欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

数学中的分析法范文

时间:2023-06-18 10:36:13

序论:在您撰写数学中的分析法时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

数学中的分析法

第1篇

分析是在思想中把事物的整体分解为部分,把复杂事物分解为简单要素,把完整的过程分解到各个阶段,并加以研究的思维方法.在数学中,分析就是从结果追溯到产生这一结果的原因的一种思维方法.例如,为了求多边形的面积,我们可以把多边形分解为若干个三角形,分别进行研究,又如,对于列方程解应用题这一完整过程,可以分解为设元、列方程、解方程、检验等四个阶段分别予以考察,在数学解题中,分析是首先且大量要用到的一种思维方法,因为对于求知的整体事物,要使学生深刻地认识它、理解它,首先就得恰当地分解它、简化它.具体地说,分析法是从数学题的特征结论或要求出发,一步一步地探索下去,最后达到题设的已知条件.

例1:如图,P是O外一点,PQ切O于Q,PAB和PCD是割线,∠PAC=∠BAD.求证:PQ■=PA■+AC·AD.

证法(分析法):由于易知PQ■=PA·PB

要证:PQ■=PA■+AC·AD

只需证:PA·PB= PA■+AC·AD

即证AC·AD= PA■-PA·PB

即AC·AD= PA(PA-PB)

又因PA-PB=AB

只需证AC·AD=PA·AB

即AC/PA=AB/AD

这就将问题转化为证明PAC与ABD相似.

连接BD,因∠PAC是圆内接四边形ABCD的一个外角,故∠PCA=∠ABD.

又∠PAC=∠BAD,故PAC∽DAB,由此命题得证.

综合是在思想中把事物的各个部分、各个方面、各个要素、各个阶段联结为整体进行考察的思维方法,在数学中综合就是从原因推导到由原因产生的结果的一种思维方法.例如,把正整数、零、负整数、正分数、负分数联结起来考察,对有理数就能有一个完整的认识;把有理数和无理数联结起来研究,则对实数就可以有更深刻的理解.综合不是把事物的各个部分简单地拼凑在一起,而是着重于找出其互相联系的规律性.具体地说,综合法是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.

例2:已知a , b ,c, d为正实数,且a■+b■+c■+d■=4abcd, 求证:a=b=c=d.

证明:(综合法)

由 a■+b■+c■+d■=4abcd

得 a■+b■+c■+d■- 4abcd=0

从而转化成 (a■-b■)■+(c■-d■)■+2a■b■+2c■d■-4abcd=0

即(a■-b■)■+(c■-d■)■+2(ab-cd)■=0

易知a■-b■=0 , c■-d■=0,ab-cd=0

又a,b,c,d为正数

故有a=b, c=d,ab=cd

第2篇

摘要:科技迅速发展,国力日益增强,社会对于人才的要求也越来越高。为开创新型教学模式,培养高技术、高素质、高水平人才,提升教学质量,文章提出了案例分析法,并从案例分析法的重要性、实例分析和注意事项三个方面对其进行了介绍。

关键词:高等数学;案例分析法;重要性

高等数学是大学生必修的一门基础课程,是学生学习概率、物理等科目的基础。高等数学不仅有助于提高学生的逻辑思维能力,而且对培养学生成为有思想、有品德、有技术的综合性应用型人才也具有重要作用。

一、案例分析法引入高等数学教学中的重要性

在高等数学教学中,可以把生活实例引入到教学范围当中,根据要讲述的内容,分析、研究和讨论所引例子,最终得出相关的定理或概念,使学生在学习过程中更加轻松、舒服。引入案例分析法可以使高等数学教学发生好的变化:第一,案例分析法可以激发学生的学习兴趣性,可以将抽象的、难以理解的数学理论知识形象化,使学生深刻领悟到数学理论中蕴含的真理,从而在生活中更好地对其进行应用。第二,案例分析法可以给学生创造一种与众不同的学习环境,使学生通过主动思考和分析案例,找出和发现问题,从而有效锻炼学生分析和解决问题的能力。第三,案例分析法使高等数学教学更贴近于实际生活,让学生感受到数学在实际中的广泛应用。综上所述,将案例分析法引入高等数学教学当中,不但能够激发学生的学习兴趣,促进学生学习的主动性,而且可以使学生的思维得以开发,思路得以拓展。

二、高等数学教学中案例分析法的运用

在高等数学教学中,当讲授一阶线性差分方程时,教师可以插入下面的例子:在社会经济快速发展中,社会保障体系也在不断完善,人类的生存环境也在发生变化。随着人类生活水平的提高,对于物质条件的需要也越来越多,比如,对于楼房和汽车的需求。当然,这种需求并不是人人都能获得的,那么他们想要享受生活,需要怎样呢?当代人有了新的生活观,认为任何事物都可以通过银行贷款来获取,当然,我们不能总是无限制地透支以后的生活,要想持续过着幸福美满的生活,就要采取相应的措施———合理理财、合理消费。比如,设现在拥有的贷款本金为y0元,需要贷款的时间为2年,年利率设定为a,那么计算一下,我们每个月还必须偿还的贷款是多少?假设每个月必须偿还贷款金额是A(月等额还款情况),那么第x个月需要还银行贷款为yx,如此得到一阶线性方程为:yx=yx-1(1+a/12)-A,y24=0,将y0代入方程中求出y1,然后将y1再代入方程求出y2,以此类推即可得出yx=(1+a/12)x(y0-C)+C,其中C=A/(a/12),这就是我们每个月需要偿还银行的贷款金额。所以,要想一直拥有美好生活,必须要合理理财。简单的日常生活举例,更能吸引学生的注意力,增强课堂氛围,更能使学生深入地理解什么是一阶线性方程,该方程应该怎样得出,如何求解,以及方程的实际应用,从而也让学生认识到了数学知识的无处不在。

三、高等数学教学中使用案例分析法应注意的问题

(一)案例选择尽量与专业相符

高等院校的数学教师一般需要给不同专业的学生授课,不同专业的学生对于概念理解的程度不同,所以教师可以结合学生所学专业的不同,有针对性地引入案例。比如,在介绍导数含义时,可以在机械类工科学生授课中结合变速圆周运动的角速度、非恒定电流的电流强度等变化率问题;针对管理类文科学生,可以引入边际成本的理论;针对农业科学专业学生,可以在授课中结合细胞的繁殖速度、边际产量等问题。这种有针对性的插入案例,不但能体现数学理论存在的多样性,而且能让学生更好地了解数学,拓展学生的思维,培养学生的综合素质。

(二)应结合多媒体进行授课

多媒体教学本身就具有极强的吸引力,如果加入形象生动的案例,则更能激发学生的学习兴趣,让学生更容易接受数学。此外,对于教师,多媒体授课不但能节省教学时间,而且还能节省其教学精力,因此,将案例分析应用于多媒体当中,更便于学生分析和理解相关知识。

(三)课堂教学中要多提问

数学课堂教学就是要善于提出问题,给学生思考的机会,培养学生分析和解决问题的能力。同样,案例的引入更要提出问题,然后进行教学内容的介绍,让学生跟随教师的思路,直到本节课的结束。这样不仅可以集中学生的注意力,而且还能培养学生思考、分析、解决问题的能力。

四、结语

案例分析法不但能引发学生对于数学的喜爱,从而更好地学习数学,而且还能开拓学生的思维,培养学生解决问题的能力,使学生满足社会对相关人才的需求。由此可见,案例分析法的应用对于高等数学教学来说意义重大。

参考文献:

[1]何娟娟.基于案例教学法的高等数学教学改革实践[J].开封教育学院学报,2014(9):110-111.

[2]谢绍义.等额还贷的多种方式[J].数学通报,2003(4):41-42.

第3篇

关键词 分析法;概念;例析

一、分析法的基本概念

分析法是从问题的结论出发寻求其成立的充分条件的证明方法.即先假定所求的结果是成立,分析使这个命题成立的条件,把证明这个命题转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么可以断定原命题成立.我们称之为“执果索因”。

要证明命题:“若A则D”思考时可以由结论D出发向条件A回溯,先假定所求的结论D成立,寻求D成立的原因,而后就各个原因分别研究,找出它们成立的条件,逐步进行下去,最后达到条件A,从而证明了命题.其思考路线如图:

D?圯C?坩B?坩…?坩A

用分析法进行证明,每一步推理都是寻找充分条件,最后找到要证命题的条件。就是说,每一对相连的判断中,后者是前者的充分条件,这样,联成一个逻辑链时,才保证了由条件A到结论D.由传递律得出,A是D的充分条件,从而证明了命题“若A则D”.分析法的证明中,每一步都是从“未知”看“需知”,逐步靠拢“已知”,此处的“需知”是倒推的“中途点”。

二、例析分析法

要证明命题:“若A则D”.思考时可以由结论D出发向条件A回溯.先假定所求的结论D成立,寻求D成立的原因,而后就各个原因分别研究,找出它们成立的条件,逐步进行下去,最后达到条件A,从而证明了命题.其思考路线如图:

D?圯C?坩B?坩…?坩A

第4篇

关键词:结构分析法;数学;教法;学法;运用

中图分类号:G712 文献标识码:A 文章编号:1005-1422(2015)02-0064-03

收稿日期:2015-01-20

作者简介:陈海滨(1967-),男,广东省梅州农业学校讲师,大学本科。研究方向:数学教育。(广东 梅州/514011)

在数学的教学活动中,教师往往侧重于“教法”的积极探索而忽视对学生的“学法”的研究指导,造成整个教学过程脱节。于是,出现一个怪现象:课上教师尽所能、展才智充分调动学生积极性、激发学习兴趣,学生听得懂,叫好,而课后学生复习、练习、作业、考试时又感到不理解、不会做、考不好,叫苦,只开花不结果。那么怎样才能使“教法”寓于“学法”,“学法”源于“教法”,将二者有机地结合起来,既开花又结果呢?这就要求教师要从不同的角度全方位地进行教学设计。笔者认为,教师是导演――统揽全局,也是演员――把握精辟,还是观众――期待效果。从教师的角度“导”出“教法”;从学生的角度“演”出“学法”;从家长的角度“观”出效果。正是本着这样的理念,经过多年的教学积累探索出一种教与学的通用之法――结构分析法。经过多年的实践检验表明,此法特别适合代数教学。本文就以代数教学为例进行阐述。

所谓的“结构分析法”就是依据数学的换元思想,通过观察分析数学概念、公式、法则等数学知识结构形式的特点,对其结构形式进行分解――确定“可变”与“不变”两个部分,用中括号[ ]代替“可变部分”找出规律,揭示出其本质特征,从而深刻地理解其内涵,灵活地掌握和运用数学知识解决问题,提高教学效率的一种方法。

一、结构分析法在数学“教”的过程中的运用

(一)在数学概念教学方面的运用

例1.“函数概念”的教学分析。

函数是数学中十分重要的概念,是数学各个分支理论的重要基础之一,在各个领域都有着广泛的应用。由此可见,深刻地理解函数概念是至关重要的。然而,学生普遍感到较难理解“函数概念”,尤其是对用抽象符号:“y=f(x)”表示函数的理解感到一头雾水。现在就从这里入手,运用“结构分析法”进行分析。

观察,函数y=f(x)的结构形式进行如下分析:

这样,学生容易片面地理解函数的概念:误认为x就是自变量,y就是因变量,而解析式表示的就是函数。缺乏对函数概念的深层次地理解,导致在学习过程中遇到有关函数问题时,就问题多多。

现在,我们对上述结构形式进行分解,确定“可变”部分为x和y所在的位置,余者不变。用中括号[ ]代替“可变”部分――x和y所在的位置,就不难发现对于一个确定的函数,无论是具体的还是抽象的都可以理解如下:

显然,在函数的构成要素中,最重要的是函数的定义域和对应法则,最难理解的就是“对应法则”(不变部分)。事实上,对于一个确定的函数其对应法则是不变的、抽象的。

现在,通过几个例子加以说明如何运用结构分析法揭示出对应法则的本质特征。

例如,二次函数f(x)=3x2+2x+1的对应法则f的本质特征是:f[ ]=3×[ ]2+2×[ ]+1

函数值:当x=2时,有f(2)=3×22+2×2+1=17

当x=t时,有f(t)=3×t2+2×t+1=3t2+2t+1

对应法则f:[ ]内取2,则有f[2]=3×[2]2+2×[2]+1=3×22+2×2+1=17

[ ]内取t,则有f[t]=3×[t]2+2×[t]+1=3×t2+2×t+1=3t2+2t+1

显然,f(2)=f[2],f(t)=f[t]

再如,复合函数g(x)=lg(3 x2+2x)的对应法则g的本质特征是:g[ ]=lg(3×[ ]2+2×[ ])

函数值:当x =2时,有g(2)=lg(3×22+2×2)=4lg2

当x=t时,有g(t)=lg(3×t2+2×t)= lg(3t2+2t)

对应法则g:[ ]内取2,则有g[2]=lg(3×[2]2+2×[2])=lg(3×22+2×2)=4lg2

[ ]内取t,则有g[t]=lg(3×[t]2+2×[t])= lg(3×t2+2×t)= lg(3t2+2t)

显然,g(2)= g[ 2 ], g(t)= g[t]

这就说明了对应法则的本质是理解时抽象而运用时又具体的一种对应关系。学生就容易理解函数f(t)=3t2+2t+1与函数f(x)=3x2+2x+1是同一个函数;函数g(x)=lg(3x2+2x)与函数g(t)=lg(3t2+2t)也是同一个函数。自然认同x、y只是一个记号,习惯用之而已。从而更加容易理解“每一个函数都有其对应法则,并且每一个自变量的取值按其对应法则都有唯一的因变量的值与之对应”的内涵。这样,使学生通过“抽象――具体――抽象”的认识过程,进而深刻地理解函数概念的内涵。

像幂函数、指数函数、对数函数、三角函数及其复合函数,还有抽象函数等函数概念都可以运用“结构分析法”进行数学概念教学,使学生更加容易把握数学概念的本质特征,提高教学效果。

(二)在数学公式教学方面的运用

例2.三角函数中“诱导公式”的教学分析。

常用的诱导公式有9组36个公式,若要求学生死记硬背难度大且用时易错,用“结构分析法”教学,可以概括出“口诀”,易记、好用、准确。

诱导公式中角的形式有9种:“2kπ±α(k∈Z),π±α,0-α,π2±α,3π2±α”。 观察分析这9种角的结构形式发现:“2kπ,π,0”角的终边都在横轴上;“π2,3π2”角的终边都在纵轴上。

(因篇幅所限,选几组加以分析)

sin(π±α)=sinα

cos(π±α)==cosα

tan(π±α)=±tanα

cot(π±α)=±cotα公式(一)

可变部分“±”, 余者不变

sin(3π2±α)==cosα

cos(3π2±α)=±sinα

tan(3π2±α)=cotα

cot(3π2±α)=tanα

公式(二)

可变部分“±”、“名称”, 余者不变

sin(π±α)=[ ]sinα

cos(π±α)=[ ]cosα

tan(π±α)=[ ]tanα

cot(π±α)=[ ]cotα

sin(3π2±α)=[ ][ ]α

cos(3π2±α)=[ ][ ]α

tan(3π2±α)=[ ][ ]α

cot(3π2±α)=[ ][ ]α

首先,确定函数“名称”的变化规律。

观察分析公式(一)、公式(二)两边的函数名称发现:公式(一)名称不变,且π角的终边在横轴上,公式(二)名称改变,且3π2角的终边在纵轴上,由此概括出函数“名称”的变化规律:“纵变横不变”。

其次,确定“±” 符号变化规律。

观察分析公式(一)、公式(二)两边的函数值符号发现:等式左边的函数值符号都是正的,而等式右边的函数值符号是变化的,若把α看成是锐角时就会发现:由“π±α,3π2±α”角的终边所在的象限确定的函数值符号排布规律与右边函数值符号排布规律一致,这说明右边的函数值“符号”是由左边的“π±α,3π2±α”角的终边所在的“象限”确定的函数值符号排布规律决定的。由此可以概括出符号变化规律:“符号看象限”。

这样,可以得到诱导公式的口诀为:“纵变横不变,符号看象限”。

例3.三角函数中“二倍角公式”的教学分析。

许多数学公式在理解和运用时,学生常常忽视它们内在成立的“条件”或者运用的“条件”,而片面地理解数学公式,导致用时易错、缺乏灵活性。若用“结构分析法”教学,则可以使学生深刻理解公式的内涵,提高灵活运用的能力。

以“二倍角公式”的教学为例进行分析:

sin2α=2sinαcosα

cos2α=cos2α-sin2α

=1-2sin2α

=2cos2α-1

tan2α=2tanα1-tan2α

可变部分“2α,α”

sin[ ]=2sin[ ]cos[ ]

cos[ ]=cos2[ ]-sin2[ ]

=1-2sin2[ ]

=2cos2[ ]-1

tan[ ]=2tan[ ]1-tan2[ ]

观察分析上述公式的结构形式发现“可变部分”是2α,α,余者“不变”,从而揭示出公式成立的“条件”:左边角的“形式”是右边角的“形式”的二倍,公式成立,反之亦然。于是,可以得到许多常用的结论:

如:sinα=2sinα2cosα2sinα2cosα2=12sinα;

sin2α=1-cos2α2 (降幂扩角公式);

sinα2=±1-cosα2 (半角公式)

等等,这些在求三角函数的周期、最值等问题时常用。

由此看来,运用“结构分析法”进行数学公式教学,更加容易抓住数学公式的本质特征。若能概括出“口诀”,揭示出“条件”,就会使学生对数学公式的深刻理解和灵活掌握得到很大程度的提高,从而提高教学效果。

二、结构分析法在数学“学”的过程中的运用

(一) 触类旁通,掌握新知识

1.引导学生学会概括数学公式(法则)的“口诀”,提高记忆效果和学习效率。

例4.引导概括:三角函数中“加法定理”的口诀。

sin(α±β)=sinαcosβ±cosαsinβ

cos(α±β)=cosαcosβsinαsinβ

tan(α±β)=tanα±tanβ1tanαtanβ

引导学生类似“诱导公式”的分析方法,观察分析上述公式的结构形式,发现角的排布规律明显――先α后β。

首先,观察分析上述公式的三角函数名称的排布规律发现:正弦、余弦名称“改变”,正切名称“不变”。由此可以概括为:“弦变切不变”。弦变之意为:“正弦正在先,名称交替出现;余弦余在前、名称重复出现”。

其次,观察分析上述公式的“±”号的排列规律发现:正弦左右一致;余弦左右相反;正切分子一致,分母相反。由此可以概括为:“符号有顺逆”。顺逆之意为:“弦正顺余逆;切上顺下逆”。

因此,可以得到加法定理“口诀”为:“弦变切不变,符号有顺逆”。

这样,就抓住了数学公式的本质特征,在理解掌握数学公式时就会感到:易记、好用、准确、高效。

2.引导学生学会揭示数学公式(法则)的“条件”,提高理解运用的准确性和灵活性。

例5.引导学生学会揭示重要极限limx∞1+1xx=e的“条件”。

引导学生类似“二倍角公式”的分析方法,观察分析上述公式的结构形式发现:“可变部分”是1x与x,且成倒数关系,余者“不变”。即limx∞1+[ ][ ]=e,于是,公式成立的“条件”是:小括号内的[ ]与小括号外的[ ]的结构形式成倒数关系且与x有关,当x∞时,小括号外的[ ]∞,公式成立。

再如,limx0sinxx=1limx0sin[ ][ ]=1。成立的“条件”是:[ ]内的结构形式一致且与有关,当x0时,[ ]0,公式成立。

这样,在运用数学公式时,就能准确、灵活、快速地解决问题。

(二) 举一反三,解决新问题

学以致用,举几个例子看一下由“结构分析法”得出的结果在数学解题中的应用。

例6.已知函数f(x)=x2+2,g(x)=2x+1,求f(g(x2))

解:g(x2)=2x2+1, g[]=2×[]+1 (对应法则g)

f(g(x2))=(g(x2))2+2,f[]=[]2+2(对应法则f )

=(2x2+1)2+2

=4x4+4x2+3

例7.求函数y=sin(kx-π6)sin(kx+π3),k≠0的最小正周期。

解:y=sin(kx-π6)sinπ2+(kπ-π6)

=sin(kx-π6)cos(kx-π6) 纵变横不变,符号看象限(诱导公式口诀)

=12sin(2kπ-π3)

左边角是右边角的一半,二倍角公式成立(条件)

最小正周期为:T=π|k|

例8.求limx∞2x+32x+1(x+1)

解:原式=limx∞1+22x+1x+12 +12

=limx∞1+1x+12x+121+1x+1212

=e・1=e 1x+12与x+12成倒数关系,公式成立(条件)

综上所述,“结构分析法”在整个教学活动中,体现了二法合一的内在统一性。一法二用,不仅能使学生易于接受“教法”,理解知识,听得明白,又能使学生利于掌握“学法”,学会思考,解决问题,还能使学生对数学概念、公式、法则等数学知识的深刻理解和灵活掌握得到很大程度的提高。从而能灵活多变地快速解决问题,提高学习效率,达到“授之以渔”的教学目的。

参考文献:

第5篇

1 追溯型分析法

这种分析法,其思路是把所研究的对象看成是一个整体,并假设该事物是存在的(或成立的),进一步分析其组成的各个部分成立的充分条件. 当这些条件找到了(或成立)时,显然这些条件就是原事物(或原命题)成立的充分条件. 从而说明结论成立,这种方法叫做追溯型分析法. 其实质是“执果索因”.

例1 若四边形的两组对边相等,则四边形是平行四边形.

已知:如图1,在四边形ABCD中,AD=BC,BA=CD.

求证:ABCD是平行四边形.

分析法 连结BD,欲证ABCD是平行四边形,则需证明AD∥BC,BA∥CD. 可以证∠1=∠2,∠3=∠4,则需证ABD≌CDB,则需先证出AD=BC,BA=CD,BD=DB. 这些条件可以从已知中找到. 问题已解决.

2 构造型分析法

这种分析法,其思路是把所研究对象中的成立的部分和不明确的部分都看成是成立的,这样,整个事物也就随之被看做是成立的(这就是构造),然后进行探讨、推理,找出不明确部分成立的必要条件,即是整体事物成立的必要条件,也就是通常所说的原命题成立的必要条件. 从而得到解题思路. 构造型分析法常用于解决起点不清晰与辅助元素不明确的问题,它对于开拓思路、添加辅助元素有一定的作用.

例2 已知:在ABC中,AB>AC,AD为∠A的平分线,P为AD上任意一点.

求证:PB-PC

证明 分析给定的图2,就我们研究事物的整体来说,其中的边、角和由它所涉及的有关线段等都可看成这个事物的各组成部分,其中PB、PC、AB、AC分别为相应三角形的边,即该事物中成立的部分.

考虑到PB-PC和AB-AC,可在AB上截取AE使AE=AC,则应有AEP≌ACP,所以PE=PC,从而有PB-PC=PB-PE,AB-AC=BE. 我们希望的是PB-PE

3 前进型分析法

这种分析法,其思路是从整体事物中已经成立的某一部分出发,运用已有的知识经过逻辑推理逐步寻找并扩及到其它部分成立的条件,最终挺进到原事物成立的必要条件,也就是原命题成立的必要条件,使导出的条件恰为问题的答案. 前进型分析法是一种寻求结论或答案的连续探索性分析法,常用于解决结论带有模糊性的较为复杂的问题.

例3 设在一个由实数组成的有限数列中,任意7个连续项之和都是负数,而任意11个连续项之和都是正数,试问这样的数列最终能包含多少项.

4 分析综合法

分析综合法的基本思路是从命题的充分条件出发,用前进型分析法进行到一个中间目标,又从命题的必要条件出发,用追溯型分析法也追溯到一个中间目标,直到两者追到同一个中间目标(结果),从而沟通思路,使问题得到解决. 这种方法称为分析综合法.

例4 如图3,已知OA、OB为O的半径,OAOB,弦AQ与OB相交于点P,切线QC交OB的延长线于C点. 求证:CP=CQ.

思路分析:

分析法:要证CP=CQ,只须∠1=∠2. 因为∠1=∠3,故只须∠2=∠3.(1)

综合法:观察已知条件与给定图形,联想到添加辅助线:延长AO交O于R连结RQ. 由弦切角定理知∠2=∠R. (2)

在RtAQR与RtAOP中,∠A=∠A,所以∠3=∠R.(3)

第6篇

【关键词】 初中数学;学习方法;分析法;综合法

做任何事情都需要讲究一定的方法,用对了方法,才能事半功倍,把一件事情做得更好. 在初中数学的学习中也是一样的,分析问题和解决问题都需要正确的方法.

一、分析法概述

对分析法的运用主要就是把整体的内容分解为若干个部分,是一个从整体到局部,从复杂到简单的过程,再针对各个部分进行分析和探究. 在数学中的一些证明题中,逆推法就是一种分析法,它的过程就是从一种结果追溯到产生这种结果的原因,不断地追溯上去,一层一层地分析. 还有,在求多边形的面积时,通常我们都是把多边形分解成若干个三角形再进行计算,这也是分析法运用的一种形式. 分析法的运用也可以把一个完整的过程分解成若干个有序的步骤,在我们所学习的列方程解应用题中,就可以把解题过程分解成几个步骤,如假设,找等量关系并列方程,解方程,检验. 通过完成每一个步骤来解决这个问题,可以让整个过程变得更加清晰,容易理解.

二、分析法的应用

分析法的运用范围很广,在一些几何类的证明题中,分析法的运用具有非常明显的特征. 下面我将举例来说明分析法在解决问题的过程中该如何运用,具体说来,就是要从数学题的特征和结论出发,一步步不断探索,最终达到与题设和已知条件相关联.

例1 如图1所示,点P是圆O外的一点,PQ切圆O于点Q,PAB和PCD是割线,∠PAC = ∠BAD. 求证:PQ2 = PA2 + AC·AD.

分析过程:根据已知条件,我们可以很容易得出PQ2 = PA·PB.

这样,通过逐步地分析就把问题转化成了我们所熟悉的求三角形相似的问题.

那么再根据已知条件,证明这两个三角形相似. 连接BD,因为∠PCA是圆内接四边形ABCD的一个外角,所以∠PCA = ∠ABD. 又因为已知中已经给出的∠PAC = ∠BAD,所以APC∽ADB. 再把整个过程反过来书写,命题得证.

例2 如图,在ABC中,AB = AC,∠1 = ∠2,求证:AD平分∠BAC.

这是一道比较简单的证明题,但分析的方法还是一样的.

分析过程:要证明AD平分∠BAC,就要得到∠BAD = ∠CAD.

由于这两个角在不同的三角形内,因此,就要证得ABD ≌ ACD,已知条件中已给出了AB = AC,AD又是公共边,那么只要证得BD = CD即可. 要得到BD = CD,必须要该三角形的两个底角∠1 = ∠2,而这刚好就是已知条件. 通过这样的分析,思路明确了之后,写出来就很容易了.

三、综合法概述

综合法与分析法可以说是两种相逆的方法,但却又是两种有着密切联系的方法. 综合法运用的具体过程就是要把事物中的不同部分,各个方面以及相关的要素综合起来,从整体上来考虑. 也是根据已知条件推导出结论的一种思维方法. 比如我们在学习有理数的概念时,就需要把正整数,零,负整数,正分数,负分数,综合起来研究并形成有理数的概念,这样我们对有理数的概念才能有更加深刻和清晰的理解. 综合并不是把各个部分进行简单机械的拼凑,而是要找出各个部分之间的相关性和规律性. 就比如说有理数,它包括很多个部分,而这些不同的部分之间的相同点就是它们都不是无限不循环的数,这也是相对于无理数而言的. 总的来说,综合法的应用过程是从已知条件出发,根据已知条件再进行适当的逻辑推理,最后达到解决问题的目的.

四、综合法的应用

下面我们同样以一道证明题来展示综合法的具体运用.

例3 如图,在ABC中,AB = AC,∠BAC和∠ACB的平分线相交于点D,∠ADC = 130°,求∠BAC的度数.

综合法的分析过程:

从已知条件入手,把每一个已知条件发散出来,不断地得出更多的条件.

根据AB = AC,以及AE是∠BAC的角平分线,可以得出∠DEC = 90°,又因为条件中的∠ADC = 130°,所以∠ECD = 40°.

再根据CD是∠ACB的角平分线,可以得到∠ACB = 80°.

第7篇

关键词:数学分析; 人文地理; 应用

中图分类号:G633.55 文献标识码:A 文章编号:1006-3315(2012)02-045-001

在高中地理学习中,学习有用的地理,善于观察、发现、探究是新课标提出的教育目标。从近几年高考试题分析中,特别是文综卷地理的11个选择题中,我发现用数学知识解决地理问题的考题频繁出现。说明其越来越被命题组专家们看好。此方法在自然地理中应用很广,在人文地理特别是在区位、交通、人口、环境等重要专题也有很多应用。在高三总复习将“知识考点化,考点题型化,题型模式化”的教学实践中,我把用数学分析的方法在人文地理中的应用作了总结,大体上归纳了以下类型:

一、极值法

数学中有求最大值、最小值的方法叫极值法,这种方法也可在人文地理中应用。人类活动(农业、工业、交通、商贸等)总是以最小的投入获得最大的产出即效益(经济效益、环境效益、社会效益)最大化为原则。

例1 2005年全国高考文综卷一第8-9题

假定工厂选址时只考虑运费,且运费与所运货物的重量和运具有关。某原料的原料供应指数等于该原料重量与产品重量之比。下图中,O点到原料M1 M2产地和市场N的距离相等。据此回答1-2题:1.如果工厂选址O点最合适,那么

A.M1的原料指数大于M2的原料指数

B.M1、M2的原料指数都大于1

C.生产1个单位重量的产品分别约需要0.5个单位重量的M1、M2

D.生产1个单位重量的产品分别约需要1个单位重量的M1、M2

2.若生产2个单位重量的产品,需要3个单位重量的原料M1,2个单位重量的M2,

那么,工厂区位最好接近以下四点中的( )

A.N B.P C.Q D.R

【分析】:总运费(s)=运距*运量*运费/吨公里

=OM1(a)+OM2(b)+ON(c)三段路程运费之和。

要使总运费最少,就得使三段路程运费之和最小 。

因此,要使总运费最少,就得使三段路程运费都相等。

根据题意:工厂选址O点最合适,说明总运费最少。运距OM1=OM2=ON,而且运费/吨公里都相同,所以,三段的运量必须相同。即运量OM1=OM2=ON,也就是原料的运输量和产品的运输量相等。因此,原料供应指数=1。第一题选D。

这样,利用不等式最小值的方法巧妙地解决了第一题。

分析第二题:同样根据总运费(s)=运距*运量*运费/吨公里,使总运费最少就得使三段路程运费都相等,吨公里运费相同,因此,运量与运距成反比。得出运量大、运距短的结论。最好区位应接近P点。第二题选B。

二、图像分析法

利用统计数据建立起数学图像或模型(Ecxel的相关功能很强大),然后通过图像或模型分析,找出地理特征或规律的方法,叫图像分析法。如三角坐标图、人口金字塔图、各类统计图(线状、柱状、扇形、雷达图、直角坐标象限图)及其复合图。

学习高中地理湘教必修2《1.3人口迁移》一节时,我常选用这道题做例题。

例2.人口迁移率指人口迁移数与总人口的比例,正值为迁入。读图回答:

图中四个地区人口增长速度最快和最慢的分别是( )

A.A,C B.B,D C.C,D D.A,D

【分析】:人口增长的速度应该与人口自然增长率+人口迁移差额率的和成正相关。

分析图中数据得到下表,

那么,人口增长最快的是A,最慢的是D,故此题选D选项。

三、数据处理法

利用统计图、表提供的数据,通过对其二次处理得到新的图像或有用的数据,解决实际问题的方法。

例3.(2004年文综,湘版全国卷7-9题)下表显示了我国陆路交通的部分数据,据此回答:

(1)2002年我国铁路客运与公路客运相比较

A.铁路客运的平均运距与公路相同 B.公路在短途客运方面有优势

C.铁路短途客运量周转量与公路相同 D.铁路客运的平均运距相当于公路的3倍

(2)1980-2002年间,我国铁路交通

A.在客运中的比重稳步提高 B.单位营运里程的客运量呈下降趋势 C.与公路交通相比,客运的平均运距增长较慢

D.与公路交通相比,旅客周转量增长较快

根据公式和表中的六项数据指标进行数据分析:

第(1)题2002年我国铁路的平均运距为:4969/10.56≈470.55千米,公路客运的平均运距为:7806/111.63≈69.93显然,二者相差较大A,D错。同时,说明公路在短途运输方面有优势,B正确。而C没有相应的数据指标。

第(2)题同样经过对数据的分析处理得出B正确。