时间:2023-06-15 17:18:14
序论:在您撰写多目标优化设计时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
1.1主轴系统结构
主轴箱起着支撑卧式电主轴的作用,主轴箱内腔和底部由纵横交错的筋板组成,主轴箱的主体部分是尺寸较大的圆柱体结构,主体部分的直径和厚度不仅决定主轴箱的整体结构,而且影响到内部筋板的尺寸及分布情况。主轴系统主要结构如图1所示。
1.2主轴系统热-力耦合分析
机床实际工作状态中,电主轴高速旋转产生大量热导致主轴箱发生热变形与机械变形的耦合,因此,本文将对主轴系统进行热-力耦合分析。首先,在CATIA软件中建立主轴系统的三维几何模型,然后导入ANSYS软件中进行有限元分析的前处理,得到有限元模型。主轴系统的热-力耦合分析采用间接分析的方法,这种方法的优点是可以综合运用热分析功能和结构分析的功能,首先,在ANSYS软件热分析模块中进行稳态热分析,热源主要包括电机定转子发热和轴承发热。该数控车床选用的是某公司生产的型号为CD280Z1-8/12.5的电主轴单元,额定的功率为12.5kW,并假设电机损失的功率全部转化为热,其中电机定子占2/3,电机转子占1/3[5-6]。该主轴单元前端支承均为角接触球轴承,型号分别为XC7018和XC7015,预紧力分别为2450N、1080N。前轴承还通过环绕轴承座外表面的冷却水冷却,冷却水流量为7.2×10-4m3/s,入口温度为25℃,出口温度为35℃,轴承发热量按文献[7]提出的方法计算。热分析的边界条件分热传导和对流,主要考虑:转子端部和冷却空气、定子和冷却水、主轴箱和周围空气、主轴内孔及端面和周围空气的热对流;定子和转子、轴承和轴承座、转子和主轴、主轴和轴承之间的热传导等[8-9],具体计算过程不再赘述。然后进入结构分析模块,将得到的主轴箱温度场作为温度载荷加载到有限元模型。本文在主轴箱底面施加固定约束,考虑到主轴箱受力主要包括切削力和电主轴的重力,由切削力经验公式计算出用硬质合金车刀加工铸钢时的切削力[10],电主轴部件重2520N。将其等效为在主轴箱与电主轴部件连接部位的X、Y、Z方向上各施加4500N的集中载荷,分析后得到的热-力耦合变形如图2所示。
1.3主轴跳动计算
主轴热变形的大小,理论上以主轴前端的线位移和主轴轴线的角位移为衡量依据[11]。图3为主轴变形评定面。由于试验条件限制,无法实际测量主轴前端的线位移和轴线的角位移,这里利用图3中主轴前端A面的端面跳动和B面的径向跳动误差作为衡量主轴变形大小的依据。由圆柱面径向跳动和端面跳动的定义可知跳动量是测得位移量的最大读数差,得到主轴前端的径跳和端跳,如表1所示。
2主轴箱结构多目标优化
2.1主轴箱最优结构方案确定由于ADGM15数控车床主轴系统基本功能和机床整体结构的要求,主轴箱外型尺寸基本上是确定的。选择通过改变主轴箱底部筋板分布情况及壁厚来改善主轴系统的综合特性。本文提出
了5种设计方案以及各方案对应的主轴前端跳动计算结果,如图4和表2所示。从表2中各方案跳动量比较可知:各方案主轴端部的径向跳动量均小于2μm,方案5的效果最好,为最优方案。尽管方案3多设置了加强筋板,主轴端部的跳动量并不是最小的。这说明盲目的设置多条加强筋并不能有效降低主轴端部的跳动量。
2.2基于模糊综合评判法的主轴箱优化
2.2.1数学模型的建立现对非劣方案做进一步的优化。取设计变量为:X1、X2、X3、X4、L1、L2、D,如图5所示。其中,X1、X2、X3为筋板厚度;X4为壁厚;L1为筋板2距离主轴箱中心孔距离;L2为筋板1到筋板2之间的距离;D为主轴箱内孔的直径。主轴箱优化设计的目的是减小温升对主轴端部径向跳动和端面跳动的影响,并且使主轴箱的质量最小以降低生产成本。建立目标函数为:式中,E1为主轴端面的径向跳动;E2为主轴端面的端面跳动;m为主轴箱质量。2.2.2主轴箱结构优化主轴系统多目标优化有两个过程:第一是求解目标函数的非劣解集;第二是在多个非劣解集求出一个最优解[12]。本文首先采用ANSYS软件优化模块求解得到3组非劣解,即3种方案,分别记为A、B、C,如表3所示。再利用模糊综合评判函数对主轴系统非劣解进行二级模糊综合评判找出优化最优解。模糊综合评判的基本原理是,依据全体评判对象的特性来构造一个评判矩阵,结合综合评判函数赋予每个对象一个特定的评判指标,进行排序优选,从中挑出最优或最劣对象。常用的模糊综合评判函数有以下4种:加权平均型,几何平均型,单因素决定型,主因素突出型[9],这里不再一一列出。模糊综合评判法主要由以下5个步骤组成:建立被择的对象集,建立因素集,选择评判函数,求解评判矩阵,计算评判指标。被择对象集是主轴箱优化后求得的3种方案X={A,B,C},评判因素集U={1/E1,1/E2,1/M},再对其进行归一化处理,得到一级评判矩阵机床加工时,主轴端部的径向跳动对加工精度的影响最大,其次是端面跳动,本文在满足上述两个条件后考虑降低主轴箱的质量以降低生产成本,本文取径向跳动的权重系数为0.7,端面跳动的权重系数为0.2,主轴箱质量的权重系数为0.1。得到对应的权向量为[0.7,0.2,0.1]T,正规化后权向量为[1,0.286,0.143]T。分别求得4种评价函数所对应的评判指标Y1、Y2、Y3、Y4[13],并组成二级评判矩阵[Y1Y2Y3Y4]。主轴箱的最优解是由4种初评指标的平均值决定,再次采用加权平均型综合评定函数做平权处理,即求得二级模糊综合评判指标:
3结论
【关键词】多孔材料;多功能;优化设计
0.引言
随着工业装备和航空航天的迅猛发展,对高性能材料的设计提出了更高的要求,如:轻量化、高刚度、高散热、抗冲击性和多功能化应用等。多孔金属材料因其优良的性能和广泛的应用前景,近年来成为研究的焦点。
多孔金属材料性能与孔结构直接相关,孔隙率与多功能性能相关。改变孔隙率和孔的结构将影响材料的综合性能。因此,可根据不同需求对其结构多学科优化设计。本文将结合多孔材料的性能表征,对轻质多孔材料进行多功能化优化设计。
1.多孔材料多功能特性
多孔金属材料具有独特的多功能特性,包括:
(1)多孔材料的密度远远小于实体材料的密度。不同多孔材料孔结构不同,一般孔隙率都较高。
(2)抗冲击性 多孔金属在承受压应力时产生塑性变形,大量的冲击量被转变为塑性能,以热量形式耗散。
(3)高刚性 蜂窝多孔材料有很好的力学性能,同时其性能有较强方向性。
(4)高散热性多 孔金属是优良的传热介质,可以作为飞行器和超高速列车的散热装置。此外,在高孔隙中流过冷却剂,可达到冷却和承载的目的,在航天结构领域有广泛应用。
(5)吸声效果 与传统材料相比, 多孔泡沫结构吸声效果良好。
综上所述, 多孔材料具有高刚度、高强度、轻量化和高散热性等明显优势。多孔金属既是优良的结构材料,也是性能优异的功能材料,在交通、海洋采油、航空航天、医疗等领域中有着重要意义。多孔材料不仅性能优良,也降低能源消耗和减少环境污染。
2.多孔材料的性能表征
2.1 多孔金属材料静力学性能
在恒定载荷下,对轻质多孔金属材料的静力学性能研究。当这些构件比较复杂时,一般采用数值方法来研究其破坏变形;当宏观结构较为单一简单时,本构理论也较简单,且计算效率高,往往是数值方法中的主要方法。
本章使用ANSYS有限元程序进行有限元分析,由于结构较为复杂,模型使用三维四面体单元。材料杨氏模量为70GPa,屈服应力为150MPa,泊松比为0.3。
建立多孔金属材料有限元模型,有限元分析表明,该材料弹性模量和压缩强度均明显提高,材料弹性模量随孔径比的增加而增大,压缩屈服应力随孔径比的增加先增大后减小。对压缩变形机理进行讨论,变形主要为斜杆的弯曲变形,同时,小杆的弯曲变形机制使表现出不同的塑性流动特性。
研究表明,随着孔径比的增大,材料表现出不同的流动行为。材料塑性变形主要集中在斜杆上,孔洞的四个顶点处几乎没有变形,因此,斜杆的弯曲是泡沫金属压缩时的主要变形机制。提高孔径比,弯曲刚度显著提高,且塑性应变集中在压缩方向的小杆上。当小杆截面积逐渐增大时,结构应力也逐渐提高,直至斜杆发生屈服。
2.2 多孔金属材料动力学性能
在实际应用中,多孔金属可承受动态荷载而产生大范围变形,本文通过选择基体材料、孔隙结构来控制动态变形特征,可使多孔金属成为理想的吸能材料。多孔金属在高变形下的动态性能和破坏机理研究对于其的广泛应用具有重要意义。此外,载荷作用下力学行为的研究也是结构材料的重要前提之一,尤其对抗冲击材料在军事和防恐领域中的应用具有重要意义。
多孔材料在冲击下的变形模型一般采用动量守恒和能量守恒得出动态激励下的变形。多孔金属材料的吸能机理研究已成为当前多孔材料研究的热门方向。金属多孔材料抗冲击分析是建立在静态模型基础上的,未考虑应变效应的影响,很难准确得出整个材料的动态性能。如何进行冲击荷载下的强度和破坏研究,建立相关的本构关系及破坏判据,需要进一步深入研究。
2.3 多孔金属材料热力学性能
孔隙传热是多孔金属多功能特性中最受广泛关注的领域。材料的高热传导系数和对流换热使得多孔金属具有优良的换热性能。
传热性能研究一般集中于常温导热和单相对流传热。根据多孔金属结构的流体动力特性,确定了不同雷诺数作用下的动量方程,得出了惯性力表达式;根据空气冷却对流换热特性,测定了对流传热随微结构参数的变化规律,建立单相对流传热模型;测定真空状态下导热系数随温度的变化规律,进而确定了高温下的热传递规律。随着相对密度的提高,多孔结构的导热系数会随之增大,且导热系数与相对密度基本成线性关系。
3.多目标结构优化设计
传统材料的设计通过调整单一材料设计参数使之能够满足工程实际需求。在大多数情况下,材料的设计无法达到最优化。由于上述局限,力学工作者虽然以材料为研究对象,但只发挥其辅助作用。随着以多孔材料和复合材料的发展,材料的可设计性已有了较大提高,可根据工程需求利用优化技术设计出最优越的材料。
多目标优化问题的主要思路是目标加权求解。对多个目标中,评价各目标权重系数 ,将多目标归一化。从而将多目标优化问题转化为单目标优化问题。
在航空航天领域,许多结构件需要同时满足强度、隔热和轻质的要求。从第3节力学性能研究中我们知道,随着密度的增大,材料屈服强度提高,多孔金属板的隔热性能降低,且孔径比越大,多金属板的隔热性能越好。针对单一目标优化进行的参数选取与其他目标优化的参数选取是相互矛盾的,需要进行多目标优化设计,以选取同时满足强度、隔热和轻质要求的材料参数。
金属板构件参数多目标优化设计中,首先采用最小二乘法对屈服应力和隔热参数进行多项式拟合, 以此表达式作为构件的目标函数,通过建立包含强度、隔热和轻质多目标函数的优化设计模型,采用权重法将多目标优化问题转化为单目标优化问题进行求解。
4.结论与展望
通过建立了多目标优化设计数学模型,求解目标最优的金属孔径比、相对密度。结果表明多孔金属板的综合性能显著优于传统金属板。
多孔金属材料应用前景十分广阔,但目前很多研究还只限于对宏观性能参数的研究,对细观结构研究还较少。
【参考文献】
关键词:弛张筛;抛射强度;优化;回归分析
中图分类号:TD452 文献标志码:A 文章编号:1672-1098(2014)02-0005-04
抛射强度(振动强度)K表示颗粒受到离心力后,被抛起的可能性和在筛面上跳动的频度,它是振幅、频率及其它因素交互作用的结果。弛张筛作为潮湿细粒物料干式筛分的有效设备,其抛射强度的值国内外还无规范,有研究认为K可以达到50 g[1-4]623,而有的研究认为2.5 g[5] 即可满足弛张筛工作的需要,数据相差过大。因此,对影响抛射强度的关键参数进行研究,优化相关参数,选择合理的K值,为弛张筛的设计确定合理的参数,提高筛分工作的技术经济指标,具有重要意义。
1 抛射强度模型的建立和系列优化
1.1 常规模型系列优化
弛张筛从工作原理上属于直线振动筛,直线振动筛抛射强度的表达式为[6]
虽然式(1)没有充分涵盖弛张筛的特征参数,但仍然可以将它视为常规目标模型对抛射强度K值和相关变量实行优化。相关参数的约束条件为e [5.5, 6.5],α[15,25],β[88,92],n[550,700],在K=2.0、2.2、2.4、2.5、2.6、2.7、2.9、3.0、3.1、3.2、3.3、3.5、3.7、3.9的系列内实行14次优化。得到的优化结果为: K=2.98,e=6.35 mm,α=24°,β=90.4°和n=614 (r・min-1)。
抛射强度K=2.98可以较好地满足直线振动筛的筛分作业要求, 相应参数系列优化的值如图1所示。
根据常规模型和优化结果,得到抛射强度关于偏心距e和转速n的三维特性曲面(见图2),该特性曲面变化态势比较平坦。由该特性曲面提取两组计算数据:当n=550 (r・min-1),e=5.9 mm时,Kmin=2.3;当n=675 (r・min-1),e=6.5 mm时,Kmax=3.8。特性曲面的变化态势和计算数据表明直线振动筛的K值变动在一个较小的范围内。
常规模型既看不出两横梁最大间距L对K的影响,也体现不出时间参数t对K的影响,因为建立常规模型时简单的将弛张筛视为直线振动筛,没有体现出弛张筛的弹性筛面做相对运动的特点,所以必须建立体现弛张筛运动特点的新模型对抛射强度实行系列优化。
1.2 按有载模型进行系列优化
将有载加速度模型[8]代入抛射强度K的定义式K=asin βgcos α,得到弛张筛抛射强度的有载模型
由文献[9]知道弛张筛的加速度关于外死点(ωt=180°)周期性的对称,所以将ωt的约束条件限定为[0,178],其余相关参数的约束条件为:n[550,700]、e[5.5, 6.5]、α[15,25]、β[88,92]和 20 e < L< 100 e/3,对K=-2.5、-2、0、1、2、3、4、5、7、9、15、25、40、70、100、135、170、200 的系列范围内展开18次优化。 优化结果为: K=7.8・g或76, n=650(r・min-1), e=6.0 mm,α=25°,β=90°,L=202 mm。系列优化的结果如图3所示。
此优化K值远高于常规模型的优化结果, 此时弛张筛的曲柄传动机构连杆部位的振动强度K1(以CZS型弛张筛为例, 支撑板R=400 mm,e=6 mm) 弛张筛筛面的振动强度与传动机构的振动强度K1之比为:K/K1=76/2.83=27;弛张筛内、外筛框部位的振动强度K2 弛张筛筛面的振动强度与筛框的振动强度之比为:K/K2=76/0.021=3619;普通振动筛的筛面振动强度与主机振动强度之比K面/K机=1;弛张筛同普通振动筛机相比,很显然弛张筛不仅能很好地解决普通振动筛在筛分细粒潮湿煤炭时遇到的难题,而且筛机运动平稳,传动系统的使用寿命增加。
图4显示了抛射强度同转速n、驱动轴转角ωt的三维特性曲面,由于特性曲面采用的是单对数坐标,因此在特性曲面里传动机构的转角优化约束取值范围为[74°,178°]。表1的数据来自三维特性曲面的部分计算数据,在n=700(r・min-1),ωt=175°的抛射强度高达K=256,远远高于按常规模型所得到得最大值3.8;而ωt=90°的抛射强度则低至K=4。这是由弛张筛的运动和结构特点引起的,在筛面没有完全伸展开时,筛机体现出普通振动筛的运动特性,弛张筛和普通振动筛的抛射强度值接近。当驱动轴转角ωt的超过一定的数值,筛面展开,筛面的弹性特性得到体现,引起抛射强度迅速增大。正是由于抛射强度的这种特殊的周期性高变化趋势,保证了弛张筛筛分作业的正常运行。
2 关键参数回归分析
驱动轴转角ωt受到弛张筛结构参数L和e的影响及制约,而转角与弛张筛抛射强度之间存在周期性变化的关系。如果依据系列优化的数据进行回归分析,得到ωt=f(e)和ωt=f(L)函数,那么就可以建立K=f (e, n) 和 K=f (L, n) 模型。
2.1 模型的建立
对系列优化结果进行回归分析,得到ωt和e的模型ωt=4.0589 e-22.097,如图5所示,此拟合模型具有R2=0.976的相关程度,转角ωt和偏心距e呈现较强的规律性,属于线性正相关。ωt和L数学模型为ωt=0.1234 L-22.66,如图6所示,拟合模型也具有较高的相关度,R2=0.9521,它们也体现明显的线性正相关规律。
2.2 三维特性曲面的建立
将ωt=4.0589 e-22.097和ωt=0.1234 L-22.66分别代入(2)式,得到含有结构参数e、L的K=f (e, n) 和 K=f (L, n) 模型。载入相关参数,得到展示弛张筛特征参数e和L的变化对K值影响的三维特性曲面,如图7~图8所示。
图7、图8显示了抛射强度K与e和L之间周期性的类正弦变化规律,在一定范围内,结构参数e和L的增加都会引起K的明显增大,并且e的变化对K的影响要强于L变化的影响,这一点同图3展现的结果是一致的。至于K和n,它们之间显示出一种快速上升的非线性关系。
表2是在α=25°,β=90°,L=202 mm的前提下,提取偏心距e分别为6 mm、6.2 mm的计算数据进行比较, 当n=650(r・min-1),e=6 mm时K=69,与优化结果相吻合;当e=6.2 mm时,K达到峰值。K值增大,筛面物料的加速度、速度、抛射距离及高度都增大,对物料的松散和分层极其有利,可以有效降低物料的堵孔问题,提高筛分效率;但K值过大,物料在筛面上的跳动次数减少,被快速抛离筛面,减少透筛机会,降低筛分效率,筛机使用寿命也降低[6]。因此,提湿细粒煤炭的筛分质量和效率,并不是K 值越大越有利,综合考虑各参数和制造工艺的可行性[10-11],依据K 值的系列优化结果,确定偏心距e的最佳值为6 mm。
图8的数据在α=25°,β=90°,e=6 mm的前提下计算得到的。图8显示:L=160 mm时K达到峰值,但此时筛板间距偏小,连接筛板的横梁数量增加,筛机结构也随之变得复杂;在L=208 mm时, K的峰值过大, 影响筛分作业及筛机寿命, 因此L=160 mm和L=208 mm均不适宜为最大横梁间距的最佳距离。
4 结论
本文通过建立弛张筛抛射强度模型,并对其展开系列优化与回归分析,得到如下结论:
1) 弛张筛抛射强度的优化值为7.8 g,与实测结果7.30 g相吻合。
2) 筛面倾角的优化值为25°,高于现场采用的20°。振动方向角的优化值β=90°,横梁最大间距的优化值202 mm,偏心距的优化值6 mm和驱动轴转速的优化值650 (r・min-1)与工业实践中使用的值一致[4]624。
(上接第8页)
3) 抛射强度关键参数回归分析结果显示ωt和e、L之间呈线性正相关; K同e、L之间存在类正弦规律的变化关系,显示出弛张筛的非线性动力学特性。
参考文献:
[1] HIRSCH,W.Flip-Flow Screens of the third Generation[J].Aufbereitungs-Technik,1992,33(12):686-690.
[2] J ZUBER.Screening of difficult materials on bivitec screens with flip-flow systems,Aufbereitungs Technik[J].1995,36(7):305-303.
[3] 闫俊霞,刘初生,张士民,等.集中驱动式弛张筛面动力学分析[J].矿山机械,2011,39(4):95-97.
[4] 唐敬麟.破碎与筛分机械设计选用手册[M].北京:化学工业出版社,2001:622-625.
[5] 品川义和.筛面曲张筛[J].日本矿业会志,1980,10:750-752.
[6] 选矿手册编辑委员会.选矿手册[M].北京:冶金工业出版社,1993:186-195.
[7] 赵跃民,刘初升.干法筛分理论及应用[M].北京:科学出版社,1999:164-166.
[8] 李君,方代正,黄绍服.张紧量对弛张筛运动的影响[J].煤矿机械,2007,28(7):54-56.
[9] 翟宏新,宁小波.基于筛面基础动力学的弛张筛加速度推荐模型[J].矿山机械,2005,33(4):41-43.
【关键词】施工管理;多目标;优化设计
[Abstract] Construction enterprises in the construction management of traditional design is in just one index construction time, progress and cost of the single optimization, and without considering the target relation. Resulting in construction and planning is not consistent, so that construction units not know what course to take. This paper in view of the current project management in the three as long as the goal is obtains analyzes one by one and try to integrate these aspects.
[keyword] construction management; multi-objective optimization design;
中国分类号:TL372+.2
1.引言
建筑工程行业一直以来都是我国的支柱性产业,建筑业的发展水平对我国整体经济的发展形势起着至关重要的作用。当前,随着我国住房体制的改革,大量的住房消需求被释放出来,再加上国家城市化进程的步伐不断加快,国内建筑行业呈现出欣欣向荣的景象。然而,在竞争愈来愈激烈的形势下,粗放性经营己无法适应当下的发展,只有加强企业内部管理,向管理要效益才能有出路。对建筑施工企业来说就是要优化设计施工管理中的诸多目标。
2.三大施工管理控制目标的基本分析
施工管理目标是施工管理的重要组成部分,管理的功能决定了实现目标的方法。施工项目管理的目标就是在规定的时间内,用一定的费用建造出符合质量要求的建筑。其目标主要可分为三个方面:进度管理目标、质量管理目标、成本管理目标[1]。
2.1施工项目质量管理
施工项目质量是反映建筑实体能力和特性的总称,是根据有关法律、法规、及相关技术标准对工程安全、使用、经济、美观等特性的综合要求。施工项目质量管理就是为保证达到项目规定的质量标准而采取的一系列措施和手段。由于工程项目是一个工序流程庞大而复杂的物质生产过程,因此,需要对人、材料、机械、方法和环境构成的系统进行全面控制。
2.2施工项目进度管理
施工进度是指项目在施工过程中各阶段所需要的时间。工程进度是工程建设非常重要的一个要求,对项目积极效益起着很大的影响。项目进度管理是对项目在各个施工阶段的施工内容、施工时间、施工工序间的关系制定计划,由于影响工程进度的因素较多,在编制计划时必须充分认识和估计到各种可能出现的状况,并进行实时的修改和调整,直至工程竣工验收。
2.3施工项目成本管理
项目成本就是指某一工程在项目实施过程中发生的全部费用总和。工程施工过程中工人工资、消耗的材料、构配件、租赁费、施工机械台班费及为组织和管理施工所发生的全部费用支出统称为项目施工成本。成本管理的目标是在规定时间及预定的质量前提下,不断优化项目管理工作,充分挖掘降低成本的潜力,以尽可能少的耗费,实现预定的成本目标。因此,施工项目成本管理是对项目实施过程中发生的费用,组织、系统地预测、控制、核算和考核的一系列科学管理工作。
3. 三大施工管理控制目标的优化设计分析
质量、进度、成本三者间既存在矛盾的一面,又存在着统一的一面,工程项目施工管理的优化设计就是将这三大目标作为一个有机的系统来进行整体的控制。
通常情况下,如果对工程质量要求较高,那就需要投入较多的资金和花费较多的时间;如果项目要抢时间、争进度,那么成本就要相应的提高,或者质量要求适当地下调;如果要降低投资,那么就要考虑降低项目的功能要求和质量标准。这些反映出施工项目三大目标之间矛盾、统一的关系。
3.1 施工项目整体管理制度优化
不断完善、积极落实项目施工过程中各种相关技术标准、规范、章程。建立健全技术管理及技术责任制。实施技术责任制是为了保证各技术岗位工作都要有专门的技术责任人,杜绝施工过程中出现问题无人负责的现象。同时还可以充分调动技术人员的积极性,务实落实技术交底和档案管理工作。在图纸会审阶段,要求要有组织、有步骤地按程序进行。未经会审通过的施工图纸不得用于施工[2]。技术交底的工作一定要分级进行,并且要分级管理,使参与人员都做到心中有数,避免盲目施工。对于重点工程、重点部位的技术应用,工程项目管理人员更需要做详细清楚的技术交底安排。这其中,交建设单位的竣工资料和施工单位保存的施工组织与管理档案都应按档案管理要求进行搜集、整理和归档。
3.2 施工项目整体技术优化
在施工准备阶段所做的技术准备工作是为了创造有利的施工条件,从而保证施工任务得以顺利进行,它的主要工作内容及基本任务是了解和分析建设工程特点、进度、要求,摸清施工的客观条件,编制施工组织设计,并制定合理的施工方案,充分及时地从技术、物资、人力和组织等方面为工程创造一切必要的条件,使施工过程连续、均衡地进行,保证工程在规定的工期内交付使用,使工程施工在保证质量的前提下,做到提高劳动生产率和降低工程成本。而施工组织设计是指导工程项目进行施工准备和施工的基本技术条件,加强施工组织设计编制的组织工作,对参加编写的人员明确分工,责任到人,最后汇总,修改定稿。
在施工准备阶段,选择科学的施工方法,协调各个工种在施工中的搭接与配合、合理安排劳动力和各类施工物资的供应、确定各分部分工程的目标工期和单位工程。编制施工计划,落实计划的实施, 保证人力、施工物资和资金的及时到位。掌握建设工程特点和施工技术要求,分析工程施工进度要求和投资成本规定,并据此编制施工组织设计、制定施工方案,创造有利的施工条件,保证施工任务顺利进行[3]。
在项目施工阶段,首先要合理安排人力资源在施工过程中的运用,避免各工种人员出现怠工、窝工的现象,其次做好施工机械的均衡调配, 施工机械的台班数量和工作面直接影响其最大施工强度,因此大型施工机械的及时进场和转移应做到合理的衔接安排。当遇到技术难点工序、关键工序时,要采取各种措施予以保证其按时顺利完成。
4.结束语
通过技术管理工作,做好施工前各项准备,并且加强施工过程中出现的重点、难点控制,优化配置资源提高劳动生产率、降低资源消耗,进而达到质量、进度和成本多方面的和谐统一。作为项目部,为了实现安全、质量、进度、成本等方面的目标要求,必须加强施工过程的技术管理因此加强建筑施工技术管理,对整个工程项目都起着十分重要的作用。
【参考文献】
[1]孙锡衡, 齐东海. 水利水电工程施工计算机模拟与程序设计[M]. 北京:水利水电出版社, 1997.
[关键词]风能供电;光伏供电;多目标优化设计
中图分类号:TM614 文献标识码:A 文章编号:1009-914X(2015)45-0013-02
风光互补混合供电系统是一种比单独的光伏和风能供电更加有效、经济的供电形式,也是可再生能源进行单独立供电的一种优化选择,可以极大降低供电系统对电池储蓄能量的需求。因此,人们越来越重视对风光互补混合供电系统的多目标优化设计进行研究,取得了一定的成就,本文主要介绍运用改进微分进化算法对其进行多目标优化设计的研究方法。
一、风光互补混合供电系统概述
风光互补混合供电系统的主要构成装置是多种型号不一样的风力发电机组,光伏电池构件以及多个蓄电池。这些组成部分对环境的适应性各不相同,同时对用户供电可靠性的要求也不相同,所以把这些装置集合在一个系统中互补有无,以便可以在符合供电系统要求的基础上,尽可能实现最经济、最可靠的供电[1]。风光互补混合供电系统的构成图如下所示:
(一)风力发电机组。风力发电机组的发电功率和风速之间的关系如下所示:
具体的计算过程如下:
(一)设置初始参数:将系统的种群数量N,终止迭代次数C、系统变异因子的上限和下限Fmax、Fmin,以及供电系统的杂交因子的上限和下限Crmax、Crmin设置出来[4]。
(二)进行优化设计的种群初始化。在系统决策变量的最大范围中,使其随机形成对个解。
(三)将系统父代种群的适应度方差准确计算出来。将F和Cr的最小值计算出来。
(四)供电系统多目标有针对性地实行变异和交叉操作,进而产生子代种群。
(五)把上述形成的子代种群代入约束条件计算式(8)和(9)实施检验,如果计算结果与需求的条件不符合,就需要根据改进的算法进行计算。
(六)将供电系统父代种群和子代种群互相适应的数值计算出来,接着运用贪婪方法做出操作选择,同时将目前最优的个体和相应的适应数值准确记录下来。
(七)再判断目前的种群分散程度,针对于部分立即要进行重叠的个体,要对其实行解群转换的操作。
(八)将以上步骤重复计算,一直到实现系统的迭代次数为止。
目前,大多数风光互补混合供电系统多目标优化设计方案中,都将选择光伏电池的倾角设置成当地的纬度值。可是,在混合供电系统选择光伏电池的倾角时,要综合考虑日照、风速、组件的容量等[5]。由于混合系统光伏电池的倾角选择与其发电量的变化有直接的关系,就需要将蓄电池组的数量增多以更好地确保电力系统的安全性和稳定性,可是这种改变会极大增加电力系统的总成本。所以,就要将光伏太阳板的倾角看成是一个决策的变化量,再将其代入进行计算。
结束语
综上所述,全面结合了风速、日照、地理方位、负荷等的不同变化,对风光互补混合供电系统的多目标优化设计进行了一定的探讨,尤其是光伏太阳板的倾角的选择,不能只是将其设置为当地的纬度值,而是要结合当时的风速和电量符合等因素,使其和太阳能形成一定的互补性,再将其代入计算。
参考文献
[1]王绍钧.风光蓄独立供电系统应用研究[D].华北电力大学(保定),2014,21(11):17-23.
[2]刘皓明,柴宜.基于GA-PSO的微电网电源容量优化设计[J].华东电力,2013,41(2):311-317.
[3]冯忠奎,季素云,贾栋尚等.开放式线圈屏蔽高场超导MRI磁体的优化设计[J].低温与超导,2013,41(11):47-53.
(1.山东理工大学电气与电子工程学院,山东 淄博 255022;2.山东理工大学农业工程与食品科学学院,
山东 淄博 255022;3.山东理工大学理学院,山东 淄博 255022)
【摘要】折叠桌因其艺术性的设计以及节约空间、方便搬运的优点在现代家居生活中倍受青睐。同时,折叠桌因其可折叠的特性也承受着其稳定性与承受力大小的考验。我们采用刚体转动模型求解其稳定性指标,利用各个加工参数之间的数学关系求解其原料消耗,采用超静定次数进行定性分析描述其加工方便度,最终利用多目标规划模型分别赋予不同指标优先因子对折叠桌进行优化设计。
关键词 刚体转动;多目标规划;空间坐标系;最优加工参数
1 问题由来
工业设计师Robert van Embricqs 设计一款名为rising side table [1],桌子外形由直纹曲面构成,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(如图1所示)。
2 问题分析
在两根钢筋所在平面,以两根钢筋对称轴为x轴,两根钢筋中点连线为y轴,垂直地面向上为z轴方向建坐标系 (如图2),木条与圆形桌面的相连接的点记为P点,从外到里分别用P10,P9,…,P1来表示,最中间的点记为坐标为P1,且P10的坐标为(2.5,25,25)。钢筋穿过木条的点记为Q点,同理从外到里分别用Q10,Q9,…,Q1,标记顺序同P点一致。
Fi:第i根木条的开槽位置i=1,2…,10;fi:第i根木条的开槽长度(i=1,2,…,10);h2:钢筋初始位置d:每根木条的宽度;li:木条长度α:最外侧木条与地面夹角;c:木板的厚度
3 构造约束条件
鉴于对折叠桌的设计,需要综合稳固性、经济性、加工便利性等因素进行优化其设计。
稳固性:
稳固性主要受重心位置的高低、支撑面的大小以及结构的影响[2]。根据桌子稳定性测试(BS4875-5)标准,设计的产品稳固性不达标就不能流通于市场,所以我们把力学性能分析放在首要地位。稳固性主要测试其竖直承受力与一侧承受力大小。竖直承受力大小多取决于折叠桌的材料,一侧受力多取决于折叠桌结构。将折叠桌视为刚体,其一侧受力发生侧翻即为刚体转动问题。[3]根据折叠桌使用的木料、钢筋求其质量分布,得其密度ρ(x,y,x)(此处密度可视为常数)。折叠桌的质量
经济性:折叠桌折叠之前为一块木板,所需材料即为木板的面积。
加工便利性:
由于桌腿由若干根木条组成,沿木条有空槽以保证滑动的自由度,进而木条的数目以及开槽长度影响加工便利性。根据力学原理,每增加一根木条,该结构的超静定次数便增加一次,因此该结构为多次超静定结构[4],采取增加木条的方法来增加超静定次数,降低受力敏感度,是影响其加工便利性与稳定性的重要因素。
4 多目标规划模型
j:木条的宽度;e:木板的宽度;b1:最外侧木条所留桌面边沿长度;g:木板长度
5 结论分析
折叠桌以其灵活性、便捷性融入百姓生活。本文在保证折叠桌优良特性的前提下,引入刚体转动分析,结合多目标规划模型,优化设计折叠桌,保证了其稳固性、经济性、加工便利性。
参考文献
[1]韩佳成,Robert Van Embricqs.平板折叠桌[J].设计,2012,8.
[2]刘延柱.刚体动力学理论与应用[M].上海交通大学出版社,2006-8-1.
[3]wenku.baidu.com/link?url=po 7 pey 2 xG_w0ELxvIgKKosCkC 6 jtfibAZW cBNT00Xx-YJNOh TpBOG 3_c22 TfersEysmn6 iyBkau_bkmEuV9 LDGZpqr51 HuOT2 OWNFqiFLx_&qq-pf-to=pcqq. c2[OL].
[4]钱令希.超静定与静定结构学[M].科学出版社,2011.
关键词:遗传算法 平面叶栅 多目标 优化设计
目前,遗传算法[1]在许多领域都得到了广泛的应用,取得了很好的效果,充分说明了遗传算法的有效性。与一般算法相比,遗传算法更适合优化复杂的非线性问题。本文将遗传算法应用于平面叶栅优化设计。一方面,奇点分布设计平面叶栅原理简单,易于实现,但由于骨线是按照无厚翼型设计的,加厚以后流道变窄,流速加大,因此正反问题计算得到的环量相差较大,因此骨线需要调整;另一方面,充分利用遗传算法的全局搜索特性来搜索最优的骨线形状。将二者的特点结合起来用于设计轴流平面叶栅。这样既可以使得到的叶栅满足给定的环量要求,又可以提高其效率、减小气蚀系数,不失为一种新的尝试。
1 数学模型
奇点法[2]的基本出发点是用一系列分布在翼型骨线上的奇点来代替叶栅中的翼型对水流的作用,将叶栅绕流的计算转化为基本势流的叠加计算,利用绕流无分离的条件来绘制翼型的形状。其前提是假定来流为无旋有势流动、叶片无限薄。在设计过程中,所求的骨 线可先假设一个翼型的骨线形状,计算出骨线上各点的合成速度W,由于骨线 是假定的,W并不能和骨线相切。根据骨线和速度W相切的条件修改第一次假设的骨 线形状,得到第二次近似骨线。重复上述计算,直至逼近为止。