排序,再使用上述步骤中获得的权重对其进行加权加总计算。如果该公司的加权之和排名靠前,则表明该公司的基本面指标符合能够带来超额回报的历史模式,从而有望在未来展现强势。

数学模式大同小异,公司之间的竞争主要集中在两个方面:第一,各公司均投入巨资,研制自己的特有指标;第二,研制更加有效、稳定的加总方式。

传统的基本面分析往往要求基金公司雇佣大量分析师,成本高昂。由于每个分析师能够跟踪的公司数目有限,基金经理不得不在较小的股票篮子中进行选择,有可能错失最好的投资机会,投资组合的分散程度也受到限制。同时,依赖基本面分析进行投资管理要求基金经理进行大量的主观判断,人性弱点(贪婪与恐惧)对投资业绩往往产生较大影响,投资业绩波动较大。使用这种方法建构的投资组合往往无法定量化控制每只个股给投资组合带来的风险。从基金公司的角度而言,这种方法对基金经理个人的依赖较大,一旦出现人员变化,基金业绩也往往随之波动。

量化选股方式将投资决策建立在对历史模式的详尽研究之上,克服了上述缺点。其在美国投资界的应用近20年来大幅提升,管理资产额的上升速度为传统方式的4倍。

回归价值投资

然而,过去数年,定量化基金遭遇了重大打击。2007年,最大的定量化机构对冲基金、高盛名下的Global Alpha遭遇了重大损失,几乎清盘。2008年,众多量化基金再遭滑铁卢。笔者在北美也曾主持研制一个包含上百个指标的量化选股系统,但在实践中,却最终放弃。

实战经历指出该类系统的一个致命弱点是,在实战中,哪一类因子何时发挥作用,是不可预测的。有些时候是价值因子占优,有时候是增长因子占优,而何时其影响力出现变化,难以事先预测。其结果就是分析师与基金经理疲于奔命地试图追赶因子影响力变化的脚步,并据此不断矫正模型。如此,基金经理不得不在使用量化系统的同时,使用个人化的随机判断对量化系统进行纠正――这弱化了它本该享有的优势并导致投资业绩大幅波动。

仔细反思,最主要的问题在于,各预测因子被无机地组织在一起,各个因子之间的互相影响却没有被考虑。也就是说,华尔街模型“从数学到数学”,缺乏对投资哲学的深入理解。

量化技术所具有的优势应该被利用,但数学手段应该被视为手段,而不是主导。一个有希望的发展方向,是将量化技术与价值投资哲学相结合,实现“从哲学到数学”式的投资理念。为此,需要在投资哲学上,梳理价值投资理念的本质。

价值投资在国内市场有众多拥护者,也不乏怀疑者。实际上,国内普通投资者对价值投资的理解有值得深化之处。笔者以为,价值投资的本质有二:

第一,价值投资告诉投资者,市场会犯错。以“5毛钱买进1元钱价值”作为号召,价值投资拒绝接受“有效市场理论”。但事实上,在大多数时候市场是有效的。大多数股票的价格正确反映了所有的信息、知识与预期,当时的价格就是上市公司的内在价值。要获得超额回报,必须去寻找市场可能呈现的“异常”,或者说在何处投资者的平均预期可能落空。价值投资就是寻找“未来”与“预期”之间的歧异。量化系统的设计目标是,要有能力淘汰那95%的普通(有效)情况,而把注意力引导剩余的5%――在那里,“未来”与“预期”有最大的机会出现歧异。

第二,价值投资的另一面,是说任何人都会犯错。当我们集中注意力去寻找“超级股票”的时候,是在下一个极大的赌注。这个赌注是高风险的。所以,请记住索罗斯的告诫:“投资者重要的不是做对还是做错,而是在做对的时候赚多少,做错的时候亏多少。”为对冲第一个赌注的风险,需要寻找最大的安全边际――当我们犯错的时,安全边际将保护我们不致尸骨无存。

安全边际是指,市场涨跌的轮回已经测试过所有情景。该公司在完整的牛熊市周期中,由千千万万投资者的真金实银所测试出来的估值空间。因此,安全边际的定义并非相对市场平均水平更低的PE值这么简单。每家公司都不同于别的公司,将不同公司的估值水平相比较,更多时候带来误导而不是洞察力。应该将公司目前估值水平与该公司调整后的历史范围相比较,并决定“安全边际”存在与否。

在实践中,要寻找在未来可能提供业绩惊喜、而仍在其估值范围下限附近交易的公司。依据此思想,数量化技术可以对所有上市公司的投资机会予以量化评估,进而实现“从哲学到数学”的投资思路。

对中国股市独特性的夸大导致某些论者以为,在中国股市,唯有投机可以赢得超额利润。这其实是伪命题。事实上,正是由于中国股市效率较低且风险奇高,一个系统化评估市场错配与风险衡量的系统,可以发挥最大效率。一切都取决于对市场运行规律的深入把握与技术优势的结合。在实践中,我们开发的量化价值投资体系取得了稳定超越指数的优良业绩。这有力地证明,中国股市的特殊性并没有遮盖其作为投资市场的普遍性。

在股市投资这项人类活动中,同时存在着两类知识。一是客观知识,即可以凭借科学(数学)方法来发现的真实;二是主观价值,即通过对价值的认定来获得的完善。在证券分析方法的演进过程中,这两类知识从最初的混沌不分,到此后的分裂和截然对立,再到两者被有机结合。