欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

故障诊断方法综述范文

时间:2023-06-12 16:09:26

序论:在您撰写故障诊断方法综述时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

故障诊断方法综述

第1篇

关键词:故障诊断;小波分析;专家系统:数据融合

引言

故障诊断(fd)全名是状态监测与故障诊断(cmfd)。基于解析冗余的故障诊断技术被公认为是这一技术的起源。所谓解析冗余,是指被诊断对象的可测变量之间(如输入与输出间,输出与输出间,输入与输入间)存在的冗余的函数关系,故障诊断在过去的十几年里得到了迅速的 发展 ,一些新的理论和方法,如遗传算法、神经 网络 、小波分析、模糊理论、自适应理论、数据融合等均在这里得到了成功的应用。

1 基于小波分析的故障诊断方法

小波分析是20世纪80年代中期发展起来的新的数学理论和方法,它被认为是傅立叶分析方法的突破性进展。小波分析最初由法国学者daubeches和callet引入信号处理领域,它具有许多优良的特性。小波变换的基本思想类似于fourier变换,就是用信号在一簇基函数张成空间上的投影表征该信号。小波分析优于博立叶之处在于:小波分析在时域和频域同时具有良好的局部化性质。小波分析方法是一种窗口大小(即窗口面积)固定但其形状、时间窗和频率都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率。因此,小波变换被誉为分析信号的显微镜,小波分析在信号处理、图像处理、话音分析、模式识别、量子物理、生物医学工程、 计算 机视觉、故障诊断及众多非线性 科学 领域都有广泛的应用。

动态系统的故障通常会导致系统的观测信号发生变化。所以我们可以利用连续小波变换检测观测信号的奇异点来检测出系统的故障。其基本原理是利用信号在奇异点附近的lipschitz指数。lipschitz指数时,其连续小波变换的模极大值随尺度的增大而增大;当时,则随尺度的增大而减小。噪声对应的lipschitz指数远小于0,而信号边沿对应的lipschitz指数大于或等于0。因此,可以利用小波变换区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(援变或突变)。

2 专家系统故障诊断方法

专家系统故障诊断方法,是指计算机在采集被诊断对象的信息后,综合运用各种规则(专家经验),进行一系列的推理,必要时还可以随时调用各种应用程序,运行过程中向用户索取必要的信息后,就可快速地找到最终故障或最有可能的故障,再由用户来证实。此种方法国内外已有不少应用。专家系统的故障诊断方法可用图1的结构来说明:它由数据库,知识库,人机接口,推理机等组成。其各部分的功能为:

数据库:对于在线监视或诊断系统,数据库的内容是实时检测到的工作数据;对于离线诊断,可以是故障时检测数据的保存,也可是人为检测的一些特征数据。即存放推理过程中所需要和产生的各利,信息。

知识库:存放的知识可以是系统的工作环境,系统知识(反映系统的工作机理及结构知识):规则库则存放一组组规则,反映系统的因果关系,用来故障推理。知识库是专家领域知识的集合。

人机接口:人与专家系统打交道的桥梁和窗口,是人机信息的交接点。

推理机:根据获取的信息综合运用各种规则进行故障诊断,输出诊断结果,是专家系统的组织控制结构。

3 基于数据融合的故障诊断方法

数据融合是针对一个系统中使用多个传感器这一问题而展开的一种信息处理的新的研究方向。数据融合将各种途径、任意时间和任意空间上获取的信息做为一个整体进行综合分析处理,为决策及控制奠定基础,产生比单一信息源、单一处理机制更精确、更完全的估计和判决。

数据融合模型一般可表为图2所示的三级结构。数据融合模型的每一级内部又可有相应子结构,其中,第一级为原始信息融合层,其输入是由信息源提供的各种原始数据,其输出是特征提取的结果或某种局部决策。第二级为特征融合层,它以原始信息融合层的输出做为输入。其输出为目标的局部标识。第三级是决策融合层,其输入为特征融合层的输出,并以全局决策做为本层的输出。全局决策一般既要有硬决策,如故障类别、部位、程度,也要给出软决策,如可信度。

第2篇

摘要: 随着经济的发展,技术的进步,现代企业设备越来越大型化、复杂化、智能化,如果液压设备发生故障,生产就无法进行。本文首先介绍液压系统故障诊断的准备工作,然后详细介绍三种诊断方法。

关键词:液压系统故障 简易故障诊断法 人工智能故障诊断法

液压系统具有很多独特的优点,常见的如:大容量、结构紧凑、安装灵活、反应快、容易控制等等,在现代大型设备,特大型设备中具有广泛的应用的同时存在着问题,极易发生故障从而影响生产,造成故障的原因主要是系统中元辅件和工作液体性能不稳定,系统设备使用不当或者维护不到位。近几年液压系统故障诊断成为了一门专门的学科,受到高度的重视。

1、液压系统故障诊断的准备工作

第一拿到设备使用说明书时一定要认真仔细的阅读,详细了解该设备的功能、结构、工作原理,包括系统中元件的功能结构和原理;第二从网上查阅设备的档案资料,包括生产厂家、制造日期、调试验收,故障可能、处理方法等等。

2、简易故障诊断方法

2.1 主观诊断法

这是一种最传统的方法,凭借维修人员的主观判断(看、听、摸、闻、问)和实践经验,或者利用简单的仪器、仪表判断故障发生的部位并且给出发生的原因。常见到的主观诊断法有感官诊断、方框图分析、系统图分析,该方法简单快捷方便,这种方法对维修人员的要求极高需要有丰富的诊断经验,但是诊断结果具有局限性。

2.2直接性能测试法

这种方法通过测试液压元件和系统性能进而评价系统工作状态,适用于处于工作状态的系统,还能进行定量的分析,现代运用最多的是检测液压系统的状态。如果检测的液压系统元件或者性能超出了规定的正常范围,那么该系统就有发生故障的可能性。这种方法原理简单,相当直观,但是测试的精准度不是很高,一般早期的失效很难检测出来。

3、基于信号分析的故障诊断方法

3.1基于抽样分析法

反映系统内部信息的除了液压系统本身的信息,其内部的污染物也可以,也就是说测定和鉴别油液当中污染物的成分和含量,可以知道液压系统的污染情况和运行状况,也是一种故障诊断的方法。目前我们经常见到的有两种:一种是基于油液颗粒污染度的检测技术,包括:显微镜检测技术(设备投资小、方法简单、费时费力、误差大)、自动颗粒计数器(检测速度快、操作简便、准确度高但精度低)、称重法(设备简捷、检测方便、只测重)、铁谱分析法(可进行定性和定量的分析)、光谱法(成本高、精度高);另一种是基于油液性能参数的检测技术,这种技术需要细致的分析油液的有关参数和金属的含量,历时的周期较长,无法实现在线检测,但是对重要液压系统的诊断很有效。

3.2基于振动噪声分析法

在液压系统的运行过程中,必然会伴随产生振动和噪声,尤其液压泵的振动声音十分大,实际上这些设备的振动和噪声就包含了许多故障的信息,分析信号,得到元件状态信息,进而进行故障诊断。这种方法的理论比较完善,应用也比较广泛,有多种信号处理方法如:时域特征参数法、时差域特征法、概率密度法、相关分析法、谱分析法、自功率谱分析法、倒频谱分析法、包络谱分析法、主分量自回归谱提取法、AR谱参数提取法、小波分析等。目前旋转机械设备也能用它分析诊断故障,纯机械设备的故障诊断效果相当明显。随着信号处理技术的发展,这种方法的应用前景十分可观。

3.3基于数学模型法

这种方法的指导是现代控制理论和优化方法,基础是系统的数学模型,残差产生法是观测器(组)、等价空间方程、Kalman滤波器、参数模型估计和辨识等,利用阀值或者准则评价决策残差。该方法和控制系统的关系相当密切,共同成为监控、容错控制、系统修复重构的基础。这种方法的数学模型的精确度直接决定诊断的精确性,一般最常建立的是线性和非线性的数学模型来诊断液压系统的故障。

4、基于人工智能的故障诊断方法

4.1基于专家系统的智能诊断法

这是智能诊断技术中受到多方关注的一个发展方向,研究最多,应用最广,主要是利用专家的知识和推理方法解决实际遇到的复杂问题。在这的专家系统并不是指人员而是指一种人工智能计算机程序,知识权威,学习功能强大。该系统的主要组成部分:知识库(系统知识和规则库)、数据库、推理机和解释机制。如果利用它检测在线的系统,数据库显示的是实时工况数据;如果利用它检测离线系统,则数据库显示的是实际故障时的数据或者人为故障的样本数据。该方法的运行过程是通过人机相互交换,专家系统获得所需信息,利用系统的知识库和数据库,推理机运用规则,调用应用程序,进行正确的推理,找到液压系统的故障。这种方法给自动化进行液压系统故障诊断代带来了光明和希望,但是也存在一定的不足和问题,不过未来的发展前景还是很广阔的。

4.2基于神经网络的智能诊断法

20世纪80年代人工神经网络迅速崛起,成为人工智能领域的一个分支,是一种计算模型(与人的认知过程相似),一种非线性动力学网络系统(模拟大脑神经元结构特性)。神经网络的非线性处理单元(类似神经元)相互关联,具有了学习、记忆、归纳总结等功能和数学模拟能力。这种方法的具有独特的优势,如:分布式处理能力、联想记忆、自学习能力等收到诊断领域的广泛关注和重视,未来发展前景十分宽广。

4.3基于模糊理论的智能诊断法

大量的模糊现象存在于液压系统故障诊断领域,如:系统油温过高、压力波动较重等等,过高、较重这些都是模糊的概念,并没有清晰的边界,故障发生会经历一个漫长的时间,同时故障发生的原因和症状也是模糊的,可能一对一,可能一对多,也可能多对一。利用模糊逻辑、模糊关系描述故障的原因和现象,建立隶属度函数和模糊方程,明确识别故障。这种方法的现象更为客观,结果更符合实际,速度快,容易实现。

5、结束语

随着21世纪科技的发展,人工智能技术更是突飞猛进,还有许多智能诊断的方法如:故障树诊断法、灰色理论智能诊断法、案例推理诊断法、多智能体的智能诊断法、信息融合技术智能诊断法等等。如何将新型科技、智能技术运用到故障诊断系统当中,实现自动化、智能化的故障系统诊断是我们亟待解决的问题。

参考文献:

[1]范士娟,杨超.液压系统故障诊断方法综述[J].机床与液压,2009,37(5):188-192,195.

第3篇

关键词:往复式压缩机;故障诊断方法;振动诊断法;直观诊断法;热力诊断法 文献标识码:A

中图分类号:TH457 文章编号:1009-2374(2016)17-0073-02 DOI:10.13535/ki.11-4406/n.2016.17.035

1 往复式压缩机诊断方法研究现状分析

往复式压缩机是一种应用广泛的通用机械设备,在工作过程中经常由于高耗损引发故障的出现,进而难以维持工作的正常进行,对于故障诊断技术的研究一直以来受到国内外学者的广泛关注。在国内,有的学者通过对往复式压缩机缸盖振动信号进行分析,有的通过对缸内气体压力的影响方面进行分析,有的通过对压缩机常规性能参数的监测和控制方面进行研究,力求改变目前操作人员凭经验判断故障的局面;在国外,美国学者曾提出利用气缸内侧的压力信号图像判断气阀故障及活塞杆的磨损,捷克学者对各个不同类型的压缩机通过建立常规数据库,确定评定参数来判断压缩机的工作状态是否正常。然而,虽然引起各大学者的关注和寻求各种解决办法,但是对故障诊断技术到目前为止还没有一套成熟的得到认可的诊断系统来获取有效特征参数。

2 往复式压缩机常见故障及措施

2.1 排气温度过高

排气温度过高主要是由于使用过程中出现冷却情况或是排气阀泄露造成的。

措施:通过降低进口冷却水的温度或是增大冷却水流量,将冷却水温控制在规定范围内,对冷却器进行定期的零件检查与维修;通过测温装置对排气阀进行温度检测,如果过热,则需拆开气阀进行修理,更换气阀弹簧。

2.2 曲轴断裂

曲轴断裂轴颈与曲臂的圆角过渡处。曲轴断裂产生的原因比较多:曲轴过渡圆角太小,热处理时,圆角处理不到位;圆角有局部断面突变,加工不规则;油孔处出现裂缝,油渗入后使裂缝逐渐扩大,造成断裂;长期超负荷运转,减少使用寿命。

措施:适当增大曲轴的过渡圆角,热处理保持均匀;提高曲轴加工质量和精确度;提高曲轴油孔的加工质量;从压缩机使用情况来讲应充分考虑曲轴强度问题,禁止超负荷运转。

2.3 轴承过热

轴承过热主要是由轴承间隙过小,油形成不了油膜,起不到冷却的作用或是油泵出现故障造成断油及油路堵塞等问题,致使轴承产生热量引起的。轴承过热将加快摩擦,产生的热量不断积累烧毁摩擦面造成重大事故。

措施:及时对轴承间隙做调整,将间隙控制在合适的范围内;提高油黏度,定期对油泵进行检查,疏通油路,促使轴承得到良好的。

2.4 连杆螺栓断裂

连杆螺栓断裂的原因表现在安装或检修螺栓紧固时产生偏斜,承受不均匀的载荷;长期使用产生塑性变型;连杆螺帽松动或开口销折断,连杆螺栓因承受过大的冲击而被拉断。

措施:应使连杆螺帽的端面与连杆体上的接触面紧密配合,必要时用涂色法进行检查;定期检查连杆螺栓的受力和变型情况;安装或检修后,连杆螺栓一定要拧紧,必要时穿上新的开口销,以免松动。

2.5 气流脉冲引起的管路振动

气流脉冲引起的管路振动是由气流的脉动性和压缩机未被平衡的惯性力和力矩两方面引起的振动。

措施:注意弯管和异径管的正确设计,使设计的管路长度要避开共振管长;现场采取消振措施,可增设缓冲器,还可以加节流孔板,或适当增设管路支架来起到减振作用。

3 往复式压缩机故障诊断方法

3.1 振动诊断法

出现故障的往复式压缩机在振动及噪音上会出现差异性,通过对差异性的掌握可有效对往复式压缩机进行故障诊断。针对往复式压缩机在振动及噪音方面的不同表现研制出对其进行监测的振动监测仪,但在使用过程中振动频率过大,存在噪音不受控制、信号不平稳等因素,使得振动监测仪仍处于实验阶段,尚未全面普及。

3.2 直观诊断法

作为往复式压缩机故障诊断方法中最基础的一种诊断方法,主要是工作人员通过身体感官(眼睛看、耳朵听)及自身经验来诊断故障,这种诊断方法在准确度上存在瑕疵,适用于故障的初步诊断或是在没有检测装置情况下进行应急使用。目前压缩机机械设备逐渐向自动化方向发展,直观诊断法缺乏科学性,对诊断往复式压缩机故障起不到关键性的作用。

3.3 热力诊断法

热力诊断法是借助仪器对往复式压缩机各项数据进行测量和分析,以达到故障诊断的目的,包括对压缩机的油温、水温、排气量、冷却水量等数据信息的监测。在对往复式压缩机进行数据收集时,由于不同部件出现故障在数据上表现不同,采用热力诊断法在诊断和预测故障时容易缺乏准确性,目前主要应用于压缩机的运行状态和监测参数等方面。

3.4 油液诊断法

油液诊断法是一种比较特殊的故障诊断方法,包括油液中磨损信息分析和油液物理化学性能分析两方面。诊断过程中,有关人员对往复式压缩机中的油液进行取样,通过对油液自身属性的分析和油液磨损信息的了解,掌握往复式压缩机在运行中是否存有故障。在对油液进行分析时需引入大量现代的高新技术仪器,才可确保油液诊断的准确性。

3.5 人工智能诊断法

该诊断方法是往复式压缩机故障诊断过程中应用最频繁的一种方法,具有易于构造、预测简单、解释机制强等优势,同时也具有推理机制简单、专家知识不够精确等缺陷,人工智能诊断法是在专业知识和大量实践经验的基础上建立一套具有人工智能的计算机程序,主要用于解决难度较大且复杂的故障问题。但人工智能诊断系统主要收集的是专家的意见,不能对知识进行判断,容易产生错误的知识应用,造成故障诊断失败。

4 往复式压缩机故障诊断过程中的注意事项

4.1 完善诊断方法

从事往复式压缩机故障诊断的技术人员,具有一定的技术优势,但是对理论知识的掌握存在不足,不利于新技术的使用,导致系统诊断方法过于单一,应要求相关技术人员通过企业培训或是网络课程的学习来增强理论知识的学习与技术的创新,进而推动往复式压缩机故障诊断工作的提升,同时还应加强计算机辅助实验的开发工作。

4.2 强化全面诊断

通过对往复式压缩机诊断方法的研究发现,各种诊断方法在诊断过程中都存在一定的缺点,不能做到对故障的全面诊断,要求有关人员在进行往复式压缩机诊断过程中注重全面性,采取小波分析、人工智能理论等多种分析技术相结合的方法,通过多种技术交叉应用的方法弥补诊断上的片面性。

4.3 避免诊断失误

在往复式压缩机故障诊断的过程中,工作人员主要是对收集的信息进行确定分析,以达到准确的故障检测的目的。但是在日常工作过程中,由于设备的落后、人员的疏忽等,故障监测准确率不高,间接采集到的信息带有一定程度的不确定性,常常会出现误诊。因此,要想保障往复式压缩机故障的诊断,就要对往复式压缩机的故障信息进行准确的收集,提高信息的正确性。

同时,对于往复式压缩机的在线状态监测及故障诊断问题,还应加深识别理论的研究与定量关系的研究,包括对气阀的故障诊断、前期裂纹存在的预测、不同裂纹的类型长度等进行深入研究。加强对传感器与监测仪的研制,建立系统的数学模型,通过振动分析获得往复式压缩机故障诊断与参数之间的对应关系。

参考文献

[1] 程艳霞,铁占续,孙付伟,等.往复式压缩机故障诊断方法研究综述[J].仪器仪表用户,2006,(5).

[2] 付希涛.往复式压缩机故障诊断研究与展望[J].技术与市场,2014,(7).

[3] 黄敏.往复式压缩机状态监测与故障诊断分析[J].设备管理与维修,2016,(1).

第4篇

关键词:电机故障;诊断原理与技术;技术应用

电机作为机械设备的动力源电机故障;诊断原理与技术;技术应用头,主要作用是将电能转化为机械能,供机械设备运转。因此,电机是供电与用电系统的重要元件。但是电机运转时间长,工作负荷大,容易受到各种外界因素的影响,从而出现故障问题。如果工作人员不能及时诊断并处理电机故障,那么将影响电机的正常运转,严重时将导致电机的破损。所以说,电机故障的诊断技术是保证电机正常、有序运转的技术基础。笔者基于多年的电机故障诊断理论研究与实践经验,提出几种有效的电机故障诊断技术,希望能够与相关工作共同探讨、提高。

一、电机故障的诊断原理

一般来说,电机故障的诊断原理有以下几种。

首先,根据噪音、振动、温度等变化情况诊断电机故障。在电机出现故障时,工作人员会先用温度检测仪器对电机各个部位的温度进行检查,以初步确定电机故障的类型,再根据电机故障的噪音或者振动情况,大致确定电机故障的位置与原因,从而为进一步诊断提供条件与基础。这种诊断方法主要针对情况较轻的、能够通过工作人员的经验或者简单仪器等检查出来的机械故障。

其次,根据电流变化情况诊断电机故障。这种方法的诊断原理是工作人员利用频谱分析仪器等对电机内电流的波形进行分析与检测,再对比正常运转电机的电流波形图,从而判断电机故障的程度。最后,根据绝缘结构的检查结果诊断电机故障。

除了以上两种方法之外,工作人员还可以利用适宜的电气检查设备对电机内的绝缘结构进行检测与分析,得出电机绝缘结构的寿命以及电机工作性能等因数,从而对电机故障进行进一步的诊断。

二、电机故障的诊断技术

电机主要由电路、磁路两部分组成,两者共同转化能量。电机故障既有电气方面的原因,也有机械方面的因素,因此,电机质量或者安装质量不合格、电机在运转过程电压不稳、负载超出标准等等情况,都将可能引起电机故障,影响电机的正常运转。工作人员根据相关原理、选择适宜的故障诊断技术对电机故障进行诊断,以保证电机的可靠运转。

(一 )在我国,基于数学模型的电机故障诊断技术的应用已经比较纯熟,最简单直接的方法是进行输入输出信号的处理,电机输出量如果超标,即为有故障可能,或者也可以通过数学方法研究波形的主要参数变化与故障源之间的联系,来分析判断故障原因和位置。而基于状态或过程参数估计的电机故障诊断技术也在不断完善,图1为这类方法的原理图。这种方法既有优势也有缺点,优点是可以根据系统动态性质实时诊断,缺陷是不适用于非线性电机模型。这种方法能够很大提高电机故障诊断的效率。但是随着经济、技术的发展,更多有效的诊断技术,尤其是人工智能诊断技术被应用与电机故障诊断中,为电机的正常、高效运转提供技保障。

(二)人工智能诊断技术

第一 人工神经网络诊断技术 此类诊断技术在当前应用效果较好,使用频率也较大,正在成为新兴主流诊断技术之一。它主要采用BP网络对电机故障的信号进行检测、分析与转换,同时根据相应的算法以得到输入、输出样本之间的映射关系,从而利用网络进行科学地分析与诊断。目前已有很多成功实例,如利用BP网络实现分箱式感应电机的匝间短路与轴承损耗两类故障的诊断,同时有文献记载 可将基于 BP 神经网络的方法用于电机转子断条的故障诊断 。B P 神经网络的算法通常 采用基于梯度下降原理的误差反向传播算法 , 即 BP 算法 。但标准 BP 算法特点是收敛速度慢 ,可以加快训练收敛速度 , 引入动量项的是权值修正快速算法 。这种方法提高了运算效率 ,更具实用价值。 人工神经网络诊断技术应用效果最好的是诊断转子断条故障,基本上可以达到零失误率。

第二 模糊逻辑诊断技术。有些电机故障不能很准确地被描述出来,显示一定模糊性,在此就需要利用模糊逻辑诊断技术对电机故障进行诊断。但是这种诊断技术需要模糊知识库的支持与辅助,并建立故障与故障征兆之间的关系或者规则库,从而通过推理判断、诊断电机故障。但是这种技术容易出现误诊,需谨慎使用。图4为模糊诊断技术原理图。故障诊断部分是一个典型的模糊逻辑系统,主要包括模糊化单元,参考电机,底层模糊规则,和解模糊单元。其中模糊推理和底层模糊规则是模糊逻辑系统的核心。文献指出,解决笼式感应电机转子断条故障,使用模糊逻辑不仅可以检测故障的发生,甚至可以给出断条数目。为了更为精确, 将转子条的状况分为5类:没有断条, 有断条初期征兆, 1个断条, 1-2个断条和2个断条。异步感应电机发生断条时, 就会在定子谐波电流中感应出频率(1±2s)f1的附加分量, 其中s 为转差率, f1为定子基频 [ 16]。谐波分量中这两个频率的幅值分别由A1和A2(单位:dB)表征, 因此断条故障可以通过对A1、A2检测获得。在模糊推理中,对于可能出现的故障, 只需用模糊隶属度函数进行描述,而不像基于神经网络的故障诊断方法那样用数值进行描述, 模糊输出隶属度函数如图5所示。实验结果表明:这一方法可成功应用于一台5.5kW两相感应电机的故障诊断。基于模糊逻辑的电机故障诊断方法的优点在于可嵌入语言化的知识和近似推理能力。从近年来的发展可以看出, 基于模糊逻辑的电机故障诊断方法无论在理论上

还是在应用方面都已取得了很大的进展, 但与传统的故障诊断理论和方法相比, 仍有不成熟之处,有待于进一步的完善。

第三,遗传算法诊断技术。这种诊断技术是根据故障信号的分析与推算,对电机进行全局地控制与检测,从而不断地优化诊断方法,以达到提高诊断效果的目的,它具有全局控制、快速便捷等特点。但是在遗传算法诊断技术应用过程中,工作人员需要注意参变量各项参数的准确性,需要反复试凑,以确定各项故障参数。因此可以说,遗传算法诊断技术是电机故障诊断技术中较为先进、高效的技术。

结语

综上所述,在电机应用过程中,相关工作人员必须提高对电机故障的认识,并根据电机应用的实际情况,科学地选择适宜的故障诊断技术,以提高电机故障诊断效率,从而为快速、有效地处理电机故障,促使电机恢复正常运转提供保证。目前,我国电机故障的诊断技术得到高速发展,但是由于电机故障各个类型之间的关系复杂,需要相关工作人员进一步研究,以促进电机故障诊断技术应用有效性的提高,从而保证电机的正常运转,为机械设备提供充足的电能。

参考文献

[1]王秋彦,鞠建波,宋振宇. 故障诊断技术研究现状及发展趋势[J].电子测量技术, 2009,12(04):45-46 .

[2]刘冬生,赵辉,王红君,等. 基于小波分析和神经网络的电机故障诊断方法研究[J].天津理工大学学报, 2009,78(01):21-23 .

[3]杨朋松,吕永健,逯国亮.基于小波神经网络的电机故障诊断研

究[J].大电机技术,2009,22(04):78-79 .

[4]M.Y.Chow, R.N.Sharpe, J.C.Hung.Ontheapplication andde-signof artificialneural networks for motor fault detection(I)[ J ] .

第5篇

【关键词】极限学习机 故障诊断 神经网络

引言

随着设备复杂化程度的提高,对故障诊断的快速性和准确性提出了更高的要求。将神经网络应用于故障诊断中已成为一个非常活跃的研究领域。利用神经网络强大的分类能力,进行故障模式的分类与学习,诊断出故障。

Huang在前人研究的基础上提出了一种称为极限学习机(Extreme Learning Machine,ELM)的学习方法,在保留计算精度的同时可以大幅度的缩减训练的时间。将ELM运用到设备故障诊断中,极大提高了诊断的快速性和准确性。

一、极限学习机研究现状

ELM自2004年提出就一直受到学者的极大兴趣。我们从ELM的理论和应用两方面进行阐述。

1.1 ELM的理论

对于传统ELM算法,网络结构、激活函数类型以及隐层神经元的选择对其泛化性能都有重要的影响。为了提高计算效率,使得ELM适用于更多应用领域,研究者提出了许多ELM扩展算法。

1.2 ELM的应用

研究人员已尝试利用ELM方法解决现实中各种模式分类问题。随着ELM自身理论的进一步发展和完善,在人脸识别、文本分类、医疗诊断等领域中应用广泛。

二、故障诊断技术研究现状

故障诊断技术是由于建立监控系统的需要而发展起来的。其发展至今经历了3个阶段。新的诊断技术带来了领域内算法的革新,设备精密程度的提高也对诊断实时性提出了更高的要求。如何保证故障的快速准确诊断成了诊断技术发展重要内容。

基于神经网络的故障诊断运用广泛,然而传统的神经网络学习方法存在许多问题。与传统的神经网络相比,极限学习机方法通过随机选取输入权值及隐层单元的偏置值,可以产生唯一的最优解,并具有参数易于选择以及泛化能力好等特点,在众多领域有着广泛应用。

三、基于极限学习机的故障诊断方法研究

3.1基于ELM的故障诊断流程

(1)数据预处理。按照选取的特征向量和故障类型对故障样本进行预处理,并将处理后的样本按比例分为训练样本集和测试样本集。

(2)ELM的学习算法主要有以下3个步骤:确定隐含层神经元个数;随机设定输入层与隐含层间的连接权值和隐含层神经元的偏置;选择隐含层神经元激活函数,进而计算隐含层输出矩阵计算输出层权值。

(3)用训练好的ELM模型对测试样本集进行分类,并输出分类结果。

3.2基于改进ELM的故障诊断

针对极限学习机神经网络初始权阈值对算法性能的影响问题,提出融合遗传算法(GA)与粒子群算法(PSO)的GA-PSO算法,用于优化ELM神经网络初始权阈值。该算法将群组一分为二,分别采用GA和PSO算法,再将优秀个体进行合并,改善了PSO算法全局搜索能力,同时增强GA算法的局部搜索效能。

第6篇

关键词:汽车;变速器;故障诊断;解析;

自动变速器是一种汽车内部的封闭装置,只要产生故障,就会使维修的难度增大,在未确认故障区域时,不能随意开展解体维修,必须快速并正确地进行故障的诊断及排除,相关的维修人员必须全面掌握各种汽车故障的症状,还要仔细收集并分析来自于用户的情况说明,以便更好地开展故障诊断与排除。

一、汽车自动变速器中的故障诊断

(一)容易产生打滑 汽车运行过程中,在踩油门后车速无法提高,或汽车在上坡时缺乏行驶的动力,产生此类情况时,驾驶员应快速思考是否是自动变速器发生了故障。而导致这一故障的原因有很多:(1)汽车自动变速器的制动器内密封圈使用过久,未进行及时更换,致使零件过度磨损产生脱落,从而使自动变速器漏油;一旦油压与供油减少,就会使汽车缺乏运行动力;(2)汽车自动变速器内的油泵被损坏也会使汽车漏油、油压减少,让汽车缺乏运行动力且无法提速。

(二)容易产生漏油 汽车自动变速器产生漏油的关键因素是汽车自动变速器平面发生了变形,或者是由于自动变速器在进行加工时工作人员缺乏耐心,从而使汽车关键部件中的固定螺栓产生松动。一旦发生此类故障,须从集中漏油的地方着手,判断具体的故障原因,采用具有针对性的排除方法。

(三)无法升档 汽车在运行过程中自动变速器无法提升到高速档或超速档,产生此故障的原因有:节气门拉索的调整不正确;节气门的位置传感器与电路故障;调速阀及其油路故障;车速传感器故障;换档电磁阀故障;高档离合器与制动器故障;档位开关故障等。

二、主要的诊断方法

(一)磨损残余物分析诊断方法

对于汽车变速箱齿轮而言,其最为主要也是最为常见的失效形式就是磨损失效;汽车在运行过程中,若出现齿面磨损,则可以在油中找到这些磨损的残余物;对于磨损残余物分析诊断方法来讲,其对机器失效有关信息的快速获取,主要是基于对机械零部件磨损残余物在油中残余物含量的测定来完成的。当前进行测定的主要有两种方法:1对残余物进行直接检查,以及通过对油浑浊度变化、电感的变化以及油膜间隙内电容的测定来快速获得有关零件失效的重要信息;2收集残余物,例如,应用特殊的过滤器或者磁性探头等来把工作表面因疲劳而形成的大块剥落物收集起来。实践表明,应用磨损残余物故障这种分析方法来对变速器中的磨损类型故障进行检测诊断,是相当有效的;相比于其他故障诊断方法,诸如振动诊断方法,这种诊断方法在对磨损类型故障诊断方面,更具有优势,因而对汽车变速器磨损故障进行判断的有力手段就是磨损残余物分析诊断方法。

(二)振动检测技术诊断法 有关机械振动信号,这是当前诊断技术采用最多的一种信号,这主要是基于由振动所产生的机械损坏具有相当高的比率;根据相关资料可知,由机械振动而带来的机械故障超过三分之二;此外,最容易获得的振动信号,是来自机械运转中所产生的,而且在振动信号中,还具有数量众多的能对机械设备状态进行反映的信号,通过振动的异常可把许多机械故障反应出来。振动检测技术诊断法,主要是基于对设备振动参数及特征的检测,来对设备状态和故障进行分析的一种方法。

(三)声发射技术诊断法 这种诊断方法,就是应用仪器进行检测、对声发射信号进行分析和利用的一种故障诊断方法。对汽车变速箱齿轮而言,因其的高速旋转,致使运行中不可避免地产生热弯曲、不对称等现象,带来转子碰撞,故在金属以内的晶格,将出现重新排列或滑移,此过程因能量发生变化,变化的能量将通过弹性波这种形式来进行释放,这就形成了声发射信号;一定要应用专门技术,来把背景噪声的干扰排除掉。声发射监测这种检测方法,具有无损动态检测特点,但它又不同于其他无损检测方法,因声发射信号是产生于外部条件的作用下,故对于那些缺陷变化,相当敏感,对于那些微米数量级的显微裂纹的扩展和发生的相关信息,可以轻而易举地检测出来,故具有极高的灵敏度。

(四)光纤传感技术诊断法 这种故障诊断方法,主要是基于光纤对一些特定的物理量所具有的敏感性,来把外界物理量向可进行直接测量的信号进行转换的一种汽车变速器齿轮故障诊断方法。就光纤而言,不仅可直接作为光波的直接传播媒质,而且光纤传播中的光波,其特征参数会因外界因素的影响而产生变化,故可把光纤当作传感元件来对各种物理量进行探测。对于光纤传感器而言,因具有极高的灵敏度、超强的抗电磁干扰能力、超好的电绝缘性急耐腐蚀等等优点,故在汽车这个行业也受到了极为普遍的应用。当前,光纤传感技术已朝着智能化、功能化及集成化等方向快速发展着,可以预见,随着科技的不断发展,这种故障诊断方法将在汽车变速器齿轮故障诊断中将得到越来越广泛的应用。

参考文献:

[1]ThomasMerath,JoachimNaas,FranzJoachim等.基于有限元法的汽车变速器齿轮与轴承优化[J].传动技术,2015,29(2):3-13,20.DOI:10.3969/j.issn.1006-8244.2015.02.001.

[2]高勇.微型汽车变速器传动效率的影响因素分析及试验研究[D].武汉理工大学,2013.

第7篇

关键词:煤矿;电气控制线路;检修

中图分类号:X752 文献标识码:A

对于电气控制而言,其指的是使用电气自动控制的方式来对生产过程进行控制,而对于电气控制线路,则是将各有触点的继电器、接触器和按钮等电气元件通过导线按照特定的方式连接起来组成的控制线路。该类控制线路故障的诊断是一项技术性较强的工作,也是实际工作中一项十分重要的工作。

一、故障调查法

对于电气设备控制电路一旦有故障的发生,切忌不要出现盲目的乱动或者盲目的自己操作,在进行检修之前需要对该控制线路的故障情况进行详细的检查和询问,对于具体的方法而言,我们可以分为望、问和摸、听和闻、切。望:首先弄清电路的型号、组成及功能。例如输入信号是什么? 输出信号是什么? 什么元器件受命令? 什么元器件检测? 什么元件执行? 各部分在什么地方? 操作方法有哪些等。这样可以根据以往的经验,将系统按原理和结构分成几部分,再根据控制元件的型号如接触器、PLC、时间继电器,大概分析其工作原理。检查触头是否烧蚀、熔毁,线圈是否发热、烧焦,熔体是否熔断、脱扣器是否脱扣等; 其他电子元件是否烧坏、发热、断线,连接螺钉是否松动、电动机的转速是否正常。然后对系统故障进行初步检查。检查内容包括: 系统外观有无明显操作损伤,各部分连线是否正常,控制柜内元件有无损坏、烧焦,有无松脱等。问和摸: 询问操作人员故障发生前后电路和设备的运行状况,故障发生时的迹象,如有无烟、火花及异常振动; 故障发生前后有无频繁起动、制动、正反转、过载等现象,询问系统的主要功能、操作方法、故障现象、故障过程、内部结构,其它异常情况、有无故障先兆等,通过询问,往往能得到一些很有用的信息。刚切开电源后,尽快触摸检查线圈、触头等容易发热的部分、看温升是否正常。闻和听: 听一下电路工作时有无异常响动,如振动声、摩擦声、放电声以及其他声音。用嗅觉器官检查有无电气元件发热和烧焦的异味。这对确定电路故障范围十分有用。在电路和设备还能勉强运转而又不致于扩大故障的前提下,可通电起动运行,倾听有无异响,如有应尽快判断异响的部位后迅速关闭电源。切: 即检查电路。

二、结构、原理分析检查法

1、依照结构及原理查找故障

在进行故障的检修时,需要先从主电路处着手,看拖动该设备的几个电动机是否正常,然后逆着电流方向检查主电路的触头系统、热元件、熔断器、隔离开关及线路本身是否有故障,接着根据主电路与控制电路的控制关系,检查控制回路的线路接头、自锁或连锁触点、电磁线圈是否正常,检查制动装置、传动机构中工作不正常的范围,从而找出故障部位。如能通过直观检查发现故障点,如线圈脱落、触头( 点) 、线圈烧毁等,则检修速度更快。

2、从动作程序检查故障

通过调查、断电检查无法找到故障点时,可对电气设备进行通电检查。通电检查前要先切断主电路,让电动机停转,尽量使电动机和其所传动的机械部分脱开,将控制器和转换开关置于零位,行程开关还原到正常位置,然后用万用表检查电源电压是否正常,有没有缺相或严重不平衡。进行通电检查的顺序为先检查控制电路,后查主电路; 先检查辅助系统,后检查主传动系统; 先检查交流系统、后检查直流系统; 先检查开关电路,后检查调整系统。通电检查控制电路的动作顺序,观察各元件的动作情况,或断开所有开关,取下所有熔断器,然后按顺序逐一插入要检查部位的熔断器,合上开关,观察各电气元件是否按要求动作。

三、电气仪表检测法

此种方法主要指的是利用仪器仪表作为辅助工具,以此来对煤矿电气线路故障进行判断的检修方法。由于仪器仪表种类很多,且有日新月异之势,故检测法发展很快,准确率大大提高,手段也日益增多。但比较常用、比较实用的方法仍为利用欧姆表、电压表和电流表对电路进行测试。

1、电阻法

此类方法的原理是在被测线路两端加一特定电源,则在被测线路中有电流通过。被测线路的电阻越大,流过的电流就越小。反之,被测电阻越小,流过的电流就越大。这样在测量电路中,串接电流表,就可以根据电流表电流的指示换算出电阻的大小。由于换算中,电流和电阻是一一对应关系,故可直接在电流表的刻度盘上标出电阻的大小。

2、电压法

在进行电路的加电时,不同点之间的电压也不同。如果在电压不同的两点之间接入一个电阻不为无穷大的支路时,支路中就会有电流通过,通过串接在支路中的电流表的读数,就可推知此时的电压值。一般直接在刻度盘上标出电压值。

3、电流法

电路在正常工作时,导线中有电流流过,其大小反映了电路的工作状态。为了测量电路中的电流,常在电路中串接电流表,然后通过电流表读出电路的电流。工作中应充分发挥仪表检查故障的作用,仪表检测法具有速度快、判断准确、故障参数可量化等优点,例如判断电路是否通断,电动机绕组、电磁线圈的直流电阻,触头( 点) 的接触电阻等是否正常,可用万用表相应的电阻挡检查。对于电动机三相空载电流、负载电流是否平衡,大小是否正常,可用钳型电流表或其他电流表检查; 对于三相电压是否正常、是否一致,对于工作电压、线路部分电压等可用万用表检查; 对线路、绕阻的有关绝缘电阻,可用兆欧表检查等。

四、工作经验法

1、弹压活动部件法

主要用于活动部件,如接触器的衔铁、行程开关的滑轮、按钮、开关等。通过反复弹压活动部件,使活动部件灵活,同时也使一些接触不良的触头进行磨擦,达到接触导通的目的。

2、元件替换法

对于值得怀疑的元件,可采用替换的方法进行验证。如果故障依旧,说明故障点怀疑不准,可能该元件没有问题。但如果故障排除,则与该元件相关的电路部分存在故障,应加以确认。

结论

实际的煤矿电气控制线路进行维修时,我们会发现造成电气电路发生故障的原因多种多样,既有明显的、也有隐蔽的,有的简单、有的复杂。维修中应灵活使用上述诊断方法,仔细观察电路故障的特征和表现,探索故障发生的规律,找出故障点,从而顺利排出故障。

参考文献:

[1] 黄莹.浅谈煤矿电气控制电路检修的方法[J].科技信息.2010(30)

[2] 冯洁.试论煤矿电气控制电路常见问题及解决策略[J].黑龙江科技信息.2010(20)

[3] 陈孔明,王家旺,张明.矿用隔爆型真空电磁启动器的检修方法及技术[J].机电信息.2011(12)

[4] 韩艳娟,宋建成.基于信息融合技术的煤矿主通风机故障参数检测系统[J].工矿自动化.2009(07)

[5] 于秀娟.煤矿井下电气设备防爆探讨[J].价值工程.2010(33)

[6] 张保香.煤矿电气设备管理要点探析[J].行政事业资产与财务.2011(14)