欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

水库路基设计范文

时间:2023-07-11 16:21:12

序论:在您撰写水库路基设计时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

水库路基设计

第1篇

关键词:水库;公路;路线;设计;

中图分类号:X734 文献标识码:A 文章编号:

地球上最多的资源就是水资源,而我国水资源总量占世界首位,主要集中在国内四川,,云南3省。其中自治区境内,大山中大江大河蕴含的水资源占国内总水资源的60%。所以为了最大程度开发水资源,就要建设各种大型大坝。这样导致了库区内(所谓的库区是指水库淹没影响区)水位急剧升高,导致当地的建筑,公路,农田等被淹。而本文中主要解析水库淹没影响区公路路线设计要点。结合四川三、四级公路路线设计实践为背景,进行分析讨论。

库区公路路线设计要点

不同于一般公路之处

由于四川地理环境及地质条件因素的影响,库区公路路线设计上和一般公路有所不同,主要表现在:

自然条件限制与资金限制,一般公路施工要求指标并不是很高,而库区公路路线因为地质条件关系对公路施工指标要求非常高。

公路路线设计十分重要,并且精细。一般公路路线设计,可以专业分段设计,然后在整合起来。但是库区公路路线设计要求,比一般公路路线设计要求还要高。尤其是在四川省内,山路悬崖过多,在设计上只要稍微有一点偏差,就会因为实际地理环境给工程造价带来明显差异,在1:2000比例上只要偏差误差在8%左右就很可能会影响整个工程进行,或者无法施工。因此,为了保证总库区公路路线达到最佳合理状态,要求在库区公路路线设计上,一定要精确,同时还要确保其它有关专业技术可以正常施工。

库区公路路线考虑因素

库区公路路线除了与一般公路路线一样的考虑因素外,还有一些是属于库区公路路线必须要重点考虑因素。

库区公路路线设计上应该重点考虑地形、地质

库区公路路线设计应该重点考虑地形以及地质两个主要因素,地形选择路线是库区公路路线设计最基本的基础。但是由于四川库区公路地质条件种类繁多,有很多不良的地质因素存在,所以库区公路路线设计上必须受地质条件因素控制。在面对大型成片的不良地质环境应该完全规避,对于可以预防或者可以处理的小型不良地质环境,可以选用其中有利部分进行施工,同时做好好相应的公路安全措施。

库区水位升降对公路路线的影响

全面综合考虑因为库区水位升降带来的地质灾害问题。由于四川地理位置关系,当库区蓄水后,水压和水浮力不断发生变化,导致库区岸边地质应力场受到影响,破坏其原本均性,将会发生山体滑坡等地质灾害。所以在库区公路路线设计上应该重点考虑库区水位上涨后所带来的地质变化,尽量将公路路线设置在库区淹没影响区外边,或者受库区水位升降压力影响小的地质环境当中。

库区公路路线浅基的影响

库区公路路线,路基浅基础的稳定性。由于受到很多不同种类因素的限制,特别在四川这种地质环境下,有些地方难免公路路线要建设在库区淹没影响区内。当无法避免的时候,我们要重点考虑路基浅基的稳定性。保证水位上涨淹没公路路线时,毛细水对路基浅基的影响,保证公路的稳定性。

不同地质条件下库区公路路线的参考因素

在库区公路路线设计上,还要结合不同地形地质条件,通过不同的路基形式进行铺设。平缓的地形条件可以用土基形式铺设,地质条件好的山路可以通过半山洞路基形式铺设,地形差,不容易支撑的地方可以用桥梁形式通过等等。总而言之在库区公路路线设计上设计人员要综合当地不同地形地质条件对公路路基要求做到充分了解。

库区公路路线安全因素

加强对后期运营安全。由于公路路线设计上很多都是规避不良地质,在库内影响范围内很容易造成集中升降坡现象,在加上四川多变的天气,处于库区影响范围内的路线应该加大重点监控,对运行后期的检查测速一定要到位,在指标上应该高于一般公路路线指标。

库区公路路线设计流程及方法

库区公路路线设计基本上和一般公路路线设计相同,都是从宏观到微观,从整体结构逐渐缩小细节的过程。不同的是库区公路路线设计更加注重“时间方案细部优化”“与其它专业沟通”“实践方案再争强优化”三个部分,而一般公路路线设计上对这三个环境相对来说不是很重视。

库区公路路线控制点分析

库区公路路线控制点分析主要分为:制定路线的起点和终点,中间控制点,三大部分。对于库区公路路线来说,由于四川本身地形险峻,不良地质规模比较大,水位上升或者下降都会给周围地质条件造成变化,使周围原本不良的地质遭受更大的危险,因为路线设定显得格外重要。在库区公路路线设计前,应该充分了解该地区地质条件与地形环境,探查清除所有不良地质条件,来为最终确定路线提供有利的数据支持。

库区公路路线,线形设计

当库区公路路线控制点设定以后,可以根据技术标准进行路线设计。通常情况下分:“由大到小”“由小到细”“由细到微”,三个部分进行路线线形设计。

“由大到小”具体是指在整个要铺设公路路线范围内找出合理的通行路线走廊带,在对这些通行路线走廊带进行对比分析。通常情况下工程研究阶段在1:10万或者1:5万地形图上就可以进行研究对比。

“由小到细”在确定公路路线走廊带范围内,找出所有可实行的路线进行技术与经济比较,选择最佳路线出来,这一步通常在1:1万或者1:3500地形图上进行研究对比。

“细到微”是指具体确定路线方案后,对每一小段进行逐一研究。由于四川地理环境因素影响,此段研究通常在1:2000或者1:1000地形图上进行研究分析。

库区公路路线设计与其他专业组互动设计与沟通

通过前面所讲述的办法,可以基本上确定了库区公路路线可行方案,但是路线的设计工作还没有结束,下一步工作就是与其他专业组进行沟通,例如:路基,隧道,桥梁等专业人员进行必要的沟通。由于公路路线在现场施工的时候有很多地方是受到现场地形地质因素影响,对公路施工标准也不一样,大大的增加了施工难度,很多地方可能无法达到施工要求,所以跟其他专业组的沟通成为关键。

库区公路路线放样后在优化调整

根据以上所说的办法,库区公路路线就可以进行实地放样测量。因为地图上精准度与数据对照真实情况来看还是存在一定模糊性,很多地图上体现出来的高度与位置,往往跟现实上还存在一定的差距,所以需要结合现实情况不断的修改调整,直到合理为止。

库区公路路线安全问题

当最后确定库区公路路线时,通常要用运行速度对整条路线进行线形验算,并且根据实际得到的结果对库区公路线行进行细致的调整。如果实在无法调整的,可以采用安全措施进行保证后期正常运行。尤其是四川境内崇山峻岭地方特别多,重点防护对象也多,安全措施一定要到位,尤其是对突发事情的预防上,应该综合全面的考虑。库区弯道附近更是要多家注意加强防范措施防止车辆坠落。另一方面还需要考虑到工程结构本身安全问题,同时库区水位上升或者下降对工程结构造成的影响。

总 结:

库区公路路线建设与一般公路路线建设有很大的区别,最大的区别体现在于工程量的庞大与复杂,整体项目设计要求非常精细。在设计理念上应该遵循,“由大到小”“由小到细”“由细到微”三个过程。同时库区公路路线方案粗略完成后,要协同其他专业组进行沟通与协商,并且根据其专业人士对现场分析后,重新修改库区公路路线方案。一条优质的库区公路路线是靠不断优化调整方案才能设计出来的。

参考文献:

[1]朱剑红.全国水力资源家底查清[N].人民日报,2005(5).

[2]李国并.水电站库区路线设计要点探讨[J].四川林勤设计,2007(2).

[3]王文祖。水库库区公路路线设计及过程地质问题[J].青海交通科技,1999(2).

第2篇

关键词:库周道路,三原原则,低等级

Abstract: in order to realize the gorge water control project in the overall construction lechang goal, coordinate with reservoir resettlement in the submerged area of the work, according to the general command gorge lechang construction requirements, the library weeks as emergency special project road, following the principle of extrattrestrial "to carry on the design, design standards for mud stone pavement simple road cycling trails. This article through the library weeks road design process generalizations, low level of road design points are discussed.

Keywords: library weeks road, the principle of extrattrestrial, low level

中图分类号:TV文献标识码:A 文章编号:

1引言

乐昌峡枢纽水库的正常蓄水位为154.5m高程,比蓄水前的武江天然水位壅高五十多米。故水库蓄水后,水库左、右岸的大部分现有道路将被淹没或受淹没影响。库周沿线为林场,零星分布有村庄、小学、小水电、武警部队驻地、电力与通讯设施等,库区两岸的现有道路是当地群众生活、生产与交通出行的主要陆路通道,另外,库周沿线布置有管埠集中安置点、白鸡滩集中安置点及许多分散的移民安置点,移民安置点的施工设备、建筑材料运输与移民搬迁等也需利用该库周道路。尤其是施工围堰挡水后,10年一遇洪水淹没线以下的库区移民必须提前搬迁。水库蓄水前,为了便于主体工程施工使用,并有利于按期完成移民的搬迁安置工作,减少因淹没道路而需对部分移民进行额外搬迁安置;水库蓄水后,便于两岸居民的交通出行,便于库区客运、木材运输、汛期防洪抢险的交通使用,便于当地的社会经济协调发展,因此对水库蓄水淹没区的库周道路进行新建或垫高恢复并尽早建成交付使用是非常必要与迫切的。

2设计要点

水库蓄水后,左岸的京广旧铁路、大源镇、大源镇至大长滩简易道路大部分路段、从九峰水口附近至坪乐公路的部分机耕路及其它零星分散的机耕路与连接便道将被淹没或受淹没影响,需进行道路恢复;右岸从坪石镇至乐昌市沿武江边的永新路大部分路面高程低于淹没线,也需进行道路恢复。

2.1库周道路建设内容

结合水库蓄水后的淹没外包线,经过前期对原有交通现状的详细勘查,由于沿武江两岸地形陡峭、条件局限,路线基本是沿两岸山坡布置,方案较为单一,路线位置可基本确定下来。

库区左岸:新建库周道路总长26.824km;

库区右岸:新建库周道路总长42.438km。

新建桥梁:左岸大长滩中桥(48m);右岸年九坑中桥(32m)、洪源中桥(48m)、太坑河中桥(80m)、庙坑河中桥(60m);连接左右两岸的新秦过江大桥(165m)。

2.2选线原则

新建道路拟定路线时主要考虑以下几条原则:

(1) 应满足库区居民生活、生产及防汛抢险的要求,尽量结合移民安置点布置,有利于道路的布置与衔接;

(2) 充分利用地形、地势;

(3) 选择地质稳定、水文地质条件好的地带通过,尽量避开软基、泥沼、排水不良的低洼地等不良地段;

(4) 路线总里程较短、地形坡度较平缓、转弯舒顺;

(5) 尽量减少环保方面的不利因素;

(6) 尽量避免大开挖,尽量减少弃渣,避开高边坡等地段,减少水土流失。

2.3设计标准

根据《水利水电工程建设征地移民设计规范》(SL290-2003)及《公路工程技术规范》(JTG B01-2003),结合日常交通量、行车安全、经济等因素以及当地实际情况,对受淹没影响的库周道路,按原道路标准(为单车道简易道路)进行恢复:

(1) 原路面高于淹没线的路段,仍然保留,并考虑库周道路施工期间的维修养路费用;

(2) 原路面淹没路段,在淹没线以上地带重新布置新建道路,路面结构采用厚20cm的级配碎石垫层与厚20cm的泥结石路面,行车道路面宽3.5m,路基宽4.5m,靠山坡侧增设边沟、另一侧设置柱式C25砼护栏;

(3) 根据现场地形每隔300m左右设置一处错车道,错车道的泥结石路面宽6.0m,路基宽7.0m,错车道长度为30m,并选择有利地点设置回车场。

汽车荷载等级:公路-Ⅱ级。

路基设计洪水频率:参照《公路路基设计规范》(JTG D30-2004)的规定,库周道路的路基及桥涵设计洪水频率为20年一遇,库区新秦过江大桥设计洪水频率为50年一遇。

2.4线型设计

(1)平面线型:按照路线设计规范,根据平曲线半径与超高值的关系来设置平曲线的超高值。

按公路等级,路面采用第1类加宽标准设置加宽值。

本路线超高缓和段长度与加宽缓和段曲线长度一致。

(2)纵面线型:纵断面拉坡及横断面设计过程中,注意控制土石方的挖填平衡,发现局部路段挖填方过大,则重新调整路线平面、纵断面,力求设计过程中挖填土石方尽可能平衡。

2.5路基边坡设计

路堑挖方边坡:由于沿线山坡地形较陡,大部分坡度陡于1:1,因此新建道路均采用路堑形式。根据地质情况,按岩体风化程度不同来选取相应的边坡值。弱、微风化坚硬岩质边坡采用1:0.3;强风化岩质边坡采用1:0.5,对特殊路段采用挂网锚喷混凝土护坡加固措施。路堑土质边坡一般采用1:0.5,对特殊路段采用挂网土钉喷混凝土护坡加固措施。若边坡地质条件差时,适当放缓至1:1进行开挖。挖方边坡高度大于10m时,采用分级边坡,第一级边坡高度为8m,其余每级均为10m。如果第一级边坡岩性为硬质岩时,第一级边坡高度可为10m~12m。每级之间设一边坡平台,一般边坡平台宽为1m,但边坡高度超过20m时,边坡平台宽为2m。

路堤填方边坡:填方边坡根据路基填料种类、地形等条件而定。低填方路基(≤8m)边坡坡比采用1:1.5。在地面横坡陡于1:5的填方路段,做内倾2%的台阶处理,台阶宽度不小于1m。地面横向坡度较陡路段在路堤下方设置挡墙,其中涵洞则与挡墙结合。

2.6路基防护

(1)路堑挖方边坡防护:

对于路堑挖方高边坡,采用分级边坡防护。根据边坡岩土性质、坡比及坡高情况,对岩质边坡较陡且岩石较破碎的特殊路段,进行挂网锚喷混凝土护坡;对土质边坡的特殊路段,采用挂网土钉喷混凝土防护或砼框格护坡。局部出现黄粘土滑坡段采用M7.5浆砌石挡墙支护。边坡高度超过20m时,边坡平台宽为2m。

(2)路堤填方边坡防护:

对于路堤填方边坡,在正常蓄水位154.5m高程以下边坡坡面采用浆砌石护坡进行防护,154.5m高程以上边坡坡面则采用植草或铺草皮防护。

2.7桥梁设计

库周道路沿线的中桥,按照路线走向结合实际地形布置,桥梁法线尽量与水流方向平行,并且在满足过流前提下使跨度尽量最小,以达到经济的目的。为了尽可能利用标准图集的设计资料,各中桥采用标准化跨径进行设计。为了节省投资,中桥采用预应力砼简支空心板桥与桩柱式墩台的结构型式。按规范要求,桥梁设双车道,全桥宽7.5m =6.5m(桥面净宽)+2×0.5m(护墙宽),不设人行道,桩基采用嵌岩桩。具体设计为:左岸大长滩中桥为3跨16m、右岸年九坑中桥为2跨16m、洪源中桥为3跨16m、太坑河中桥为3跨16m、庙坑河中桥为3跨20m的预应力砼简支空心板桥。中桥的结构型式安全耐用、施工方便、景观协调。各中桥采用统一的结构型式还能大大提高设计效率。

经过水文、地质、河道断面等多方面综合考虑选定桥址以及多方案论证比较后,确定新秦过江大桥主桥上部结构为三跨现浇预应力混凝土连续刚构桥,全桥跨径组合为45m+65m+45m,加上右岸现浇空心板连接跨10m共长165m(不含桥台搭板长)。在桥台处各设一道仿毛勒式D120型伸缩缝。桥宽8.5m,为单箱单室结构。下部结构主墩采用双肢薄壁墩身,墩高40m,墩身截面采用矩形截面,肢距320cm,单肢墩身纵桥向宽80cm。

桥面布置:桥面设双车道,桥面净宽为6.5m =2×3.0m(行车道宽)+2×0.25m(侧向宽度)。桥梁两边各加1.0m宽的人行道,人行道高出桥面0.48m。桥梁全宽8.5m=6.5m(桥面净宽)+2×1.0m(人行道),设置双车道。

桥面纵坡和竖曲线指标:纵断面为平坡。

桥面横坡:由桥面铺装形成1.5%双向横坡。

桥面高程:根据通航水位、桥下净空与梁高,并考虑受风浪的影响,中心桥面高程为166.0m。

新秦过江大桥结构外观优美、接缝少、刚度大、变形小、自重小、整体安全性好、抗震能力强、行洪通航条件好、施工占地少、施工方法先进、施工工艺成熟、工期有保证、投资少等优点。

2.8涵洞设计

沿线根据集雨面积与汇流量大小及实际情况设置钢筋混凝土圆管涵、盖板涵或箱涵,涵洞出口尽量高于水库蓄水位以保证涵洞排水顺畅,因此大部分涵洞基础需在回填方上进行施工。要求基础部分采用石渣进行填筑并分层碾压密实至设计高程。涵洞出口至填方坡脚的坡面采用浆砌石进行防护以保证路基的稳定。若设置涵洞的冲沟不是太深,则设置路肩挡土墙与涵洞进行结合防护。

第3篇

关键词:砂土地基;处理设计;高路堤;水库

中图分类号:U41 文献标识码:A1.概述

众所周知,砂土地基处理的优劣,关系到整个工程的质量。合理的砂土地基处理及适宜经济的路堤结构设计型式,可以减轻或消除砂土地基对路堤的不利影响。河流漫滩沉积的砂土常表现出以下不利的工程特性:高孔隙比、高压缩性、高渗透性、弱抗震性能(地震液化及震陷现象)及低抗剪强度等不利工程地质特性。再则水库区路基地质环境的复杂性、多变性、不确定性,导致营运路堤呈现不同类型及不同程度的地质病害,甚至经反复处治其效果仍然不佳,因此砂土地基处理设计的合理性就显得尤为重要了。

2.工程概况

高路堤砂土地基位于涪江上游在建某水利水电枢纽工程水库区回水尾段,按山重二级公路线形设计,沥青混凝土路面,路面宽8.5m,填高为11.0m~13.0m,路面设计标高667.33m,迎水面堤脚下地面标高655.50m,设计荷载为公路-Ⅱ级;天然河床水位653.00m;其水库主要特征水位:正常蓄水位658.00m,设计校核洪水位659.43m,死水位624.00m。

3.工程地质概况

①地形地貌

场地位于山区阶梯状斜坡与涪江河漫滩的交接部位之河流冲刷凹岸,以堆积型河流漫滩地貌单元为主,地形总体较为开阔平坦。

②地层岩性

地层主要由第四系冲积层(Q4al)及志留系韩家店组(Sh)地层组成:

砂土,青灰色、稍湿~饱和、结构松散,中上部粘粒含量略重,层厚为6.0m~6.5m。

卵石土,青灰色、饱水、结构稍密~中密,层厚为3.8m~6.8m。

志留系韩家店组地层,岩性以千枚岩为主,遇水易崩解软化(崩解速度快),抗风化能力较弱。

③地质构造

场地地质构造较简单,属相对稳定区;其地震基本烈度取决于强震对工区的影响;地震基本烈度为Ⅷ度,地震动峰值加速度值为0.20g,地震动反应谱特征周期为0.40s。

④水文地质条件

场地地下水以孔隙水为主,赋存于第四系砂土及卵石土孔隙中,主要接受上游江水补给,排泄于涪江或其下游;据水质分析报告表明,其水质类型为HCO3-Ca型水,PH=8.6,对混凝土和钢筋混凝土具微腐蚀性。

⑤场地地基土及路堤填料主要物理力学指标

砂土层:标贯击数标准值为3击,孔隙比1.15,粘粒含量12.16%,不均匀系数32.17,天然C值5.6KPa,天然φ值10.3°,压缩模量3.3MPa,承载力基本容许值[fa0]=60KPa。

卵石土层:超重型动力触探击数标准值为6击,饱和容重23.3KN/m3,变形模量23MPa,承载力基本容许值[fa0]=350KPa

路堤填筑料(千枚岩道渣填料):为高分散性的土料,压实后遇水极易崩解;天然固结不排水剪C值20KPa,φ值25°;天然容重19.8KN/m3;干容重19.2KN/m3,最优含水率13.5%,压缩模量12MPa。

4.砂土地基处理方案的选择与设计

4.1砂土地基处理方案选择

高路堤对地基的承载力及沉降量的控制要求较高,而天然砂土地基是不能满足其上述两方面的要求,因此务必对其采取工程措施进行处理,就目前的地基处理技术而言,对可应用于砂土地基处理的七种预案结合建筑物的荷载性质、基底反力特性、岩土工程条件、施工工期、施工机械设备及使用材料等进行综合分析,宜优选高压喷射注浆法及强夯法对地基进行处理。在基于高路堤砂土地基处理要求达到的预期目的:“消除或减小地基土沉降(差异沉降)并确保工后地基土沉降量在其允许的范围内;消除砂土的地震液化现象(液化沉陷),整体提高砂土地基承载力的同时,普遍提高地基土的抗剪强度指标值以确保高路堤及其地基的稳定性”。再结合经济对比分析(经收资调查与技术经济分析),最终选择强夯法加固处理砂土地基,因它具有施工简单、加固效果好、快速(能适应施工工期的要求)和经济等优点。

4.2砂土地基处理设计

本工程在类比参照区内砂土应用强夯法加固地基的有关试验资料的基础上,结合水库区高路堤运行的特殊地质环境(水库特征水位、特殊水文地质条件等)及计算结果提出如下设计与施工技术要点:

1、强夯设计参数的选定

应根据现场的工程地质条件和工程运行环境的要求,正确地选定各个强夯参数,才能达到有效而经济的目的。强夯参数包括:单击夯击能、最佳夯击能、夯击遍数、遍间间歇时间、加固范围和夯点布置。

(1)单击夯击能

据堤基覆盖层的厚度并结合加固影响深度,按梅纳经验公式估算出采用1000KN.m能级加固影响深度可达7.0m(α=0.7),能满足本工程加固的要求,因此确定采用1000kN.m的能级。大量的事实及研究文献资料指出从冲击能、锤重和落距三者关系分析,普遍认为增大锤重的效果优于增大落距,基于上述理论出发,设计中结合施工单位所能提供的机械设备及施工周边环境,设计因此

选用锤重100KN,落距10m,锤径1.8m的设备。

(2)最佳夯击能

恰当地选择夯击击数,是取得强夯效果的一个重要方面,击数少则达不到夯实效果,击数过多,超过夯击能的饱和状态,夯实效果增加不明显,也很不经济;大量的实践证明,砂土最佳夯击能一般以5000kN.m为宜;因此主夯击点的基本夯击击数为5击,同时还要求最后两击的平均夯沉量不大于5cm;夯坑周围地面不应发生过大的隆起,不因夯坑过深而发生提锤困难。

(3)夯击遍数

根据堤基砂土覆盖层厚度、岩土性质及建筑物的部位确定采用夯击遍数:第一、二序列强夯夯击点均采用2遍重锤跳夯;第三、四序列强夯夯击点夯击2遍;当每一序列每一遍夯毕平场后,再次复夯;最后进入2遍低能级满夯,落距3.0m-5.0m,夯击数一般不小于3击,锤印搭接,以确保夯击土表层密实度在空间上的均匀性。

(4)间歇时间

强夯的地基土为砂土,其上下又为卵石土,均为强透水层,强夯时只会产生瞬时超静孔隙水压力,故在强夯施工中遍间可不考虑间歇。

(5)加固范围

为避免在夯后的土中出现不均匀的"边界" 现象,从而引起建筑物的差异沉降及地基土抗剪强度指标空间上不均匀性;因此,其处理范围应大于建筑物基础外缘的宽度,宜为基底下设计处理深度的1/2至2/3,并不宜小于3.0m。结合地基及高路堤稳定性计算(最危险工况)确定临河方最小加宽值为6.0m。

(6)夯点布置

夯点按正方形布置,正方形布置给夯机留出通道,施工方便。结合堤基覆盖层土的性质及加固影响深度,确定夯距为5.0m,夯点布置详见图1。

图1强夯夯点布置平面图

(7)强夯试验

强夯施工前应进行强夯试验,据拟定的强夯参数,提出强夯试验方案,进行现场试夯。因为砂土地基,试夯结束一周后就可对试夯场地进行检测,一般采用钻探取样进行室内土工试验(若采样的确困难,可采用静力触探试验)、重型动力触探、标准贯入试验等,将检测数据与夯前测试数据进行对比分析,并为正式强夯施工提供可靠的强夯参数修正设计之依据及施工工艺作保障。

2、强夯施工技术要点

(1)首先将强夯处理范围边界线、护脚墙的墙踵及墙趾线用测量仪器测放出,同时在范围边界线以外埋设控制基桩,将其范围线以内的砂土开挖至标高653.50m,并对护脚墙之墙踵及墙趾线各外延0.5m,且将其范围的砂土开挖至652.50m;再用级配卵石土,采用反挖机分三层摊铺;待整平至标高655.00m后进行强夯试验,以确定合理的强夯施工参数和工艺。

(2)夯击序次按第一、二、三、四序列顺序进行夯击,同时用测量仪器按上述夯击序列依次测放出夯点位置,并作好标识,并测量场地高程。

(3)强夯施工顺序须从路线左侧依次推进,止于路线右侧,有利于强夯产生的瞬间超静孔隙水压力的释放,消散时间只有短短数分钟,可不考虑遍间间歇,故可连续作业。

3、质量控制

(1)检查施工过程中的各项测试数据和施工记录,不符合设计要求时应补夯或采取其它有效措施。

(2)场地检测的数量,应根据场地复杂程度和建筑物的重要性确定,对于简单场地上的一般建筑物,每个场地地基的载荷试验检测点不应少于3点。

4、地基处理效果分析与评价

对试夯区进行了原位测试及采样室内试验(大型直接剪切试验),将测试的地质参数作为评价及设计的主要依据。

砂土层:标贯击数实测标准值为13击(稍密),饱和容重19.0KN/m3,孔隙比0.55,饱和C值11KPa,饱和φ值21°,压缩模量6.5 MPa,[fa0]=130KPa。

卵石土垫层:超重型动力触探击数标准值为8击(中密);相对密度Dr=0.75,饱和C值0KPa,饱和φ值33.5°;饱和容重23.3KN/m3;天然容重22.5KN/m3;压缩模量20MPa;干容重21.5KN/m3;最优含水率5.5%;[fa0]=350KPa。

(1)砂土地基承载力验算

在工后进行砂土地基承载力验算时,作了如下计算简化。先将车辆荷载换算成土柱高(当量高度0.79m);以654.50m高程面为计算控制基面,垫层上表面受其上覆路堤填土自重压应力的作用,其作用力通过一定厚度的卵石土垫层扩散后传给砂土地基,在进行自重压应力计算的同时,按《公路桥涵地基与基础设计规范》JTG D63-2007中的规范性公式,对砂土的承载力作验算时,选定竣工为其验算工况的同时,以路中土体结构层次及层厚作为计算的控制依据。其计算过程及结果如下。

等效于基础底面的压应力(路堤填土土体自重应力):

等效于基础底面处的自重压应力:

Pgk′=γh=22.5kPa

垫层底面处的附加压应力(按条基计算):

P0k=b(P0k′-Pgk′)/(b+2ztanθ)=83.09kPa

垫层底面处土的自重压应力:

垫层底面处经深度修正后的地基承载力容许值:

经计算并满足下式要求,P0k+Pgk≤γR[fa]

即83.09+62.90=145.99<1×188.3=188.3kPa

γi-参与计算的第i层填土的容重,地下水位以下的填土则采取浮容重(KN/m3);hi-参与计算的第i层填土的层厚(m);z-设计垫层厚度(m)。

(2)砂土地基沉降计算与评价

水库路堤所发生的沉降、位移和拉裂变形,是水库蓄水反渗于路堤在架空或疏松结构部位等首先产生湿陷及地基本身不均匀沉降叠加共同作用的结果。鉴于此,地基在使用期内不发生较大沉降和不均匀沉降的控制尤为重要,也是保证路堤安全、稳定的关键。基于水库路基运行的特殊环境,在对砂土地基实施强夯的同时,对路堤高程654.50~659.43m段回填透水性材料并采用冲击式压路机碾压,以确保路堤填料本身充分压实及产生微弱的沉降;事实上,对于砂土地基在施工期间即可完成其最终沉降量的80%以上,能确保路基工后沉降≤500mm(规定的允许值)。当正常蓄水至658.0m后,采用《公路桥涵地基与基础设计规范》JTG D63-2007中规范性公式进行了垫层压缩量计算,其中砂土地基沉降量采用《碾压式土石坝设计规范》DL/T 5395-2007中规范性公式按分层总和法计算,其计算过程及结果如下:

S=Scu+Ss;Scu=Pm.hZ/Ecu

分层总和法计算式:

式中:s-垫层地基沉降量(mm);scu-垫层本身的压缩量(mm);ss-下卧砂土层沉降量(mm);Pm-垫层内的平均压应力(MPa);hz-垫层厚度(mm);

Ecu-垫层的压缩模量(MPa);Pi-第i计算土层由路堤填土荷载产生的竖向压应力(MPa);Ei-第i计算土层的压缩模量(MPa);hi-第i计算层厚度(mm);

路基任一点的附加应力由路基矩形分布荷重和三角形分布荷重所引起的坚向应力叠加而得,附加应力按下式计算:Pz=KT.q

Pz--路基任一点的附加应力;q--矩形或三角形分布荷重;KT--应力系数,按《碾压式土石坝设计规范》DL/T 5395-2007中的表G1和G2查取。

①砂砾垫层:由m=0,n=2/8.5=0.235,查表G1并经内插计算KT=0.965;由m=15/20=0.75,n=2/20=0.1,查表G2并经内插计算KT=0.032;

堤基土自重引起的竖向应力:13.3×2=26.6KPa

矩形或三角形分布荷重:

Scu=0.25017×2000/20=25.0mm

②砂土层:由m=0,n=4.65/8.5=0.547,查表G1并经内插计算KT=0.791;由m=0.75,n=4.65/20=0.233,查表G2并经内插计算KT=0.0746;

堤基土自重引起的竖向应力:

13.3×2+9×2.65=50.45kPa

Ss=0.25945×2650/6.5=105.8mm

③砂卵石层:由m=0,n=11.55/8.5=1.36,查表G1并经内插计算KT=0.437;由m=0.75,n=11.55/20=0.578,查表G2并经内插计算KT=0.169;

堤基土自重引起的竖向应力: 13.3×2+9×2.65+13.3×6.9=142.22kPa

SL=0.27088×6900/20=93.45mm

沉降计算控制深度按规范应算至路堤附加应力等于路基自重竖向应力20%处的深度,但因下伏层为千枚岩,就不必在作沉降计算了;总之,工后沉降总和: S=25.0+105.8+93.45=224.25mm<500mm(规范规定的允许值)

(3)地基土地震液化评价

据强夯区测试的地质参数按《建筑抗震设计规范》GB 50011-2010进行地基砂土地震液化评价,在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算:

液化判别标准贯入锤击数基准值N0取12,经计算表明地基土砂土在地震作用下不液化。

结束语

地基处理方法繁多,如何从中选择经济可行的地基处理方案就显得极为重要了,需结合建筑物的功能、地形、地貌部位及运行环境等综合确定;本案例采用强夯处理高路堤砂土地基,在减少沉降量及抵抗液化能力等方面达到了预想的效果,达到了以土治土之目的。不失为一种经济、简便、快速有效的地基改良方法。只要条件允许(施工条件及周边环境许可),是值得在地基处理中首选的一种方法。

高填方路堤地基勘察的深度与广度应引起重视,力求其准确性;以确保地基处理设计的合理与经济性,力求避免设计方案的重大修改,酿成施工延误和不必要的经济损失。

参考文献

[1]JTG D63-2007.公路桥涵地基与基础设计规范[S].

第4篇

主要包括3个方面的内容:

1.1工程地理位置

本水库是以灌溉、县城供水为主,兼有农村人畜饮水的综合利用工程,主要是解决5个乡镇的农田灌溉及江口县城的供水问题,以及农村人畜饮水问题。工程坝址位于县城西面的锦江闵孝河段一级支流英溪河下游河段上,坝址距县城12km,距闵孝镇5km,305省道从坝址下游约1km处通过,另有乡村公路通往坝址及库区,交通较为便利。

1.2工程等别及建筑物级别

1.2.1工程等别及建筑物级别

本工程由首部枢纽、灌区工程和县城供水工程3部分组成,水库总库容1500万m3,坝型为拱坝,最大坝高50m,属中坝;灌区总面积2893hm2,县城供水人口8.38万人,乡镇农村人畜饮水供水23720人,总干渠渠首设计引用流量3.52m3/s;县城日平均供水15571m3/d,最大日供水量20242m3/d。灌区工程还包括两座泵站,其中舒家龙泵站装机容量4×1250kW+3×900kW,何家坝泵站装机容量3×1000kW。可研报告审查意见中,同意本工程水库规模中型、工程等级为Ⅲ等,其枢纽主要建筑物如大坝、溢流表孔、放空底孔、放水管为3级,灌区建筑物泵站为3级,渠道及渠系建筑物、供水管道及其它建筑物为5级,临时建筑物如导流建筑物为5级。初步设计阶段按照审查意见及规程规范对工程等别及建筑物级别复核如下:根据《水利水电工程等级划分及洪水标准》(SL252—2000)、《灌溉与排水工程设计规范》(GB50288—99)及《泵站设计规范》(GB50265—2010)的规定,本工程为III等中型工程,枢纽主要建筑物大坝、溢流表孔、放空底孔为3级建筑物;灌区及供水工程为小(1)型,灌区泵站为3级建筑物,渠道及渠系建筑物、水池、县城供水管道为5级建筑物,临时工程为5级建筑物。

1.2.2洪水标准

本工程地处山区,根据工程等级、规模及拟定的各建筑物级别,从而确定相应的洪水标准如下:

1.2.2.1首部枢纽建筑物洪水标准

拱坝及溢流道、放空底孔洪水标准按50a一遇(P=2%)洪水设计,500a一遇(P=0.2%)洪水校核;消能防冲建筑物设计洪水标准按30a一遇洪水设计。

1.2.2.2灌区及供水区建筑物洪水标准

灌区泵站建筑物洪水标准按30a一遇(P=3.33%)洪水设计,100a一遇(P=1%)洪水校核;县城供水管道、渠道、渠系建筑物按10a一遇(P=10%)洪水设计,涵洞洪水标准按10a一遇(P=10%)洪水设计。

1.3工程布置及建筑物

1.3.1首部枢纽工程布置

水库位于英溪河与闵孝河汇口上游约2.1km,距江口县城约15km,江口县城与水库之间分布有大量的农田、村寨、公路干线等,为保证紧急情况下能快速放空水库,水库设置放空底孔。根据选定的坝线及坝型,其首部枢纽布置为:拱坝+坝顶溢流表孔+右岸重力墩+放空底孔+取水口及放水管+环境放水管。大坝坝型为C15混凝土双曲拱坝,建基面高程404m,最大坝高50m,两岸坝肩段置于弱风化下至中上部,坝顶宽4m,坝底最大宽度12m,大坝厚高比0.24。坝顶高程为454m,坝顶长113.354m,溢流表孔处设交通桥,交通桥宽为4.0m,为保证人行安全,坝顶上下游面均设栏杆。上坝公路布置于右岸,从下游面由交通洞穿过孤峰通往左坝端。重力墩布置在右坝端,底板高程430m,顶面高程454.0m,总高24m,顺水流方向顶部宽15m,底部宽25m,沿坝轴线方向长33m,墩体材料为C15混凝土。溢洪表孔布置在河床段顶中部,溢流净宽48m,堰顶高程449m,堰顶不设闸门控制,溢流堰为WES型实用堰;为方便运行管理,溢流堰顶布置交通桥,桥面宽4m,3个桥墩坐落在溢流堰斜坡至溢流堰反弧段位置,桥墩厚1m,宽6m,高11m。放空底孔靠溢流坝右侧布置,轴线方向与拱中心线成23°角,进口底板高程424.17m,孔身断面尺寸2.0m×2.5m,设事故检修平板钢闸门一扇。根据压坡设计要求,出口断面尺寸缩小为2.0m×2.0m,设弧形工作钢闸门一扇,在433.67m高程设置启闭机室,布置一台启闭机。底孔全长35m,出口采用挑流消能。取水口及放水管位于右坝段,桩号0+020.366,采用塔式取水,采用塔式取水,取水口底板高程433.0m。沿水流方向依次设固定式拦污栅、检修闸门。喇叭口后为闸门井,高21m,事故闸门后设通气兼进人孔,闸门井后设渐变段,长3m,圆孔后接放水管。放水管沿河岸通过悬崖段,经Φ1.6m锥形阀后进入消力池。放水管总长222.5m,明管布置,光面管。锥形阀布置闸室内。在放水管末端地形平缓的位置布置消力池,使水流平稳进入总干渠,放水管1~2#镇墩之间地形稍缓的位置设Φ300环境水管,兼作放水管的放空设施。

1.3.2灌区工程布置

1.3.2.1灌区分布

根据灌区地形、地质条件,结合灌区耕地、水源等特点,将灌区分成3个大片区:1)第一片区为总干渠片区,包括本下游至塘坎寨洞湾一带,本片区大部分灌面已由铜东灌区英溪引水工程解决,渠系配套工程已于2009年完成,水源来自英溪河,保证灌溉面积260hm2,修建本将截断其水源。因此,本将还原其灌溉流量,并覆盖本总干渠与英溪引水渠两个高程之间的农田40hm2,本将为此300hm2农田提供灌溉水源,为自流灌溉。2)第二片区为塘花干渠片区,包括龙回至坝盘之间的锦江两岸广大农田,由塘花干渠解决,灌面共计884hm2,其中改善灌溉面积20hm2,为自流灌溉。3)第三片区为凯德干渠片区,包括黑岩、双岑、洪坪、何坝、凯里、革张坝等江岑公路沿线的高山缺水地区,灌面共计1750hm2,其中改善灌面60hm2,为提水灌溉。

1.3.2.2渠系布置

为覆盖上述灌区范围,经布置:1)第一片区有总干渠和英溪支渠,总干渠自水库引水沿英溪河右岸至1+664处跨过英溪河经水银沟、周家屯、水泥厂至塘坎寨,长15.903km;英溪支渠为已建渠道,沿英溪河左岸至鱼粮溪村,再经水银沟、周家屯、水泥厂、塘坎寨、五里桥直至洞湾,长约15km,分布高程比总干渠低10余m。2)第二片区有塘花干渠、塘花干管和坝盘支管,塘花干渠从塘坎寨经滑石板、龙回,在庙湾跨过闵孝河,沿闵孝河右岸布置坝干管顺河而下直至坝盘电站坝址位置,长13.665km,其中塘花干渠长4.125km,塘花干管长9.45km;坝盘支管从坝盘电站坝址沿闵孝河右岸顺河而下至坝盘椅子湾水库,长9.45km。3)第三片区有凯德干渠、舒家龙泵站、洪坪支管(长4.549km)、岑洞坪支管(长2.21km)、何坝支渠(渠道长2.05km,管道长10.4km)、何家坝泵站及渠系建筑物。凯德干渠在水泥厂处从总干渠分水跨过闵孝河,经凯德、蛇湾寨至舒家龙泵站,渠线4.7km;舒家龙泵站从舒家龙蓄水池提水至569m高位水池和天堂650m高位水池;洪坪支管从569m高位水池引水经大湾、围子边、张海溪至小土坪高位水池,管线总长4.549km;岑洞坪支管在大湾从洪坪支管分水,通过压力管线经陶岭、下寨、上寨至谭井高位水池,管线总长2.21km;何家坝支渠从天堂650m高位水池引水,以明渠型式通过天堂,再采用压力管线经格洋溪、三道河、店上、沙坝直至何家坝,引水线路总长12.45km;何家坝泵站从何家坝蓄水池提水至雷打坪840m高位水池。

1.3.3供水工程布置

本工程城镇供水对象为江口县城,规划的新水厂位于江口县城西侧城郊的沙子坳,原始地面高程410~440m。本项目负责将水采用自流方式引至沙子坳。充分利用灌溉总干渠,从水库至塘坎寨一段,利用灌溉总干渠引水,即是将县城供水所需的0.3m3/s流量叠加到总干渠,再从塘坎寨修建供水管道平行公路布置,经过五里桥、基北自流至沙子坳水厂位置。县城供水的引水线路总长18.603km,其中总干渠长15.903km,供水管道长2.7km,引水渠道两侧设置栅栏,以保证渠道水质不受污染,供水管道采用埋管型式布置,以适应城郊地带的运行和管理。乡镇供水及农村人畜饮水涉及到闵孝镇、双江镇、民和乡等3个乡镇,供水范围较为分散,本工程只为各受水点提供水源,供水管网、供水设施等根据国家政策另行解决。初步设计作了如下规划:1)闵孝镇供水:受水点位于水库附近,且水库水位能满足供水自流要求,由闵孝镇从水库自行引水或从总干渠上自行引水。2)双江镇总干渠沿线村寨的农村人畜饮水由各村组自行在总干渠引水或总干渠末端的水池引水。3)双江镇天堂片区的农村人畜饮水由各村组自行在天堂坪高位水池引水。4)洪坪片区的农村人畜饮水由各村组自行在洪坪支管沿线或小土坪高位水池引水。5)岑洞坪片区的农村人畜饮水由各村组自行在谭井高位水池引水。6)何家坝片区的农村人畜饮水由各村组自行在何家坝水池引水。7)凯里片区的农村人畜饮水由各村组自行在雷打坪高位水池引水。

2优化效果说明

设计优化主要采用新工艺、新思路、新材料,结合工程现场精打细算,以期以最节约的方式做出符合规范要求的工程产品,节约社会资源、创造社会财富。其优效果主要体现在两个方面:

1)节约工程投资、简化工程施工,使项目总承包者获得直接的经济效益。由于初步设计阶段已经按尽量节约工程投资的思路设计,本阶段虽然有一定的优化余地,但在没有做具体工作之前,并不能得出一个具体的效益数据。

第5篇

关键词:输水工程 驼峰管段 负压 调节池

1 工程概况

庐山位于江西省北部,长江、鄱阳湖之畔,是国家重点风景名胜区,其主要水源是地处特级 保护区内的芦林湖。由于庐山旅游业的快速发展,生活用水量急剧增加,用水需求已超过了芦林湖的正常供水能力。据测算,至2010年,芦林湖的平均年缺水量将达到97×104 m3 。为保护芦林湖的水质和湖面景观,并满足供水要求,特兴建了莲花台水库供水工程,主要包括一座取水水库、一座取水泵站和一条DN400、长约4.6 km的输水管道。工程设计供水能力为1.22×104 m3/d,流量为0.16 m3/s,将莲花台水库的蓄水输送到芦林湖,以增加芦林湖的蓄水量,提高芦林湖的供水能力。

工程采用2台水泵并联供水(另有1台备用),水泵设计扬程为1 225 kPa(122.5 m), 流量为288 m3/h,安装高程为881.6m。取水水库的正常蓄水位为912 m,死水 位为887 m。输水管道进口(即水泵出口)的桩号:-78.5 m,管中心高程:882.3 m,输水管道出口的桩号:4476.33 m,管中心高程:993.02 m,按自由出流设计。整个输水管道系统的总水头损失系数∑R=1 042.773(这里R=Δh/Q2,Δh 、Q分别是对应的水头损失和过流量),其中管道出口附近约600 m管段(含驼峰管段)内 的主要节点参数如表1所示。

表1 输水管道出口附近管段主要节点的有关参数 节点

桩号

(m) 节点管

中心

高程

(m) 管段

长度

(m) 原输水管道布置情况 增设调节池后情况 工况1 工况2 工况1 工况2 压力

水头

(kPa) 内水

压力

(kPa) 压力

水头

(kPa) 内水

压力

(kPa) 压力

水头

(kPa) 内水

压力

(kPa) 压力

水头

(kPa ) 内水

第6篇

【关健词】供水;管道;水厂;设计

1、工程简况

陆川县清湖水库集中供水工程是一个以供水为主的水利工程,陆川县清湖水库集中供水工程最高日供水量测算到2030年最高日需水量为1.1995万m3/d,由此确定本工程供水规模为1.2万m3/d。清湖水库正常蓄水位为83.78m,死水位为74.38m。有压隧洞位于主坝右侧,出口接坝后电站,装机容量95kw。本工程从清湖水库坝后电站的压力管分出岔管取水,规划水厂地面高程为64.0m,死水位与水厂间高差为10.38m,距离6km,可实现无动力输送原水。清湖水库水质较好,水体不受污染,水体常年达到或优于《地面水环境质量标准》(GB3838-2002)的Ⅲ类水体标准。工程建成后,将解决清湖镇区(含红山农场)、以及沿途8个行政村大部分人的用水问题,现状(2012年)52630人,远期(2030年)70643人。

2、工程布置及主要建筑物

2.1工程总体布置

清湖水库为多年调节水库,水质较好,是乡镇供水的理想水源,经水量平衡计算,按规划水平年预测需水量1.2万m3/d。清湖水库能满足用水量的要求。原水取水口选在清湖水库放水隧洞的出口处,从原电站压力钢管分岔引出,经输水管道引至水厂进行净化处理,输水方式采用重力流无动力引水,单管布置,管径为DN=450mm;水厂布在清湖镇区西北侧大塘江村附近的山坡上,生产规模1.2万m3/d,原水经净水厂净化后,通过加压泵站加压至设计水压54m,最后通过配水管网供给用户,管径φ90~450mm。

2.2输、配水工程

1)输水管设计

清湖镇输水干管始于清湖水库输水隧洞末端,止于清湖镇水厂,单管布置,管长5975m。管道沿途经过蚊龙、上铺岭、榕树环、那百垌、罗子田、垌尾最后到达清湖镇水厂。此输水干管的总设计流量为0.147m3/s。为便于工程的运行和管理,结合各输水线路沿线地形和地质情况,输水管道拟尽量采用浅埋式布置方案。清湖水库至清湖镇水厂公路两侧基本无建(构)筑物,输水干管可沿公路的内侧(靠山侧)埋设。

2)配水管网设计

结合本工程地质条件以及供水对象,配水管网采用树枝状布置,并选用钢纤管和PE管。其中管径小于250mm以下的采用PE管,管径大于250mm采用钢纤管。配水管网总长51.78km。

2.3净水厂设计

水处理构筑物生产能力按最高日供水量1.2万m3/d,除以每天工作时间24 h确定,即500m3/h。

水厂工程包括生产建筑物、水厂附属建筑物、厂区环境设施等。生产建筑物包括絮凝池、沉淀池、过滤池、清水池,水厂附属建筑物由办公室、值班室仓库等组成。净化系统是本工程的主要部分,由絮凝池、沉淀池、加药加矾室、过滤池、清水池等项目。

1)絮凝(反应)池

净水厂净化系统净化规模为1.2万m3/d,系统工作时间每天按24小时计,根据用水量(包括5%的水厂自用)计算结果得知,净化系统平均时用水量为525m3/h。

反应池分8个反应室,每个反应室串联起来。反应池有效水深3.3m,存泥高1.5m,超高0.3m,总高5.1m,平面尺寸为2.60×2.60m。

2)沉淀池

沉淀池工作时间按24h计,进水流量与反应池相同,为525m3/h。采用斜管沉淀池,水在斜管内的上升流速采用v0=2.5mm/s。经计算,沉淀池的尺寸(长×宽×高)为12.5m×6m×5.68m。

3)过滤池

根据计算清湖水厂净化系统设计流量分别为525m3/h。参照全国通用建筑标准设计图集S775,净化系统选用两组S775(八)320m3/h重力无阀虑池,流量共640m3/h满足要求;单池平面尺寸为4.1×4.1m,总高4.74m。

4)清水池与消毒

清水池容积按日供水量的10%~20%计算,本工程日供水量为12000m3,选两个1500m3的方形清水池使用满足要求。清水池单池边长28.7m,池高4.5m,池顶覆土高度为1.0m。

5)加氯、加药设计

投药间设置氯酸钠原料间、盐酸原料间、二氧化氯制取室、矾库、加矾间、化验室、值班室、办公室。投药间内配备有二氧化氯、混凝剂的储存、配制、投加系统。

2.4加压泵站

加压泵站设在清湖水厂内,泵站共设四台水泵,三台工作一台备用,水泵型号为KQSN250-N6,扬程为54m。加压泵站平整后室内地面高程为60.2m,采用单层单列式布置,单层式砖混结构,机组间距为4.0m,宽6.5m,长19.0m,为了满足水泵检修的要求,在泵房内设一台2.0t电动葫芦。

3、机电及金属结构

3.1 水机设备

清湖镇水厂供水日变化系数为1.3,由于供水的重要性,加压泵站考虑设置四台水泵,三台工作一台备用。

根据供水工程要求,加压泵站供水流量为900m3/h,单台水泵流量为382 m3/h,供水扬程为48.24m,三台工作一台备用。从“水泵系列型谱”拟选水泵型号及参数:KQSN250-N6,H=54m,Q=382m3/h,n=1480r/min,水泵吸入口径250mm,吐出口径DN=150mm、必需汽蚀余量2.9m,电机功率90kW,泵重511kg。

3.2 电气工程

清湖水厂的动力负荷均采用0.4kV电压供电,1回10kV电源进线引接于附近的10kV线路线路,设降压变压器一台,型号为S13-500/10,额定电压比为10±5%/0.4kV;0.4kV电压母线设2面GCS型成套低压开关柜,1面GCS型成套无功自动补偿柜,1面ZX-2动力箱。另设1台400kW柴油发电机组接于0.4kV电压母线上作为备用电源。

3.3 金属结构

为了能将絮凝沉淀池底沉积物快速有效排出,在絮凝沉淀池上配备1台吸泥机(移动台车式)。

净化系统各建筑物的埋件、埋管及阀门等算入各建筑物的水处理设备内,输、配水管网的金结算入相应的管附件内。

4、结语

陆川县清湖水库集中供水工程是新建项目,工程任务是解决清湖镇区及镇区周边村屯的用水问题,现状(2012年)52630人,远期(2030年)70643人。工程设计从清湖水库取水,经输水管道引至规划水厂,净水处理采用常规工艺,经加压后通过配水管网向用户供水。本工程项目实施后,将为清湖镇区、以及镇区周边村屯提供丰富干净的水源,促进了地区经济快速发展,具有明显的社会效益。经过论证,技术可行,经济合理,对环境无不良影响。

参考文献:

[1]林继镛.水工建筑物(第五版).中国水利水电2011.8.

第7篇

关键词:水库;溢洪道工程;设计思路;设计布局

水利工程关乎社会民生,在新时期人均物质生活水平显著提升背景下,对于工程设计提出了更高的要求。作为水利工程中重要组成部分,水库溢洪道工程质量高低将直接影响到水库的安全,尤其是在汛期和泄洪期,尽可能降低安全因素带来影响。在水库溢洪道工程设计中,需要充分把握水库溢洪道的设计布局、水库溢洪道水力计算和结构计算,提出设计合理性,提升我国水力工程建设质量。由此看来,加强水库溢洪道工程设计研究十分关键,对于后续工作开展具有一定参考价值。

1水库工程中常见的问题

1.1洪水期间的问题

在水库溢洪道工程中,洪水期间出现的问题十分严重,作为保障水库安全的基础设施,水库溢洪道所起到的作用十分突出。但是由于造价不合理,水库设施不完善,所以在水库溢洪道设计标准上存在一定的不合理性,洪水数据偏小,这就导致后续设计的溢洪道尺寸不合理,难以满足实际要求。尤其是水库溢洪道运行条件较为恶劣,长期受到水体和风体的影响,岩石风化现象十分严重,致使水库溢洪道的泄洪能力偏低,在洪水期间为水库安全埋下了严重的安全隐患。

1.2水库溢洪道布置和设计问题

在水库溢洪道布置和设计方面,由于距离大坝进出口太近,所以坝肩和溢洪道之间的距离过于单薄。加之进出口并未建立专门的护砌,所以一旦发生洪水事故很容易造成坝肩崩塌,埋下严重的安全隐患。在水库溢洪道设计中,由于平面弯道过大,收缩性较强,洪水期间对于水库的泄洪能力带来不同程度上的影响,尤其是水库溢洪道布置的弯道大多数是在下坡处。水流流式不断变化,两岸水面差距十分明显,水库凹岸的水面不断提升,并且水流流速较快。这种现象将导致延平直段由于水流流速和冲击力较大发生拆冲现象,影响到水库整体的泄洪能力,带来的影响十分深远。如果水库缓流处收缩过于强烈,可能产生较为明显的流态变化情况,进而对溢洪道砌面产生严重的冲击力,工程施工难度更大。也正是由于水库投入资金限制性较大,如果砌筑高度较高,相应的需要投入大量的资金费用,在一定程度上对水库泄洪能力和安全产生直接的影响。

1.3水库溢洪道工程设计方法不合理

由于水库溢洪道工程设计涉及内容较广,在平面和剖面设计中可能存在不同程度上的缺陷,进而影响到溢洪道陡坡设计缺陷和不足的出现。主要是由于水库溢洪道布设具有非山坡性特点,所以底部并未进行充分的反滤砌筑防护,可能出现不同程度上渗漏水现象,进而发生严重的滑坡事故,对水库安全带来严重的破坏和影响。与此同时,在设计中由于重视程度不高,边坡的厚度不均匀可能产生严重的滑坡事故,进而对水库泄洪能力产生影响,带来较大的冲刷力。由此可以看出,当前我国水库溢洪道工程设计中还存在一系列缺陷和不足,除了上述问题以外,还包括一些结构基础和泄洪能力上的缺陷,可能出现水流冲击力较大,水库砌筑防护裂缝漏水,影响到工程的建设安全,还有待进一步完善和创新。

2水库溢洪道的设计规划

2.1水库溢洪道的设计布局

在水库溢洪道工程设计中,需要结合当地的地形、地貌和水文条件,保证经济投入合理性,后续施工活动可以安全有序进行。如果水库附近有山,建设水库溢洪道是合理的,如果施工区域较为狭窄,水库溢洪道可以选择侧槽式进行施工,有助于提升水库溢洪道泄洪能力。水库溢洪道设计布置中,主要是在坚硬平面上,尽可能的缩短线路距离,避免弯道的出现。同时,出口与坝体之间的距离越远越好,这样可以有效避免后续滑坡或泥石流对水库溢洪道带来破坏。(1)进口段。一般情况下,进口段的形状为喇叭形,这样是为了降低损失和地形因素限制,根据实际情况适当的设置弯道。设置的弯道尽可能保证平缓,避免受到较强的冲刷影响;溢洪道坝面设计为梯形或是四边形,水流速度在1s/h以下,可以不适用砌护墙。反之,如果与附近建筑物在一定范围内连接,可以适当的增加切护长度和厚度。(2)控制段。为了保证洪水期间泄洪能力,水流速度均匀,应该保证进口水流和建筑物保持垂直,根据地形条件有针对性的设置控制断面,确定泄洪流值。一般情况下,岩基单宽流量大概在50m3/s以上,除了一些小型水库进水口设置引流以外,水库溢洪道的宽度应该控制在3h以下。如果断面宽度较大,布设间距应该控制在10m~15m之间。(3)陡坡和急流段。在陡坡和急流段的设计中,可以选择直线法,进而避免坡体和弯道产生的流态负压问题。故此,在水库溢洪道设计中需要因地制宜,根据具体的地形、地貌和水文条件来确定引流形式。(4)消能段。陡坡和急流段的尾端需要安设一个效能装置,结合溢洪道地形和地质条件有针对性选择装置型号。在溢洪道末端选择多级跃流形式,促使水库的泄流方向可以控制在坝角的100m~150m左右。但是,对于消能工具的选择,如果是非岩基的消能工具,绝大多数情况下是采用底流效能方式.末端配置消能池。水库洪流阶段,池流量处于一个较为平稳的阶段,可以选择消能槛形式来满足实际需要。水库洪流是远驱式,可能对砌护带来严重的冲刷作用。针对此类情况下,可以选择差动式消能装置,水库溢流道末端坡度较陡情况下,应用挑射效能模式作用更为突出,还可以有效避免消能池的使用,降低工程量和资金投入,提升工程建设经济效益。

2.2水库溢洪道水力计算

(1)进口段水力计算。进口段水力计算主要是选择查尔诺门斯基法,从下游控制面反推上游控制断面的水面曲线变化情况,并且得出具体的数位高度,确保泄洪时水库的水位计算结果精准度。(2)陡坡和急流段的水力计算。陡坡和急流段的水力计算方法较为多样化,可以采用b2型降水曲线方法进行计算。(3)消能工具水力计算。在水库溢洪道底流式效能设备计算时,通过巴什基洛娃图方法进行计算,步骤简单,可以更快的得到计算结果,保证计算结果精准度,降低计算时间。一般情况下,在溢洪道建设中,更多的选择尺寸较大的消费设备,所以想要获得准确的水利工程效能情况,应该建立模型进行试验分析,得出更加准确的结果。(4)侧槽段的水利计算模式。在溢洪道侧槽段水力计算中主要是通过扎马林法,这个计算模式中将将流假定值是均匀的,但是实际情况下确实动态变化的,所以只能计算得出一个模糊结果,与实际情况存在一定的差异。尤其是近些年来,水利工程的水流量和能量关系的计算不断深化,计算方法也在不断创新,在了解池流情况基础上,由于侧槽式溢洪道水流内进冲击力较大,所以导致水流的流态变得更加复杂,计算难度较高。

2.3水库的结构计算

为了保证水库建筑物结构稳定性和安全性,这就需要在结构计算中能够选择合理的计算方法,除了对于坡面挡土墙的计算以外,还要对其他方面内容进行详细计算和分析。在陡坡砌护厚度计算中,主要是为了保证互动安全,设置可伸缩沉陷缝,避免洪水期间砌护体受到影响坡向发生变化,加剧阻力。

3结语

综上所述,水库溢洪道工程设计中,作为水利工程中重要组成部分,设计合理与否将直接影响到工程整体建设质量,这就要求设计人员充分把握水库溢洪道的设计布局、水库溢洪道水力计算和结构计算,提出设计合理性,提升我国水力工程建设质量。

参考文献:

[1]张俊宏,梁艳洁,杜娟,等.华阳河水库溢洪道泄洪消能试验优化研究[J].中国农村水利水电,2014,12(9):71~74.

[2]郝晓辉,郭磊,王慧,等.峤山水库溢洪道挑流鼻坎结构尺寸的确定[J].山东水利,2016,28(1):50~51.

[3]彭琦,陈朝旭,李涛,等.天河口水库除险加固工程设计[J].人民长江,2015,42(12):89~92.

[4]张艳丽.海龙川水库溢洪道加固设计与计算分析[J].水利技术监督,2015,23(1):49~51.

[5]和桂玲,刘长余,李清华,等.山东省邹城市西苇水库除险加固工程设计[J].中国水利,2014,21(20):77~80.