欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

电力系统研究分析范文

时间:2023-07-14 16:25:25

序论:在您撰写电力系统研究分析时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

电力系统研究分析

第1篇

电力系统潮流计算具有很重要的现实意义:可以合理规划电网中的电源容量和电源接入点以及确定最佳的电网架构;可以找出电网中因为负荷增长和新设备投入而导致的薄弱环节,方便对电网进行网架结构的改进以及基建的加速;提供发电厂进行有功、无功调整以及负荷调整的计算依据;可以分析未来可能发生的事故以及设备的投切对电力系统静态稳定性的影响,进而得出相应的运行方式和调整方案。

在过去半个世纪以前,人们都是采用手工方法计算电力系统潮流,主要依靠计算尺。但是由于电力系统日渐复杂,手工计算起来非常复杂,不仅耗时费力,同时也容易出错。与此同时,伴随着计算机行业的飞速发展,就出现了后来的计算机算法。

在传统的“电力系统分析”教学课程中,教师们一般仅针对一些简单的电力系统(节点数很少)进行潮流计算,而忽视了现有潮流计算最通行常用的计算机算法。这种课程教学不仅枯燥,学生难以深刻领悟,而且与实际研究脱轨,因为目前现实中的电力系统都很复杂,采用手算不切实际,也就失去了教学的根本意义。本文针对课程教学中潮流计算方面存在的问题而进行教学改革研究。

DIgSILENT软件的潮流计算简介

电力系统仿真软件DIgSILENT的名称来源于数字仿真和电网计算程序(Digital Simulation and Electrical Network),是德国DIgSILENT GmbH公司开发的电力系统仿真软件。

DIgSILENT软件几乎包含了所有电力系统的常用分析功能,如潮流计算、短路计算(包括对称短路和不对称短路计算)、机电暂态和电磁暂态计算、谐波分析以及小干扰稳定性分析等等。另外一个重要的特点是把机电暂态分析模型与电磁暂态分析模型结合到一起,这样做的好处就是它不仅能够分析电网的暂态故障,而且又能研究电网的长期的电能质量问题及其控制手段。

DIgSILENT/Power Factory提供了非常全面的电力系统元件的模型库,包括发电机、电动机、控制器、动态负荷、线路、变压器、并联设备的模型,甚至包括风电机组电气部分的模型,如:双馈感应电机、变频器等等;其他部分如风速、机械传动系统、空气动力学部分以及控制系统都采用动态仿真语言DSL进行搭建。

DIgSILENT可以描述复杂的单相和三相AC系统及各种交直流混合系统。利用DIgSILENT进行潮流计算时,通过指定发电机、异步电动机、负荷等系统元件的特性来确定与之相连的母线在潮流计算中相应的属性,这样就能够以简单的操作方式来模拟复杂而真实的系统。此外,程序还提供了多种远程控制模式,例如多个发电机共同控制系统频率或母线电压等。DIgSILENT以更加接近实际情况的方式执行网络的控制模式,使操作和计算均得到简化。潮流求解过程提供了3种方法以供选择:经典的牛顿-拉夫逊算法、牛顿-拉夫逊电流迭代法和线性方程法。与此同时,DIgSILENT软件还可以进行变电站控制、网络控制以及变压器分接头调整控制。当潮流计算遇到不收敛的情况时,程序会自动将非线性的元件模型逐步线性化(主要是将所有负荷逐步转变为恒定阻抗,将非平衡节点发电机转变为带内阻抗的简单电压源),进而得出计算结果,该结果可用于对系统不收敛的原因作进一步分析。潮流计算的同时,DIgSILENT软件还可以实现过负荷校验计算等功能。

此外,最新版本的DIgSILENT还提供了最优潮流计算(OPF)功能。所谓最优潮流计算就是对基本潮流计算的有益补充。最优潮流计算主要采用内点法,而且提供了多种约束条件和控制手段,其目标函数主要有最小网损、最小燃料费用、最大利润及最小区域交换潮流。

DIgSILENT软件正逐渐成为电力系统研究方面最为认可的计算机软件之一,其所提供的潮流计算以及仿真结果已经在世界范围内得到广泛认可。

课程教学安排

手算

潮流计算可以用一组高阶的非线性的方程来表示,但是不含有微分方程,主要是因为潮流计算隶属于稳态分析,故不涉及系统元件的动态特性和过渡过程,而解非线性代数方程组最基本的方法就是迭代。因此,设计潮流计算算法的首要任务同时也是最为关键的问题就是收敛性,最终得出合理的解。

虽然目前计算机潮流算法运用十分广泛,但是掌握一些手算方法,不仅可以加深对其物理概念的理解,而且即便采用计算机算法,之前通常仍需采用手算求取某些原始数据。

这里所说的潮流计算手算方法主要针对简单网络的潮流分布,但是所谓的简单网络和复杂网络之间并没有明显的界限。课前老师把所需进行手算的算例以及分析资料分发给学生,让大家提前预习并先进行独立计算。然后在实验课上针对大家可能出现的共同问题进行详细讲解,并推导全过程,加深大家对潮流计算的认识和理解,掌握其原理。

运用DIgSILENT软件计算电力系统潮流

前面已经说到,计算机算法是大势所趋,而且已经得到广泛运用,是电气工程专业学生必须掌握的一项重要技能,也是未来继续深造以及竞争重要工作岗位的一个重要砝码。所以掌握并熟练运用计算机软件对本专业学生的未来发展起着重要的推动作用。

众所周知,DIgSILENT软件正逐渐成为电力系统研究方面最为认可的计算机软件之一。无一例外,任何一种电气设计软件都是先寻找或是自己搭建元件模型,然后通过所述关系搭建网络模型,其次就是设置元件参数,最后进行潮流计算。那么,如何判断一种设计软件是否优越,就是一看元件模型库是否丰富、准确,二看元件参数设置是否简单明了,再者就是看控制语言是否简洁易懂。

DIgSILNET采用有名值进行计算,电网元件从类型数据和个体数据两个层面被严格定义。类型数据包含了该类型元件用于各个计算功能的基本信息,例如某一架空线路的类型为OHL110kV-1,该类型的架空线为潮流计算提供的基本信息为,,,为短路计算提供的基本信息为,。对某一类型数据的改变将影响到所有采用该类型属性的元件。个体数据则是每个元件在分析计算中所要用到的仅与该元件本身相关的数据,例如某一架空线路的长为。采用该种方法进行计算机计算是有很多好处的。首先,我们无需再进行标幺值计算,避免了繁琐的计算,可以直接采用一些直观的铭牌数据等;其次,对于软件来讲,这也大大减少了数据的重复储存,显然对提高计算机速度也有一定的帮助。

在DIgSILNET中执行潮流计算、故障分析、谐波分析、动态仿真等功能时,可以引入多种电力电子元件,包括FACTS装置(如SVS、TCSC和UPFC)、直流整流和逆变器等。DIgSILENT为所使用的电力电子元件提供了丰富、开放且定期更新的模型库。

这些对于课程教学来说,减轻了单纯的软件学习难度,可以缓解学生对新软件学习的畏难心理。这种人机交互的友好界面,不仅老师们授课讲解起来比较轻松,而且学生们更易于接受,更为重要的是可激发学生的自主学习兴趣。

对比手算与机算

在课程的最后一个环节,但也是很重要的一个步骤,就是对比分析潮流分布的手算以及计算机算法。众所周知,学习的一个关键环节就是要学会对比分析以及总结,这种能力是学生们亟待培养和掌握的。最后,通过对比两种方法的结果,计算两者之间的误差,再分析一下导致这种后果的原因,原因可能是计算机算法或是手算采用了哪些近似处理,或是计算结果精确度的不同,这些都是需要学生自己进行总结归纳的。这一步看似可有可无,电力系统潮流分布的手算以及机算的结果都已经出来,课程已经结束。实则不然,这关键的最后一步恰恰是中国高等教育中最缺乏的部分,就是对新知识的分析与自我总结。做好这一步,对于学生自主学习创新能力的提升起到关键作用。

第2篇

【关键词】CPPS;同步PMU;开放式通信;分布式控制

【Abstract】The construction of future smart grid became achievable due to the rapid development of embedded system, computing technology and communications technology. Modeling of Cyber-Physical Power System which based on CPS technology gave a new way to build the future smart grid. The platform of CPPS was studied and analyzed in a preliminary step. Synchronous PMU, open communication network, distributed control which was applied to CPPS was introduced.

【Key words】CPPS; Synchronous PMU; Open communication network; Distributed control

0 引言

受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:

1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。

2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。

论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。

1 CPS与智能电网的相互关系

CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。

CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。

将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。

从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。

2 CPPS的硬件平台架构

基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。

传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。

针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。

CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。

其中,底层的物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。

上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。

3 同步PMU测量技术

同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。

同步PMU的硬件结构框图如图2所示。

其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。

4 CPPS的开放式通信网络

建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。

4.1 IEC 61850标准的应用

IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。

IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式操作系统技术以及高速以太网技术等。

4.2 通信网络配置与分析

对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。

其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。

5 CPPS的分布式控制机理

要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献[10-11]中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。

电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。

其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制措施,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。

6 结语

将CPS方法引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信网络技术、分布式控制技术分别进行了简单介绍。

【参考文献】

[1]Cyber-physical systems executive summary[R].CPS steering group:2008(6).

[2]Computing foundations and practice for Cyber-physical systems:A preliminary report [R].Edward A Lee:2007(5).

[3]IBM论坛2009,点亮智慧的地球[EB/OL].http:///cn/forum2009/winsdom.shtml.

[4]姚建国,赖业宁(Yao Jianguo,Lai Yening).智能电网的本质动因和技术需求(The nature of motivation and technical requirements of smart grid)[J]. 电力系统自动化(Automation of Electric Power Systems),2010,34(2):1-4(下转28).

[5]徐丙垠,薛永端,李天友(Xu Binyin,Xue Yongduan,Li Tianyou). 智能配电网广域测控系统及其保护控制应用技术[J].电力系统自动化(Automation of Electric Power Systems),2012,36(18):2-9.

[6]M.D.Ilic, L.Xie, U.Kahn and Moura, Modeling of future Cyber-physical Energy Systems for distributed sensing and control[J]. IEEE Transactions on systems, man , and cybernetics,2010,40(4):825-838.

[7]王健,张胜,贺春(Wang Jian,Zhang Sheng,He Chun).国内外PMU装置性能对比(Comparison of PMU devices from domestic and overseas )[J].继电器(Relay),2007,35(6):74-76.

[8]高翔.数字化变电站应用技术[M].北京:中国电力出版社,2008.

[9]IEC61850,Communication networks and systems in substations [S].IEC,2004.

[10]Kunder. Power system stability and control[M].北京:中国电力出版社.

第3篇

关键词:不确定性;潮流分析;概率性;可能性

引言

对于电力系统的调度和规划来说,潮流评估是一个强大且重要的工具和手段。确定性潮流分析需要系统提供各方面条件的精确数值才能保证分析结果的准确性,比如需求、发电量、网络情况等。然而,随着新能源时代的到来,世界上的电力系统中出现越来越多的不确定性情r,特别是分布式能源比如新能源的并网,将导致许多难以预测的副作用。所谓分布式发电,即将电力能源互相连接到分布式网络中。虽然分布式发电在技术、社会经济和环境保护等方面带来了许多无与伦比的优势,但是我们深知任何事物都有其两面性,这项技术也拥有消极的一面。分布式发电,特别是飞速发展的新能源,在对系统性能的不确定性方面的理论研究尚未成熟,需要一代又一代的中国优秀电气工程师投入大量精力研究。

1 不确定性潮流分析研究方法概论

在这样一种不确定的情况下,确定性潮流计算无法准确深刻地揭示电力系统运行的状态。因此,在如今的潮流计算研究中,基于不确定性观点下的潮流分析与计算受到广泛研究者的关注。当今的研究中,概率潮流分析通常认为是系统调度与规划的理想助力。概率潮流分析方法致力于模拟母线电压和线电流随不确定性系统中的参数改变而变化的状态分析,帮助电力系统工程师分析系统未来的状态变化趋势,这样在发生系统发生重大变化时可以提前作出相关的决策。如果这些系统中具有不确定性的状态量拥有充足的历史数据,现行的研究中主要采用基于概率论观点下的数学工具和模型来处理这类不确定性。然而,在电力系统实际运行中,很多不确定性的系统变量的历史数据往往不完整,或者变量的取值是通过经验推测的等。这些情况的存在将严重影响基于概率论建立的系统概率潮流分析模型的精确度。在电力系统实际运行中,对不确定变量的状态分析更加困难,一些不确定变量是概率性的,一些是可能性的,并且这两类不确定变量时常出现交叉耦合的情况。因此在这种情况下,同时考虑概率性和可能性的不确定性变量的影响是现行的研究方向,这也就是我们所谓的不确定性潮流分析问题。

至今为止,许多杰出的研究者和工程师提出了大量针对实际工程系统中不确定性现象分析方法,并且很多已经在研究中广泛应用。从上世纪70年代开始,电气工程师就已经提出了基于概率论的系统不确定性潮流分析方法。由于当时新能源研究和分布式发电技术还没有像现在这样普及,影响因素种类较为单一,因此在当时这种概率潮流方法取得了非常显著的效果。各种研究成果在时间的检验下演变,如今蒙特卡洛模拟作为一种基于概率论的概率潮流分析方法,在研究中广泛使用,被认为是先进系统潮流分析中普遍通用的概率模拟方法。这里对普遍通用的含义进行粗略的说明,电气工程师在大量的理论推演和实践中证明,蒙特卡洛模拟的结果在各种规模不同的电力系统中均表现得显著而准确,因为被当作模拟结果的参考值。蒙特卡洛方法的实际应用案例很多,当前在新能源发电并网与分布式发电的研究中基本上作为一种技术标中采用,并且各种蒙特卡洛相关方法还在开发中。

2 不确定性潮流分析中的挑战

历史的车轮滚动向前,基于概率论的潮流分析方法的研究还在继续发展。如今新能源与分布式方面的研究日新月异,历史的车轮残酷地碾过,电气工程师们面临着不断出现的技术难题。我们前面提到,当关于不确定变量的历史数据或其概率分布函数已知时,这种概率潮流方法才能取得较为显著的结果。这是由于概率潮流的理论基础中有一个假设,电网中所有类型不确定性变量都可以用基于概率论的方式表示出来,这种基于概率论的表示具体是就概率分布函数而言。通常在现在的电网中,由于层出不穷的因素的影响,比如历史数据不精确或稀缺、数据的保密性等等,在信息不足的情况下无法得出这些不确定性变量的概率分布函数。在这种情况中,概率理论的基石被打破,因此电气工程科研工作者必须转向其他研究不确定性现象的理论中寻求一线生机;哪怕天寒地冻,路遥马亡,也要在理论上找到突破口,为电力系统的现代化发展扫清一切障碍。最终这些伟大的电气工程师们研究发现,可能性理论正好可以填补这部分理论空白。基于这种想法,有研究者尝试过使用模糊建模的技术分析潮流中的不确确定性,全新的探索也一直在继续。

系统工程师们都知道,工程系统中均具有多种不同类型的不确定性状态变量,这是工程界通行的法则。实际的工程系统中,一些不确定性变量是概率性的(基于概率性理论描述),一些是可能性的(基于可能性理论描述),这些变量在系统中相互纠缠耦合,纯粹的概率性的和纯粹的可能性的不确定性变量是不存在的,因此单独应用某一个理论分析这些不确定性的结果令人十分懊恼。

工程实践中,一种结合两种理论的方法应运而生,而且工程的实用性知道我们必须把两种理论结合起来分析。这种基于概率和不确定理论的方法飞速发展,引起学者的广泛关注。现在研究中,一个主要的研究贡献是使用证据理论作为“胶水理论”,将概率理论与可能性理论“粘结”结合后应用到电力系统潮流分析,同时基于能源时代的大背景,综合考虑各种负载、风能和太阳能等新能源发电、汽轮机分布式发电、电动交通工具等因素。实际建模中,将各种负载、风能和太阳能等新能源发电中的不确定性变量当作概率性的,汽轮机分布式发电、电动交通工具等看成可能性的不确定性变量。

3 结束语

在这篇论文中,我们从历史唯物主义的角度讨论了潮流分析的发展和研究情况,并且就研究中出现的困难和挑战出发,介绍了一代代优秀的电气工程研究者的解决方案。以史为镜,这是一代代优秀电力系统研究者的思想精华之所在。我们站在巨人的肩膀上,把握住未来电力系统不确定性潮流分析的发展和研究方向。为此,立志科研,在电力系统未来半百时光的发展中,愿成为其健壮发展的坚实后盾!

参考文献

[1]武历忠,徐诚.电力系统潮流计算[J].云南电力技术,2016(04).

[2]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001(11).

[3]Alarcon-Rodriguez A, Ault G, Galloway S. Multi-objective planning of distributed energy resources: a review of the state-of-the-art. Renew Sustain Energy Rev 2010,14:1353-66.

第4篇

【关键词】分布式电网;风力发电系统

0 引言

能源和环境是每个国家发展战略中不可忽略的重要的两个环节[1]。自从上世纪工业革命以来,各国的工业技术水平得到了飞速发展,人类生存质量得到了显著的提高,以火力发电为主的电网系统控制技术已经得到了相当完善的研究与应用。但与此同时,环境污染问题也变得越发严重。并且随着以煤炭、石油为主的传统能源的日益短缺,开发利用新型的、清洁的、可再生的能源,已经成为了当务之急。

随着低碳经济的概念在全球范围内的推广,并且伴随着只能电网技术的飞速发展,开展基于可再生能源的电网控制技术研究,逐渐成为了各国科研人员的关注重点。以风力发电和太阳能发电为代表的新能源发电技术逐渐走进了人们的视野,并且受到了越来越多的关注。可以说,新能源发电系统是未来电力系统发展的必然方向,也是我国十二五工业4.0转型顺利推进的前提保障。所以,开展基于新能源发电系统的研究与应用,对于我国进一步提升国家竞争力,提升工业技术水平,具有十分重要的战略意义。

1 分布式风力发电系统国内外研究现状

分布式发电系统按照其能源来源分类,大致可以分为分布式风力发电系统与分布式太阳能发电系统。其中,风力发电以其资源保有量大、发电成本低,发电系统运行容错率高的特点,逐渐成为各国分布式新能源发电系统研究的主流方向。

分布式风力发电系统主要由以下部件组成:风轮机、发电机、储能装置以及分布式风力发电系统控制器组成。随着机械控制技术的发展,风轮机经历了定桨距到变桨距的演变历程,其中,定桨距风轮机以其相对较高的控制稳定度,成为了分布式风力发电系统的首选。

目前,风力发电机以永磁同步电机、双馈异步电机和无刷直流电机3大类为主。其中,永磁同步电机功率密度低,且机械结构复杂,加工难度成本高,逐渐被后两个取代,而双馈异步电机同样存在系统控制策略设计复杂的问题。无刷直流电机是近年来电气研究领域的新发现,其励磁、电枢绕组均设置在转子上,电流换向无需辅助装置,已经在风力发电市场中有了一席之地。

风力发电系统控制器,一直以来都是风力发电系统研究的核心技术难点之一。其承担着系统各运行部件的实时监控、最大风能跟踪,负载需求管理等功能。随着DSP,FPGA等集成电路芯片的诞生,系统控制器的设计也由原先的硬件控制设计转为软件研发为主。可以说,系统控制器的设计水准,很大程度上决定了整个分布式风力发电系统的运行性能。

2 分布式风力发电系统控制设计

本文建立的分布式风力发电系统如图1所示。其基本运行原理如下:风轮机捕获风能,然后经无刷直流发电机将风能转换为电能,无刷直流输出端直接构造系统直流母线,直流负载直接挂接在直流母线上工作,交流负载可以通过直流母线电压外接逆变器实现供电,蓄电池通过双向DC/DC与直流母线交联,分布式风力发电系统控制器实现整个系统的监控、控制、调节功能,当双向DC/DC失效时,分布式风力发电系统控制器可以利用相关接触器控制,实现双向DC/DC的切投,此时蓄电池可以直接通过汇流条与直流母线相连,从而实现了系统的备份运行。

双向DC/DC的设计选择是影响系统运行性能的关键。因双向DC/DC具有能量双向流动的特性,因此,仅采用一套电路即可实现蓄电池充放电的实时控制,可以显著节约系统硬件成本。基于控制复杂度考虑,双向DC/DC拓扑中的电子开关管不易过多,所以本文选择双向双管正激电路,其只需要2路两两互补的导通驱动信号,即可实现系统需求的控制功能。

风力发电机与风轮机的合理选型,也是影响风力发电系统效率的另一个关键因素之一。基于无刷直流电机结构简单、运行可靠、容错率高的特点,本文选择电励磁无刷直流电机作为系统发电机,将其与定桨距风轮机采用传动轴直接连接的方式,降低了机械部件之间的损耗,并可进一步提高系统运行效率。

分布式风力发电系统控制器是整个系统的核心部分,本文以主流的DSP2812为控制器基础单元,在芯片内部驻留母线电压、蓄电池电流双闭环控制策略,结合风轮机自身最大风能输出-转速特性,可以通过控制器调节双向DC/DC的电子开关管占空比,实现系统的最大风能跟踪,并且完成直流母线电压的调压控制。

3 结语

本文在介绍分布式风力发电系统的国内外研究现状的基础上,以无刷直流发电机为核心构架,在此基础上提出一种分布式风力发电系统,对该系统各关键组成部分进行了基本原理分析,并对该分布式风力发电系统控制策略进行了详细论证,初步论证了系统控制原理的可实现性。后续研究可以围绕系统仿真、系统样机试验验证展开,从而以更深入的切入点,论证本文所设计的分布式分布式风力发电系统的运行特性。并且,随着锂电池技术的发展,可以考虑用锂电池代替铅酸、镍镉蓄电池的方案可能性,以期得到更好的系统控制性能,最终实现一种高效、可靠的分布式风力发电系统。

【参考文献】

第5篇

关键词:电力系统;电气试验;分析;研究

中图分类号:F407文献标识码: A

1高压电气试验几种介绍

截波冲击试验。一般是波尾截断的波形,可用ICE标准棒状间隙截断,也可用多极点火截断装置截断。用多极点火截断装置截断时。可获得较准的截断时间.示伤波的截断时间差异大于0.15Ps,截波冲击试验结果就有问题。用棒状间隙截断就不易从截断时间的差异来判断是否能通过试验。截波试验电压为100%全渡试验电压时,如截断时间小于等于3S时,两者强度相同。与GIS联的变压器必须要考虑截波试验,截波试验必须与全渡试验交替进行,一般采用负极性截波。

操作波试验。由于不作操作波试验的Urn=252kv变压器的相间绝缘决定于全波冲击试验或长时感应带局部放电测量的试验。要进行操作波试验时,外部空气间隙的相间绝缘尺寸就要由操作波试验电压决定,可能要比不考核操作波试验时外部空气间隙要放大。

局部放电试验.局部放电试验是非破坏性试验项目,目前有两类试验方法,一种是以工频耐压作为预激磁电压,降到局部放电试验电压,持续时间几分钟,测局部放电量;另一种是以Um为预激磁电压,降到局部放电试验电压,持续1小时,测局部放电量。局部放电量一般与带电与接地电极表而的场强有关.与电源的频率无关。

全渡冲击试验.止在修订的1k;C76-3标准,己将全波冲击试验列为Um,126kV变压器的出厂试验项目,要进行突发短路试验的变压器,要在短路试验后作全波冲击试验。

2加强试验人员的技术培训和安全意识

为了保证高压实验的安全,必须在平时加强对员工安全意识的培养以及员工自身技术的培训。以人为本的工作核心是保证高压安全实验的一个重要措施,高压安全实验需要人工进行操作,制定的各种安全措施也需要人工去监督。因此,加强员工的安全意识是保证实验安全的重要措施之一,电气实验室一个需要细心的工作,在实际工作中有许多辅的准备工作要做,如果这些工作做的不够完善,只会给实验工作带来安全隐患。技术水平高超的工作人员可以更好的保证工作中的安全性,所以良好的员工技术培训基础,可以使员工熟悉高压实验的原理,了解被实验品的结构,对于实验过程中出现的各种情况有充分的理论依据和工作经验进行处理,止确的判断被实验品的状态和整个实验过程的结论。

3规定高压电气试验工作要求

至少要有两人进行在高压同路上使用携带型仪器的操作,在这种操作过程中需要对高压设备进行停电处理或者预先做好安全防护措施,在工作前应填写高压工作时验票。如果发现设备故障为系统接地故障时,严禁进行接地网接地电阻的测量。在雷电现象发生时,严格禁止对线路绝缘的测量工作。如果在同一设备附近有检修和高压电器试验工作同时进行时,可以使用同一张工作票,但必须在实验前得到检修负责人的许可。在工作进行时,发出高压试验工作票之前,应首先将检修工作票收同,同一地点不能发出第二张工作票。在高压实验工作进行的过程中,如果需要检修人员配合,应将检修人员的名单填写在高压实验工作票中,事先予以说明,在实验现场周围应留有足够的安全距离,在安全距离外装设遮栏和围栏,并在车篮或围栏上悬挂“止步,高压危险”标示牌,并派人看守。

4高压电气试验安全措施分析研究

在实验结束以后,或者实验过程中需要变更接线方式时,需要有时间的相关负责人员发出降低电压的口令,等到设备电压降低,同零位时,断开电源。如果实验设备为直流实验设备,或者具有较大的电容量,需要多次重复放电过程,每次放电时间至少要一分钟以上,并且保证进行实验的设备周围,没有大型的电容设备止在运行过程中也应充分放电。监视仪表指示,发现异常,立即通知降压.迅速断开电源,试验结束后,应拆除自装的接地短路线,恢复被试设备实验前的接线,拆除安全网并清理和检查现场,不应遗忘工具和其他物件.确保被试设备和场地恢复试验前的状况。

为了保证电气高压实验的安全进行,必须采用严格的预防措施,首先要详细的做好危险点的分析控制工作,在日常的工作过程中应发动每一位员工的主观能动性,集思广益,通过以实际工作的经验相结合,对工作过程中所接触的,全部高压实验项目中所包含的危险点进行仔细讨论,认真分析,以讨论结果为依据,对每一个高压实验项目并详细的与之相关的过程控制规程,从实验材料的准备,所使用设备的型号和操作标准,以及实验后的现场清理工作要详细说明,写入控制规程中,并在控制规程中将所有的危险点的控制措施一一列出,是控制规程涵盖所有的高压实验环节。《电业安全规程》规定了要保证操作人员的人身安全,在进行电气高压实验的过程中,需要对所检验设备进行停电,验电措施,在实验之前,应装设接地线,悬挂标示牌,对检验设备装设遮拦等,在电气高压实验过程中,要严格执行相关规程中的技术措施,保证工作中的安全性,高压实验针对的目标具有特殊性,在每一次高压实验项目开始起,必须对实验对象进行充分的放电,操作人员应戴好安全帽,穿上绝缘靴,带绝缘手套,合上地刀并让被试设备充分放电之后,在相应的监护人的监护下,对被试设备本体直接连接接地导体放电,保证实验进行之前,设备完全放电。在实验过程中,应严格按照《电业安全规程》以及其他相关规定和控制规程的相关要求,进行详细的组织工作,几时行工作票制度,工作许可制度,工作监护制度以及工作阶段,转移和终结制度,根据现场的具体情况,由班组长或上级主管部门下达第一种工作票,并且在工作过程中,应严格按票实行时间作业,按照事先制定的各种规程,明确责任分工,再严密的现场组织下进行电气高压实验,在实验过程中应严格遵守呼唱制度,因为现场情况较为复杂,背景噪声较大,人员嘈杂,彼此之间声音很难传递清楚,在这种情况下更应该严格遵守呼唱制度,确保制度的准确执行,以保证施工的安全。

5结束语

综上所述,只有不断加强对电气试验知识的熟悉,努力提高电气试验技术水平克服试验中所出现的各种主观性难题才能切实保障高压电气试验的安全保证电力系统的安全、稳定运行。

参考文献

[l]李建明.高压电气设备试验方法[M].北京.中国电力出版社,2001.

[2]马传艳.高压试验安全保证措施初撂[J].北京电力高等专科学校学报.2009.

第6篇

Abstract: In recent years, with the use of a large number of power electronic components and other nonlinear devices, the harmonic pollution has affected the serious deterioration, which has affects the electrical equipment. The harmonic problem has become the three major pollutions in the power system with electromagnetic interference and power factor reduction. As a three-phase electric energy meter measurement, ADE7878 is widely used in the power grid signal analysis because of its high precision and flexible method. However, due to the defects of the sampling interval, there are obvious deficiencies in harmonic analysis. Aimed at this problem, this paper proposes a rapid analysis method for power system harmonic based on the weighted interception and spline interpolation. It can ensure the accuracy and improve the efficiency. The final experiment proves that the harmonic analysis results are correct.

关键词: ADE7878;加权截取; 样条插值;FFT;谐波快速分析

Key words: ADE7878;weighted interception;spline interpolation;FFT;rapid analysis of harmonic

中图分类号:TM933.4 文献标识码:A 文章编号:1006-4311(2017)02-0154-05

0 引言

近年来,随着大量电力电子元件及其它非线性设备的使用[1],使得电网谐波污染严重恶化,已经影响到用电设备,谐波问题已经与电磁干扰、功率因数降低并列为电力系统中的三大公害。及时准确地掌握电网中的谐波分量参数[2],才能为谐波治理提供良好的依据,维护电网的安全运行。

ADE7878作为三相电能测量IC,因其精度高、使用灵活而在电网信号分析中得到广泛应用[3],但其在谐波分析中存在明显不足。ADE7878的采样间隔为125us,每个周波采样160个点,不是2的整数幂,因而无法进行常规基-2FFT运算,这也限制了其在电能质量分析中的应用。

在进行FFT变换时,通常要求采样点数N是2的整数幂,不满足这个条件时可以直接进行DFT运算,但是计算效率较低;也可以通过简单增添有限长的零取样序列来使N为2的整数幂,但对于ADE7878的应用,N=160,28=256,27=228,需补零96个点,频谱会发生很大变化,从计算的效率上看也不经济。本文提出一种针对ADE7878采样特点的快速精确计算电力系统谐波参数的方法和装置。

为克服ADE7878在谐波分析方面存在的上述不足,本文提供一种电力系统谐波快速分析方法及运行装置。本算法中采用汉宁窗对电压、电流采样数据进行加权截取,对截取的信号进行组合数FFT,先进行常规基-2FFT变换,再进行5点DFT变换,在保证计算精度的前提下,提高了效率。在此基础上通过插值修正,得到最终的准确的谐波分析结果。

1 基于ADE7878智能电表硬件设计

ADE7878是Analog Device公司(ADI)设计生产的一款高精度多功能三相电能计量专用芯片,内置多个二阶型模数转换器、数字积分器、基准电压源电路和所必需的信号处理电路,可以实现对电网基本电参量的测量以及对电网电能质量进行监测的功能[4]。

ADE7878可以工作在三线制或四线制系统中[5],而且对电路的接法也不受限制,可以对电网运行的电参量数据进行实时采集并发送到上层控制芯片,方便控制芯片对电参量数据进行后续处理。ADE7878的电压和电流通道[6]为24bit 型ADC,电压和电流有效值在动态范围为1000:1的动态下小于0.1%,电能在动态1000:1下小于0.1%,在动态3000:1下小于0.2%。ADE7878与上层控制芯片之间具有多种灵活的通信方式,如SPI、I2C和HSDC。ADE7878提供四种工作模式[7],其中有一种正常模式和三种低功耗模式,这样可以保证系统在断电情况下能及时作出相应的处理,提高了系统整体的稳定性。

1.1 基于ADE7878智能电表硬件整体设计

由于ADE7878具有工作环境多样、测量精度高、通信接口灵活等优点,使得ADE7878在电力仪器仪表中的应用十分广泛。

智能电表的硬件电路设计包含以下几个部分:DSP最小系统设计、信号采样电路设计、实时时钟电路设计、数据存储电路设计、RS485通信电路设计、控制电路设计以及智能电表供电电源设计。ADE7878智能电表硬件整体设计如图1所示。

本文智能电表采用ADE7878电能计量芯片进行相关电参量数据的采集。ADE7878采用3.3V供电,外加16.384MHz石英晶体振荡器,待测电流信号采用差分形式输入,待测电压信号采用单端输入方式,电压、电流信号输入范围为-0.5V~0.5V。ADE7878的I/O最大耐压为±2V,因此需要添加相应的保护电路。ADE7878的电路设计如图2所示。

图2中,IAP/IAN、IBP/IBN、ICP/ICN、INP/INN分别对应A、B、C三相电流和零线电流经过转换后的差分电压输入信号。VAP、VBP、VCP、VN对应的是A、B、C三相电压输入信号和零线电压输入信号,这些信号输入口的最大电压变化范围是-0.5V~0.5V。REF为ADE7878基准电压的参考引脚,通过此引脚可以访问片内基准电压源。片内基准电压的标称值为1.2V,也可以在此引脚上连接1.2V±8%的外部基准电压源。这两种情况下,都需要外加一个4.7uF钽电容和一个0.1uF的陶瓷电容并联来对此引脚进行去耦。芯片复位后,使能片内1.2V基准电压源。

1.2 电压信号采样电路设计

电压信号采样电路的设计是信号采集电路的关键部分之一[8]。根据智能电表的需求分析,配电网一侧的设计参考电压范围为3×65V~465V。在第二章中,已经对电压信号采样的方案设计做出了说明,本文中电压信号采集选择高精度电压互感器完成。使用电压互感器进行电压信号采样电路设计,会产生一定的相位延迟,并且不同的设计方法产生的测量相位延迟也不同,但均可以在后续软件设计中进行修正。

本文选择的是电压互感器是山东力创公司设计生产的一款高精度电流型电压互感器LCTV31CE-2mA/2mA。这种电压互感器的一次侧和二次侧的电流比为1:1,环路额定电流值为2mA,互感器体积小,电路设计较为简单。

由于ADE7878的电压测量输入范围是-0.5V~0.5V,电流型电压互感器的二次侧额定回路电流为2mA,因此,选择249Ω(1%)精密电阻作为电压互感器二次侧取样电阻比较合适。由于电压互感器二次侧和一次侧的回路电流为1:1,因此选择249kΩ(1%)精密电阻作为电压互感器一次侧的限流电阻较为合适[9]。这样设计可以使得一次侧输入电压上限达到500V,完全可以满足配电网65V~465V的设计参考电压需求。

通过电压互感器、限流电阻、取样电阻,已经将配电网的交流大电压信号转换成了可测量交流小电压信号,但待测信号送入ADE7878芯片之前还要经过滤波电路和信号调理电路,使得输入信号便于测量。电压信号采样电路设计如图3所示。

由于电压互感器的使用,会使得测量的信号与实际信号之间存在较大的相位误差,图3中所示的电压采样电路,电压信号的相位延迟在30°左右。可以对这个电压信号采集电路进行改进,改进后的电压采样电路如图4所示。

按照改进后的电压采样电路进行电压测量,可将信号的相位延迟控制在5°左右。

1.3 电流信号采样电路设计

对于交流电流信号的测量,最后送入ADE7878的电流信号为差分电压信号的形式,因此需要将交流电流信号变换为差分电压信号的形式。根据智能电表的需求分析,配电网一侧的设计参考额定电流为5A~20A,并且有一定的过流过载要求。

为了给设计留有余量,取样电阻选择15Ω(1%)的高精度金属膜电阻。详细电路设计如图5所示。

图5中,电流互感器的二次总负载为30Ω,远远低于LCTA21CE-40A/20mA所要求的二次侧额定负载最大为100Ω,因此这样的电路设计可以获得较好的线性。

根据ADE7878元器件自身的特性,在ADE7878的信号输入端,还应该添加1kΩ和33nF的电容并联,进一步对输入信号进行滤波去耦。

由于ADE7878的模拟信号输入端有最大承受电压

±2V的限制,因此在信号输入端应该添加电压钳位电路,以免影响测量精度,甚至烧坏元器件。本项目中所选的电压钳位元件是BAV99。±2V电压产生电路如图6所示。采用的是电阻分压方式从±5V电源之间产生±2V电源。

2 基于加权截取及样条插值的智能电表谐波快速分析算法

2.1 加权截取

2.1.1 电压电流信号采样

利用微处理器设置定时器中断,每500us读取一次ADE7878寄存器VAWV、VBWV、VCWV、IAWV、IBWV以及ICWV,连续采样四个周期,获得电力系统三相电压、电流信号瞬时值序列vA(n)、vB(n)、vC(n)、iA(n)、iB(n)及iC(n),采样点数N=60,离散采样序号n∈[0,N-1]。

2.1.2 汉宁窗加窗截断

3 实验及分析

本文所设计的智能电表电能质量监测功能包括监测各相断相、失流、过负荷、全失压、电压电流逆相序次数、各相电压电流的2~19次谐波分析等。相对于其它电能质量指标来说,谐波含量是电能质量中较为重要的一个指标。本文在测试中重点对智能电表对电网谐波分析的功能进行了详细的测试。

本文中智能电表具备2~19次谐波分析功能。为了方便实验比对,选择美国福禄克公司设计生产的F434型三相谐波分析仪作为标准仪器用于实验数据对比。Fluke F434型三相谐波分析仪如图8所示。在本文的实验设计中,由于ADE7878的采样间隔为125us,每个周波采样160个点,不是2的整数幂,因而无法进行常规基-2FFT运算,故普通FFT采用的是以零补齐的方式,而本文提出的算法由于不受2的整数幂限制,没有零补齐。由表1及图9的实验结果可知,本文所提出的谐波分析算法经标准谐波测试分析仪Fluke F434验证,误差控制在0.2510%-1.9646%之间,且本文算法2~19次谐波分析测试结果均优于普通FFT结果,且在2次谐波处误差获得最大2.1%的降幅。

4 结论

本文方法解决了ADE7878电能计量芯片在谐波分析时无法进行常规FFT的问题。将160个采样数据份分成5组,分别进行32点的基-2FFT,充分利用基-2FFT算法的高效性,既保证数据处理的准确性,又提高了谐波分析的效率;采用汉宁窗截取采样序列,减少频谱泄漏;采用插值修正算法克服了非同步采样引起的栅栏效应。

参考文献:

[1]陈盛燃,邱朝明.国外城市配电自动化概况及发展[J].广东输电与变电技术,2008(4):64-67.

[2]张红,王诚梅.电力系统常用交流采样方法比较[J].华北电力技术,1999(4):25-27.

[3]谷晓津.浅析三相四线费控智能电能表特点及功能[J].科学之友,2011(32):36-38.

[4]刘耀勇,李树广.智能电网的数据采集系统研究[A].2010年航空试验测试技术峰会论文集[C].2010:273-276.

[5]吴晓静.基于DSP的单元串联多电平高压变频器的研究与实现[D].东南大学,2010.

[6]王金明,于小娟,孙建军,等.ADE7878在新型配变监测计量终端上的设计应用[J].电测与仪表,2010,47(Z2):142-145.

[7]郭忠华.基于ADE7878芯片的电力参数测量仪的设计[J].电工电气,2010(12):25-30.

[8]王金明,于小娟,孙建军,等.ADE7878在新型配变监测计量终端上的设计应用[J].电测与仪表,2010,47(Z2):142-145.

[9]李(木冈)宇.数字中频模块的硬件设计与调试[D].西安电子科技大学,2007.

第7篇

【关键词】 通讯规约 IEC101 IEC103 IEC104

1通讯规约简介

在远动装置及自动化系统中,调度端和厂站之间、自动化设备之间有大量的YC(遥测)、YX(遥信)、YK(遥控)、YT(遥调)信息需要进行传送(见图1)。为了保证双方能够准确有效地进行通信,并分清信息传送过程中的轻重缓急,区别所传送信息的类别,必须事先约定好数据传送的格式,在信息发送端和信息接收端做一系列的约定,这种数据传送的格式便是通讯规约。

图1 通讯规约基本模式

通讯规约是设备间进行数据交互的语言,规约中对通讯报了一系列的规定,即为该种交互语言的单词与语法的规定。因此,根据通讯规约的各类规定,对报文进行分析和解释,即可对这种设备交互的语言进行解读和分析。

电力系统常用的通讯规约有“循环式”和“问答式”两类。循环式规约以循环的方式周期性地传送信息给接收端,不顾及接收端的需求,也不要求接收端给予回答,常用的有CDT规约。问答式规约以主站端为主,依次向各个RTU或终端发出查询命令,各RTU或终端根据查询命令进行回答,回答信息串长度是可变的,常用的有N4F、IEC101、IEC103、IEC104规约等。

2通讯接口及新型连接器设计

常用通讯接口包括串行接口和网络接口。串行接口又根据连接形式的不同,分为RS232、RS422、RS485等多种类型。

美国SEL公司(SCHWEITZER ENGINEERING LABORATORIES, INC.)生产的微机型继电器在电力系统中有较广泛应用,主要应用型号包括SEL351、SEL551、SEL387等型号。SEL系列继电器主要使用了RS232串口、EIA485串口两种端口进行通讯,进行设备调试、检修时需要分别使用专用连接线通过相应的端口与继电器进行连接,进而根据通讯规约开展相关工作。由于继电器相关设备调试工作一般都为现场移动作业,带多根不同类型的连接线较为不便,且在实际工作时容易拿错线导致影响工作效率。同时,新型笔记本电脑一般都不再配备RS232串口,只能使用USB转串口线,这使现场工作需再多携带一根USB转串口转接线,进一步增加现场工作复杂程度和难度。因此,我们设计一种便携式通用型SEL继电器用通讯连接器,方便SEL继电器现场调试、检修使用,如图2所示。

图2 便携式通用型SEL继电器用通讯连接器设计图

连接器一端(右侧)设计为现行通用型标准USB接口,可方便插入常用笔记本电脑所带的标准型USB口中,便于与笔记本电脑进行连接;连接器另一端(左侧)设计为与继电器进行连接的模块化接口,一侧为RS232接口,另一侧为EIA485接口,均采用标准9针串口形式,但针脚定义不同。

3电力规约报文解析软件研究

IEC101、IEC103、IEC104为目前在电力系统应用最为广泛的通讯规约。因此,可设计一种电力规约报文解析软件,以方便进行报文解析,如图3所示。

图3 电力规约报文解析软件

4结语