欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

探索平行线的条件范文

时间:2023-06-21 09:14:49

序论:在您撰写探索平行线的条件时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

探索平行线的条件

第1篇

知识与技能:

经历探索同位角相等,两直线平行的过程,掌握两直线平行的条件,并能解决一些问题。会用三角尺过已知直线外一点画这条直线的平行线

过程与方法:

通过“转动木条”的活动锻炼学生观察、想象、思考的能力。在学生亲自动手操作、合作交流中直观认识“同位角相等,两直线

平行”。

情感态度与价值观:

让学生在自主探究活动中积极投入认真思考,并与同伴合作交流,尝试成功的快乐,激发学生的探究意识及学习积极性。

【教学重点】探索同位角相等,两直线平行。

【教学难点】掌握同位角相等,两直线平行,并能灵活对其运用,解决一些实际问题。

【教学方法】合作探究,动手操作。

【教具学具】多媒体课件、三根木条。

【教学过程】

一、情景导入

问题1:在同一平面内两条直线的位置关系有几种?分别是什么?

问题2:什么叫两条直线平行?

问题3:装修工人正在向墙上钉木条。如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角是多少度时,才能使木条a与木条b平行?你的理由是什么?

二、探究新知

1.上面的操作过程可以抽象出几何图形。如图:

(1)师明确:两线相交成四角,三线相交成八角。具有∠1、∠2这种位置关系的角叫做同位角。

(2)思考:同位角的位置关系有什么特点?

(3)图中还有哪些是同位角?

2.拿出学习用具,三根木条相交成∠1,∠2,固定木条b、c,转动木条a。

(1)观察∠2的变化以及它与∠1的大小关系,你发现木条a与木条b的位置关系发生了什么变化?它们何时平行?

(2)改变∠1的大小,按上面方式再试一试,两角满足什么关系时,木条a与木条b平行?小组内进行交流讨论。

(3)学生组内思考交流:通过以上操作,你能得出什么结论?

(4)明晰:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简称为“同位角相等,两直线平行”,平行用符号“∥”表示。例如,直线a与直线b平行,记作a∥b。

3.现在你能解释问题3了吗?

4.做一做

(1)如图1:你能过直线AB外一点P画直线AB的平行线吗?能画几条?你能画出不同的线吗?通过以上操作你能得到什么

结论?

师生共同明晰:过直线外一点有且只有一条直线与这条直线平行。

(2)在图2中,分别过点C、D画直线AB的平行线EC、DF,那么CE与DF有怎样的位置关系?猜一猜,再验证一下。通过这次操作你又得到了什么结论?

师明晰:平行于同一条直线的两条直线平行。

(3)转化成几何语言该是什么呢?(生口述,师演示多媒体)

三、巩固练习

1.找出图中点阵中互相平行的线段,并说明理由(点阵中相邻的四个点构成正方形)。

2.如图,在屋架上要加一根横梁DE,已知∠B=32°,要使DE∥BC,则∠ADE必须等于多少度?为什么?

四、课堂小结

1.本节课你有什么收获?

2.通过本节课的学习你还有什么想要进一步探究的吗?

五、布置作业

第2篇

摘 要:在国家课程标准下,数学有多种教材版本,在同一课程标准下,为什么会有多种教材版本呢?显然,各教材侧重的方向和方法不同,但是最终目标是一致的。北京师范大学出版社出版的教材,简称“北师大版”,人民教育出版社出版的教材,简称“人教版”,主要研究这两种数学教材《平行线判定》的异曲同工之处。

关键词:平行线;判定;北师大版;人教版

目前,中小学数学主要使用北京师范大学和人民教育出版社两种教材,其中沿海和新课改城市一般采用北京师范大学出版社的教材,而北方内地城市一般采用人民教育出版社的教材。两种教材究竟有哪些不同和联系呢?本论文将从新课程标准的要求、章节引言、内容结构和教学设计四方面,阐述两本教材中《平行线判定》这一课的异曲同工之处。

一、新课程标准要求

1.实施意见

《义务教育数学课程标准》在实施意见中指出,数学教学要生活化、情境化和知识系统性,最终超出生活(生活数学)并上升到“笛模型”(书本数学)。

2.课程目标

在课程目标中要求学生:探索并掌握相交线、平行线的基本判定,掌握基本的证明方法和基本的作图技能;体会通过合情推理探索数学结论,运用演绎推理加以证明,在多种形式的数学活动中,发展合情推理与演绎推理的能力。经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。

3.内容标准

在内容标准中要求学生:识别同位角、内错角、同旁内角。掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。能用三角尺和直尺过已知直线外一点画这条直线的平行线。探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行。

二、两教材中的章节引言

两本教材的章节引言大同小异。都从生活出发,使用了桥梁图片,引出本章内容。介绍了生活中的一些蕴藏相交线和平行线的景象,并介绍了本章学习的主要内容。

三、两教材中的内容结构

《相交线与平行线》在初中数学北师大版教材中的第38页至第60页,使用了23页的篇幅。而人教版是教材中的第2页至第37页,使用了36页的篇幅。可见人教版使用的篇幅较多,将命题定理和平移的知识点也融入里面了。

北师大版的章节安排有:2.1两条直线的位置关系,2.2探索直线平行的条件,2.3平行线的性质,2.4用尺规作角,回顾与思考,复习题。人教版的章节安排有:5.1相交线,5.2平行线及其判定,5.3平行线的性质,5.4平移,小结,复习题。可见章节安排大致相同,不过北师大版中的同位角、内错角和同旁内角的概念安排在后,在“2.2探索直线平行的条件”中,一起使用了两个课时。人教版中的同位角、内错角和同旁内角的概念安排在前,在“5.1 相交线”中,而“5.2平行线及其判定”只使用了一个课时。同位角、内错角和同旁内角概念的前后,体现了两本教材的不同思路。

四、两教材中的教学设计

北师大版的课题名字是“探索直线平行的条件”,课本分两个课时,第一课时主要内容有:装修工人如何使木条a平行于木条b?利用三根木条转动模型,探索同位角概念和平行线判定(同位角),三角尺画平行线,过直线外一点画平行线。第二课时主要内容有:内错角和同旁内角概念,探索平行线判定(内错角、同旁内角)。根据课本内容,教学过程可以设计如图:

1.情境引入

出示图片,提问学生“看到这么多图形,你有什么问题和想法想和大家交流一下吗?”引出本节课的大问题“我们该如何判断、作出两直线平行?”

2.合作探究

学生讨论、交流做平行线的方法,并上台展示。学生1:“在同一平面内,做同一条直线的两条垂线,这两条垂线平行。”学生2:“用小学学过的知识,平移三角板画出两条直线平行。”学生3:“作两组对边分别相等的四边形,得到平行四边形,平行四边形的对边平行。”学生4:“在直线一旁,作两个相等的角,这两个角的另一边互相平行。”……

3.导学达标

老师引导学生,总结以上方法,并找出共性。引出“同位角”的概念,发现“同位角相等,两直线平行”。接着再思考过直线外一点作平行线的情况,让学生体会平行线的唯一性和传递性。

4.矫正深化

安排练习,纠正认知错误,熟练知识点。课本安排了随堂练习2道,习题5道。安排的习题有:求角度的、证明平行的、格子图作平行线的、折纸作平行的、建筑工人调整工具作图的原理等。主要侧重操作。下一节课再学习“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

人教版的课题名字叫“平行线及其判定”,课本安排了一个课时,在学习之前已经学习了同位角、内错角和同旁内角概念,本课时的主要内容有:利用三根木条转动模型思考两直线位置关系,过直线外一点画平行线,回顾三角尺画平行线,平行线判定(同位角),木工用角尺画平行线的原理,平行线判定(内错角),平行线判定(同旁内角)。根据课本内容,教学过程可以设计如图:

1.情境引入

出示图片,提问学生:“看看这些图形,它们有什么共同特征?”引出本节课的内容“两直线的位置关系”。

2.合作探究一

思考三根木条转动模型,思考两直线不相交的情况。学生体会两直线不相交时候的角与线的位置特征。

3.合作探究二

思考过直线外一点作平行线的情况,让学生体会平行线的唯一性和传递性。学生画平行线体验。

4.合作探究三

思考以前学习过的用三角板画平行线的方法,思考其中的原理。学生通过操作、演示和交流发现“同位角相等,两直线平行”。学习完判定后,再思考木工用角尺画平行线的原理,让学生进一步体验判定的内涵。

5.合作探究四

思考内错角、同旁内角与同位角的关系,想想能否用内错角和同旁内角的关系判断两直线平行。学生运用所学知识,将内错角相等、同旁内角互补转化为同位角相等,发现新的两条判定。

6.合作探究五

思考垂直于同一直线的两条直线的位置关系,运用前面所学知识,证明垂直于同一直线的两条直线平行。学生在学习的过程中,不断地应用所学知识。

7.矫正深化

安排练习,纠正认知错误,熟练知识点。课本安排了练习3道,习题12道。安排的习题有:求角度的、证明平行的、生活中的数学原理、区分三个判定、三个判定的联系等。主要侧重知识的应用。

五、两教材中的异曲同工

两教材的知识点、内容设计、章节引言和情境引入都符合新课标要求。两本教材的课本引言和新课引入都从生活出发,引入课题,符合新课标中教学生活化和情境化的要求。两本教材的内容、结构大致相同,循序渐进,从生活现象观察里面所包含的数学原理,探索数学定理,不过人教版安排的内容比较多,习题也比较多,所以篇幅也较多,更加重视知识的系统性。

两教材在探索平行线的判定过程中,都使用了木工画平行线的情境,但是使用的方法有所不同,北师大版更注重从生活现象探索数学的过程,人教版更注重用数学知识解释生活中的现象。例如,北大版利用木工画平行线的方法,引导学生探索平行线的判定,判定是学生从生活中自己探索发现的,而不是强加给自己的。而人教版是在探索完平行线的判定以后,让学生去解释木工画平行线的合理性,将数学知识融入现实生活中,服务于生活。前者重视让学生自己去探索新的知识和方法,通过老师引导升华为数学定理,而后者重视利用自己所学的知识,解释生活中的各种现象,用数学原理解决生活中的问题。

两教材在探索平行线的判定过程中,都使用了同位角、内错角和同旁内角的概念,但是使用的方法有所不同,北师大版更注重因探索的需要创造工具,而人教版更注重使用已有的工具探索新的问题。例如,北师大版在学习平行线的判定之前,没有学习同位角、内错角和同旁内角的概念,而是为了方便探索平行线的判定,给有相应位置特征的角起个名字,是在探索中新发现的数学概念和工具。而人教版是在之前就学习了同位角、内错角和同旁内角的概念,而且在前面的习题中,引导学生,认识和区分这些角。在探索平行线的判定的时候,将这些角作为探索的工具,帮助学生探索平行线的判定。这些工具是为了探索新知而补充的知识。

两教材在这一课中,除了重点学习“平行线的判定”以外,还学习平行线的唯一性、传递性、木工画平行线、三角尺画平行线和垂直于同一直线的两直线平行,但是两本教材放“平行线的判定”的位置不相同。北师大版放在最前面,人教版放在后面。可以看出,北师大版更注重探索“平行线的判定”这个活动,其他的知识都是在探索的过程中发现的相关联的知识,因探索而生,优点是学生自己探索,思维比较发散,适合小组合作学习,体验探索的过程,更加深入地体会到数学。缺点是学生探索的难度较大,方向不明。人教版更注重不断探索,循序渐进,水到渠成。学生在探索“平行线的判定”这个活动之前,学习了很多铺垫的知识,同位角、内错角、同旁内角、平行线的唯一性和传递性和三角尺画平行线等等,最后使用这些知识,轻易地探索到了“平行线的判定”。优点是学生比较容易探索新知,符合学生认知过程。缺点是学生是按照老师设定好的路走,思维受限制,问题分散,不利于开展小组合作探究。

第3篇

如图示,直线a与直线b平行,被直线c所截。(1)测量同位角∠1和∠5的大小,它们有什么关系?图中还有其他同位角吗?它们的大小关系?

[生]测量结果∠1=∠5。[生]图中还有∠2与∠6,∠3与∠7,∠4与∠8是同位角,测量它们的大小也相等。[师]现在我把∠5剪下,把它贴在∠1的上面,观察到这两个角相等。(教师动画演示)[师]通过测量和剪贴对比∠1的度数和∠5的度数相等,其它同位角也一样相等。从而得出同位角相等。[师]那么大家来说说是不是所有的同位角都相等呢?[生]不是。[师]很好。(电脑出示)如图示:∠1与∠2是同位角,但不相等。

[师]那么到底两条直线在什么情况下同位角相等?[生]两直线平行时,同位角相等.[师]很好.我们得到结论就是在两条直线平行的情况下同位角相等。那此时内错角的关系怎样?同旁内角关系怎样?下面我们再来探索:(电脑出示)

如图示,直线a与直线b平行。(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换一组平行线试试,你能得到相同的结论吗?

[生]图中有2对内错角,分别是:∠3与∠6;∠4与∠5。通过测量它们大小分别相等。[师]很好,如果我们不通过测量而用数学语言是否能证明它们是相等的吗?[生]能,直线a与直线b平行,∠3与∠7是同位角,所以∠3=∠7,又因为∠7与∠6是对顶角,相等,因此可知∠3=∠6。同样得出∠4=∠5。[师]这位同学叙述得很好,我们用简单的数学语言推证如下:(电脑出示)由此我们得到的结论是:两直线平行,内错角相等。(电脑动画剪贴过程)接下来我们来解决第(3)个问题。[生]图中有2对同旁内角。分别为∠3与∠5;∠4与∠6。它们的关系为互补。因为:直线a与直线b平行,∠2与∠6是同位角,所以∠2=∠6。又因为∠2+∠4=180o,所以得∠4+∠6=180o。同理推证∠3+∠5=180o。[师]这位同学叙述得很好,我们用简单的数学语言推证如下:(电脑出示)由此我们得到的结论是:两直线平行,同旁内角互补。[师]由此我们得到了平行线的特征:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。[板书]接下来我们做一做。(电脑出示)如图示,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4。(1)∠1,∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?

解:

下面我们来做练习以巩固平行线的特征。Ⅲ.随堂练习如图(1)所示,AB∥CD,AC∥BD。分别找出与∠1相等或互补的角。图(1)图(2)解:如图(2)所示:与∠1相等的角有:∠3,∠5,∠7,∠9,∠11,∠13,∠15。与∠1互补的角有:∠2,∠4,∠6,∠8,∠10,∠12,∠14,∠16。

生活数学1如图1,一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是142°,第二次拐的角∠C是多少度?图(1)图(2)解:如图2示,AB∥CD,∠ABC与∠BCD是内错角。因为两直线平行,内错角相等,所以∠BCD=∠ABC=142°即图(1)中∠C=∠B=142°

生活数学2如图某玻璃碎片是梯形,已有上底的一部分,量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?解:因为AD∥BC,∠A与∠B是同旁内角,所以∠A与∠B互补,则∠B=180°-115°=65°同理可得,∠C=180°-100°=80°

Ⅳ.课时小结本节课我们主要学习了平行线的特征,了解了直线平行的条件与平行线的特征的区别。直线平行的条件:同位角相等,内错角相等,同旁内角互补,两直线平行。平行线的特征:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。通过练习加深了对二者的应用,认识二者是互逆的。Ⅴ.课后思考题

第4篇

【关键词】 平行线;错误;思考;启发;思维

一节公开课的教学内容是沪教版 “13.5(5)平行线的性质”,本课的主要内容是平行线性质和判定的综合应用,让学生进一步体会说理的分析方法和说理过程的表述规范,是今后学习几何证明的基础,在人类的生活和生产实践中也有广泛的应用.

教学片段1:搭建思考的平台

自然贴切的课堂导入是激发学生求知欲,吸引学生注意力的内在动力. 巧妙导入新课,能让学生在愉悦的情境下产生对知识的好奇和渴望,增强学生学习的积极性. 如果能够恰当地利用学生熟悉的背景或图形来完成这一过程,那就更加事半功倍了 .

问题讨论(情景引入)

师:本节课探讨如何运用平行线的判定和性质来解决实际问题. 如图,(1)要说明BD∥AE,请添加一个适当的条件,并说明添加的依据,请思考.

生1:∠AFD = ∠FDE,依据内错角相等,两直线平行.

师:这的确是一对内错角,它们是哪两条直线被哪一条直线所截形成的. (启发学生思考)

生1:直线AE和直线CE被直线DF所截形成的,而直线AE和直线CE是不平行的,更不能说明BD∥AE.

师:你添加的条件合适吗?

生1:我明白了. 应该添加∠BDF = ∠DFE.

出示问题:(2)如果DF∥AC,请在图中找出相等的角或互补的角,说出依据.

师:平行线的判定和性质的区别是什么?

生2:平行线的判定是用来判定两条直线平行,平行线的性质可以得出角的关系.

师:上面两个问题的条件和结论分别是什么?

生3:第一个问题是由角的关系推出平行关系,第二个问题是由平行关系推出角的关系.

教师板书 :

平行线的判定

角 线

平行线的性质

片段1反思:这一问题将平行线的判定和性质进行全面概括,给学生许多可以思考的问题,抓住了学生的注意力. 一堂课要有一个自然贴切的课堂导入,才能在最短的时间内抓住学生的注意力. 给学生创设一个思考的平台,让学生在寻找角的关系中回忆平行线的判定和性质,利用这一设问激发学生思考问题的兴趣,在错误中认识问题的本质,发散学生思维,引发学生对数学问题的思考. 学习数学离不开学生的学习经验,在这里,将平行线的判定和性质应用探索浓缩在一个图形中,通过设计一系列问题,揭示了课题,同时让学生感悟要判定两直线平行,可以寻找角的关系,如一对同位角相等,一对内错角相等或一对同旁内角互补. 依据平行线的判定方法. 由平行线的性质可以得出角的相等或互补关系. 培养学生“用数学”的意识和能力.

教学片段2:变式中启发思维

(课件出示)例题1:已知:∠1 = ∠2 , ∠C = 70°,∠ADE = 70°.问 BD平分∠ABC吗?

(1)思考:学生思考后讨论交流想法. (2)教师引导分析: 要说明BD平分∠ABC,就是要说明什么?

生:两个角相等,即∠1 = ∠DBC.

师:题目中有这个条件吗?

生:没有.

师:有与此有关的条件吗?

生:有∠1 = ∠2.

师:结合这个条件,你想到什么?

生:只要说明∠DBC = ∠2.

师:∠C = 70°, ∠ADE = 70°这两个条件的目的是什么?

生:是为了说明∠C = ∠ADE.

师:这两个角有特征吗?

生:是一对内错角

师:由此可以得到什么结论?

……

(3)打出证明过程,突出说理的规范表达.

归纳思考问题的策略:由已知条件,想到什么,依据是什么.

(4)请同学们思考:(如果改变题中的条件和结论,该如何求解)

本题中的四个数学语句重新组合

变式:已知: BD平分∠ABC,∠1 = ∠2,∠C = 70°.求∠ADE 的度数. (本题让学生口述说理)

例题2:探索.

已知: ∠A = ∠D,∠C = ∠F ,

问: CE与BF平行吗?为什么?

(1)思考:学生思考后讨论交流想法. (2)教师引导分析:

师:由∠A = ∠D这个条件,你想到什么?

生:FD∥AC.

师: FD∥AC作为条件得到什么?

生:可以得到许多结论,如∠F = ∠FBA,∠C + ∠FEC = 180°……我不知道需要哪个结论?

师:你问得很好. 大家都在思考同样的问题. 在这里也许你的思维受到一定的限制.

教师追问:你观察到题目中还有一个条件吗?这个条件的合理使用是解决问题的关键.

生:选择的结论应该考虑∠C = ∠F这个条件. (学生受到启发,马上积极举手发言,思维顿时活跃起来,想出了多种思路解决本题. )

……

变式:已知: ∠1 = ∠2,∠C = ∠F,问:∠A = ∠D吗?为什么?

通过该例题的分析,学生已初步感知解决问题的方法,即要抓住“由已知可知什么”、“待求量和已知量有什么关系”具体分析,所以本环节让学生尝试独立完成说理,鼓励学生进行思考分析. 帮助学生进一步巩固对几何说理的基本方法的领悟和规范表达的体验.

片段2反思:例题关注学生的知识的应用,让学生通过同桌交流、小组交流、全班交流等多形式,多方位地描述,既促使学生的合作探究,培养学生的思维,又提高了学生的语言表达能力,通过教师引领启发分析,深入分析已知条件,形成初步的分析方法,变式练习可以把初步形成的分析推理方法及对规范表述的体会进一步清晰明朗化. 用合理的启发引导,使学生的目光凝聚在一起,使学生的思维动起来.

教学体会

(一)学生的思维发展来自于教师的正确引导

本节课主要采用了传统的启发教学,以优化教师的教学方法和学生的学习方式为目的,将教材内容重组和整合,进行了大胆地探索. 学生由于基础不同,思维也存在差异,会给课堂提问造成困难. 如果老师在课堂中包办代替,学生给出错误的答案,不针对错误原因进行引导,而是直接给出正确答案,学生就会失去了思考的机会,对教材的理解会大打折扣. 如教学片段1,学生回答∠AFD = ∠FDE,应对其错误原因进行分析和探讨,引发学生思考. 另外,如果教师死用教材,就题讲题,学生会失去动脑的机会,但如果对设计的问题进行变化,解读题目的本质,便能使学生积极思考,触类旁通,从而激活思维. 又如教学片段2中的例题2,在说理的基础上进行了变式提问,把问题进行拓展,知识进行整合,在探究的过程中,鼓励学生发表意见,学生出现错误时也并不急于打断学生,而是让学生说说自己的想法,充分暴露其思维的过程,这样,有助于学生从不同程度、不同角度积极思考,激活学生的思维.

(二)让学生在探索纠错中体验成功

整节课中,始终以学生自主探究、合作学习、全班交流的方式来开展知识应用学习. 课堂上,为学生提供了独立思考、分析错误,再思考,相互讨论、动手实践的过程. 授课时,通过创设情境,让学生演示、归纳、思考,经历知识的形成过程,增强他们学好几何的信心,让学生尝试通过自己的努力思考获得成功的喜悦. 例如,为了区别平行线判定和性质,让学生通过填表弄清条件和结论;在学习例题时,又让学生自己尝试解决问题,感受知识应用的乐趣……在整个过程中,学生自始至终处于被肯定、被激励的状态中,时时感受到自己是学习的主人,学生有较大的学习空间.

【参考文献】

第5篇

本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容第一课时――探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活・数学”、“活动・思考”、“表达・应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

二、案例教学目标

1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2.过程与方法: 在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

三、案例教学重、难点

1.重点:对平行线性质的掌握与应用

2.难点:对平行线性质1的探究

四、案例教学用具

1.教具:多媒体平台及多媒体课件

2.学具:三角尺、量角器、剪刀

五、案例教学过程

(一)创设情境,设疑激思

1.播放一组幻灯片。

内容: ①供火车行驶的铁轨上;

②游泳池中的泳道隔栏;

③横格纸中的线。

2.提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

3.学生活动:针对问题,学生思考后回答――① 同位角相等两直线平行; ② 内错角相等两直线平行; ③ 同旁内角互补两直线平行;

4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)

(二)数形结合,探究性质

1、画图探究,归纳猜想

教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

教师提出研究性问题一:

指出图中的同位角,并度量这些角,把结果填入下表:

教师提出研究性问题二:

将画出图中的同位角任先一组剪下后叠合。

学生活动一:画图―度量―填表

――猜想

学生活动二:画图―剪图―叠合

让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

教师提出研究性问题三:

再画出一条截线 d,看你的猜想结论是否仍然成立?

学生活动:探究、按小组讨论,最后得出结论:仍然成立。

2.教师用《几何画板》课件验证猜想,让学生直观感受猜想

3.教师展示:

平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创新

教师提出研究性问题四:

请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

学生活动:独立探究―小组讨论―成果展示。

教师活动:评价学生的研究成果,并引导学生说理

因为a ∥ b (已知)

所以∠ 1= ∠ 2(两直线平行,同位角相等)

又 ∠ 1= ∠ 3(对顶角相等)

∠ 1+ ∠ 4=180°(邻补角的定义)

所以∠ 2= ∠ 3(等量代换)

∠ 2+ ∠ 4=180°(等量代换)

教师展示:

平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1.(抢答)课本P13 练一练 1、2及习题7.2 1、5

2.(讨论解答)课本P13 习题7.2 2、3、4

(五)课堂总结

这节课你有哪些收获?

1.学生总结:平行线的性质1、2、3

2.教师补充总结:

⑴ 用“运动”的观点观察数学问题;(如我们前面将同位角剪下

叠合后分析问题)

⑵ 用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

⑶ 用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

(六)作业

课本P5 1、2、3

六、教学反思

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

这节课的教学实现了三个方面的转变:

① 教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。

② 学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。

第6篇

1、教材分析

(1)知识结构

平行线的性质:

(2)重点、难点分析

本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“”、“”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.

2、教法建议

由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

(1)讲授新课

首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“”、“”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.

(2)综合应用

理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点.老师可以设计一些有两步推理的证明题,让学生填充理由.在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用.

(3)适当总结

几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力.对于好的学生,可以引导他们总结如何学好几何.注意文字语言,图形语言,符号语言间的相互转化.对简单的题目,能做到想得明白,写得清楚,书写逐渐规范.

教学目标:

1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.

2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.

3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.

教学重点:平行线性质的研究和发现过程是本节课的重点.

教学难点:正确区分平行线的性质和判定是本节课的难点.

教学方法:开放式

教学过程:

一、复习

1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?

2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。

如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。

二、新课

1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?

上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。

2、现在我们来用这个性质公理,来证明另两句话的正确性。

想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?

已知:如图,直线a∥b

求证:(1)∠1=∠4;(2)∠1+∠2=180°

证明:a∥b(已知)

∠1=∠3(两直线平行,同位角相等)

又∠3=∠4(对顶角相等)

∠1=∠4

(2)a∥b(已知)

∠1=∠3(两直线平行,同位角相等)

又∠2+∠3=180°(邻补角的定义)

∠1+∠2=180°

思考:如何用(1)来证明(2)?

例1、如图,是梯形有上底的一部分,已经量得∠1=115°,∠D=100°,梯形另外两个角各是多少度?

解:梯形上下底互相平行

∠A与∠B互补,∠D与∠C互补

∠B=180°-115°=65°

∠C-180°-100°=80°

答:梯形的另外两个角分别是65,80°

练习:P791、2、3

第7篇

1.平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”.

推论的用途:(1)平分已知线段;(2)证明线段的倍分.

重难点分析

本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.

本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.

教学设计示例

一、教学目标

1.使学生掌握平行线等分线段定理及推论.

2.能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.

3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.

4.通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1.教学重点:平行线等分线段定理

2.教学难点:平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

复习提问

1.什么叫平行线?平行线有什么性质.

2.什么叫平行四边形?平行四边形有什么性质?

引入新课

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).

已知:如图,直线,.

求证:.

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.

证明:过点作分别交、于点、,得和,如图.

又,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.

再引导学生观察下图,在中,,,则可得到,由此得出推论2.

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.

接下来讲如何利用平行线等分线段定理来任意等分一条线段.

例已知:如图,线段.

求作:线段的五等分点.

作法:①作射线.

②在射线上以任意长顺次截取.

③连结.

④过点.、、分别作的平行线、、、,分别交于点、、、.

、、、就是所求的五等分点.

(说明略,由学生口述即可)

总结、扩展

小结:

(l)平行线等分线段定理及推论.

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.

(4)应用定理任意等分一条线段.