欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

人工智能的投资逻辑范文

时间:2023-05-24 17:04:43

序论:在您撰写人工智能的投资逻辑时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

人工智能的投资逻辑

第1篇

互联网上半场互连的机会已经过去,下半场就是人工智能了。

人工智能时代应运而生的过程,跟大数据的发展差不多,都是从信息获取到识别,到信息处理分析和反馈,再到最后的经验存储、格式化,以及循环的生态净化。毕竟,大数据、运算能力和产业应用都是人工智能发展的重要因素。当下人们关心的是,重大的产业机构是否会伴随着人工智能的发展同时到来?是否会同时产生聚集效应?这也是投资很重要的背后逻辑

中国的人工智能时代,实际上就是互联网和大数据时代的产业衍生。这是因为互联网前期的高速发展,从平面互联网到一维、二维,再到后面快速智能互联网的发展,整个进程都是循序渐进的。而中国人工智能时代的基础设施和基础条件,其实也是逐渐在成熟的。云计算、智能终端、大数据、宽带、传感器等产业链逐渐成熟,也推动着人工智能的快速爆发。

滴滴出行创始人程维曾在一次演讲中表示,互联网上半场互连的机会已经过去了,下半场就是人工智能。而分享经济,是未来20年整个互联网时代最大的发展趋势。新美大CEO王兴也曾在一次工作会议中提出,未来大的互联网企业,其实重点在运营。过去是做用户、做流量,接下来的重点就是做运营。把这个点做到极致,真正使互联网企业效率提高、成本降低、用户体验提升。而这三个部分要做好,其实跟人工智能有着重大的关联。互联网上半场连接人人的风口已经基本结束,互联网下半场运营提升和人机连接的风口正在开始。

中国人工智能应用的产业发展也是逐渐在深化,人工智能的类型大致分为3种。第一是数据挖掘和优化以助于精准营销部分的应用;第二是软件、硬件控制,推动工业4.0发展;第三是人机互动,包括智能客服、服务机器人等方面的发展。相对而言,这些是目前正在快速发展的。而未来更多应用的机会将出现在在线医疗、在线教育、车联网、无人机、工业4.0等方面。

互联网的下半场属于人工智能,这已经是大家的共识。但是,资本对互联网下半场的投资逻辑又是怎样的呢?

以启赋资本为例。即使目前在机器人、无人机方面布局不多,但启赋资本在在线医疗、在线教育、互联网酒店、酒店智能化应用和工业4.0等方面都有了充分的布局。与此同时,为了获取巨大的用户基础,启赋资本还投资了大量的产业互联网平台型公司。而在人工智能方面,一些能够早期布局的机会,也是比较珍贵的。

而在这一系列的投资布局中,启赋资本其实依循着一套投资逻辑,即秉承对互联网上半场已经结束的基本判断,更加关注互联网的下半场。根据这样一个基本的逻辑,尽量去绕开BAT、关注垂直重运营、结合人工智能、推进O2O产业升级以及供给侧的共享经济优化等。当然,更多的也会结合自身在B2B领域的投资优势进行布局,例如工业链金融、企业级服务等方面的投资。

第2篇

近期,中国投资界关于人工智能(AI)在投资领域应用的焦点,非“广发百发策略价值基金”莫属,这是智能投资在国内公募基金投资领域首次多元化应用。

近年来,AI在投资领域的应用,正深刻改变着投资市场。高盛寻找员工建立自动化投顾平台,为100万美元以下资产的客户提供服务;全球最大资管公司贝莱德集团用机器人取代基金经理,对其主动投资基金业务进行重组,计划裁员包括7名投资经理在内的100名主动型基金部门员工。野村证券在报告中指出,截至2015年年底,全球机器人投顾旗下管理资产已经达到500亿美元,并预计于2020年达到2.2万亿美元,占到全球资管行业的2.2%。

基金投资开启人工智能时代

在中国资本市场,以人工智能为基础的投资技术以其独特的优势,正式走向前台。从广发基金网站上的“广发百发策略价值基金”的有关信息来看,百度与广发基金合作,正在尝试用智能投资技术,多元化整体提升投资效能、发掘市场价值。百度在人工智能领域一直走在国内的前沿,当人工智能遇上金融,我们看到了中国也正在进入人工智能的投资时代。

百发价值这只基金尝试将人工智能技术在量化投资领域多元化深度应用,实现“智慧投资”。不同于过去的风格或策略相对单一的量化基金,这是一款多策略和多数据种类交叉应用的主动型混合基金,瞄准的是大盘蓝筹股,投资基准对标沪深300指数,但不是简单追踪沪深300指数。从对标指数选择来看,适应了价值投资的趋势,回避了高波动、高风险和后市承压较大的小盘股。当以人工智能技术的应用来强化在选股、择时和资产配置方面的优势时,可以更加敏捷地应对风云突变的市场形势,也能回避投资风格漂移等问题,在效率和策略上强化传统量化投资的优势。

百度理财官网介绍,百发价值基于多元化智能投资的前沿技术,在极大拓展大数据应用领域的基础上,全领域萃取多样量化因子,并进行投资动态监测、风险监控跟踪,通过机器学习平台反复测试模型,建立量化交易策略的动态调整机制,最终实现智能选股、精准调仓、准确择时的完整投资链条。

为什么投资需要人工智能

投资的核心是什么?无非两点:决策好、执行好。人工智能的优势在于决策更好、执行更好。

一方面,人工智能极大地拓展了投资决策边界、更加智慧地捕捉投资价值。从大的投资逻辑来看,投资决策包括两点,一是宏观资产配置;二是微观组合构建。从资产配置来看,百发价值是混合型基金,股票好的时候多配置股票,债券好的时候多配置债券,股债双杀时则将资产集中于现金和货币资产保障安全收益。人工判断股票、债券和现金货币资产的配置比例,存在很大的随意性。人工智能依靠机器学习对海量数据处理和投资模型自适应的优势,实现科学决策,提高资产配置的效率,实现资金的使用效率和投资效率的全面提高。从微观组合构建或选股的角度看,人工智能不仅能有效运用远超任何个人处理能力的大数据和投资决策信息,还能通过高频反复迭代训练,为传统量化选股模型带来突破性创新,在投资逻辑与运算能力得到保证的前提下预期能够提升整体业绩。

另一方面体现在纪律上。机器辅助人执行投资,能够确保投资纪律的执行效率。机器执行,在时间上的效率优势上是人工难以比拟的。另外,除了时间效率,智能投资的逻辑也会对以人为主体的投资过程中的随意性进行有效的制约。投资的很多纪律,是反人性的。人性的任性往往造成情绪化决策,即便是优秀的基金经理也难以幸免。笔者曾写过“炒股的十三条纪律”,很多人虽然收藏了,但仍然很难做到。有一位优秀的基金经理,当时的同事对他的评价是“冷静得像一块石头”,这是对基金经理遵守选股原则和交易纪律的最高评价了,但如此优秀的基金经理毕竟是少数。人工智能,便是一个“冷静的机器人”。

投资哲学的优秀执行体系

笔者对基金公司的理解是:受人之托,替人理财,忠人之事。购买好的基金产品,核心评价当然是该基金公司的投资能力。一个优秀的基金公司,比人有好的投资哲学体系的指导,并在该公司长期的投资和研究实践中不断优化自己的投资哲学。如果一公司的投资哲学只停留在务虚的讨论上,而没有通过实践进行深刻检讨和改良,则很难形成真正有竞争力的投资能力。

百度用AI赋能金融,无疑给了投资哲学一个“智慧实践”的平台,让好的投资哲学能够在实践中不断进化,让好的投资哲学形成更加优秀的投资决策模型,形成真正的投资能力。比如:专精高效的机器学习技术支持。随着数据资源整合开发的深入,未来选股模型将面对更大规模、结构多元、信息丰厚的复杂性数据,这就需要更加适用于金融市场的算法开发、优化及应用;百度AI具有深度挖掘的情绪数据、舆情数据、热点数据、传统金融数据、分析师研报数据等,提升数据信息含量与质量、拓展投资决策依据的外延;此外,百度全面的生态体系,可以提供“特色数据资源”,以地理位置时空数据为例,行业基本面数据、非结构化数据或基于大数据创新的宏观经济指标等不同维度的特色资源,均能为选股和资产配置模型带来增量信息,在投资逻辑与运算能力得到保证的前提下预期能够提升整体业绩。

有很多曾经优秀的基金公司,由于基金经理和研究部门负责人的变更,导致该公司投资风格出现较大变化,投资业绩也受到影响。如果一个基金公司能够通过人工智能技术做好公司投资哲学的模型化,并在长期实践中实现智慧学习,推动模型的进化,在模型进化中,实现公司投资哲学的升华,则能在充分竞争的基金管理行业中,不断强化核心竞争力。

百发价值这款产品的上线,为传统证券与基金行业在产品创新上提供了新的思路。人工智能等技术的输出,让传统金融机构有了快速打造智能金融的阶梯。百度AI技术的开放,为传统金融机构创造了迅速跟进的机会,将极大地改变行业现状。在AI赋能的未来,或许将没有传统金融与新兴金融的区分,将共同开创智慧金融。

人工智能引领价值

第3篇

“互联网金融是场景革命,在场景里为用户提供独到的金融服务。而Fintech是技术革命,需要把技术逻辑和业务逻辑结合在一起。人工智能是Fintech里最核心的东西之一。”万向控股副董事长、通联数据董事长肖风表示。

通联数据是万向集团旗下子公司,成立后一直低调运作,万向集团斥资3亿元初期投入,前博时基金创始人肖风出任董事长,前博时基金股票投资部总经理王政担任CEO。

近年来资管行业蓬勃发展,有着深厚金融基因的通联数据的管理团队却没有跟风去做“掘金者”,而是选择“卖水”,为资产管理机构提供金融信息服务。致力于将云计算、大数据和人工智能技术与先进的投资理念相结合,为资产管理行业打造创新、高效的金融服务云平台。

迎接资产管理行业新时代

在陆家嘴的万向大厦,通联数据所在的楼层新增加的座位又坐满了,大家以互联网公司的高效率、快节奏忙碌着,这群具有金融、计算机、算法等各种背景的精英正全力投入Fintech时代,他们正在做一件对资管行业具有革命性意义的事件。

随着互联网的快速发展,海量的数据爆炸式增长,通联数据应运而生,从最底层做起,建立了强大的数据平台。

“只有做好数据端的质量,做到别人都做不到的数据,才是成功,这一过程就持续了3年。”肖风表示。

“通联数据现在的数据来源分为三部分,一是自己搜集整理,二是从第三方购买,三是数据商把数据整合过来放在云平台,未来会有更多数据商的数据接入进来。”通联数据CEO王政介绍说。

打好数据的地基后,就需要用最新的金融科技建造资产管理的大厦,因为Fintech的核心就在于科技与金融的深度融合。

在底层数据库之上,通联数据又构建了两个平台,萝卜投研和优矿,其中萝卜投研是针对基金经理和研究员提供智能投资研究服务的平台,而优矿则是一个众包的、分享式的量化平台。

王政表示,通联数据将使投资更趋智能化,更加依靠模型和数据去寻找规律,效率得到飞速提升,这将重构资产管理行业的生态。

据了解,目前已经有数十家机构在试用通联数据的产品,包括公募、私募、保险等资管机构,也包括非资管机构。

Fintech的前沿是人工智能

除了资深的基金业人士外,通联数据还吸引了来自阿里、百度、腾讯、微软等公司的技术骨干加盟,众多IT工程师在探索将智能搜索、自然语言处理、机器学习等人工智能技术应用于投资管理行业。

肖风表示:“人工智能是Fintech里最核心的东西之一,人工智能正对我们的社会发生深刻影响,人工智能将帮助研究员、交易员、基金经理提升工作效率,这是未来的一个方向。”

人工智能是一项战略性前沿技术。近年来,人工智能产业发展迅猛,进入高速创新期。将人工智能和金融投资深度融合,使金融智能化也成为大势所趋。

通联数据打造的萝卜投研就是一个智能平台,收集海量信息,然后通过自然语言处理和机器学习等技术,高效而专业地提炼出对研究有用的信息,帮助投资人从大量重复、繁杂的底层数据处理过程中解脱出来,有针对性地帮助投资者提高投研效率。

例如,在底层数据收集层面,先对数据进行清洗;在数据整理层,会对数据进行专业分类,对信息进行初步智能处理;然后是机器学习的层面,通联数据专门训练了一个垂直搜索引擎,用人工智能模拟人类的思维方式,使它理解交易员、基金经理有什么样的需求。让计算机对大量数据进行提取、整理、分析,把精炼后的信息,或初步发现的逻辑线索呈现给用户。

以大数据创建知识图谱

通联数据还首创了以大数据为依托的知识图谱,包含了A股所有上市公司的多重股权关系、高管、产业链、主题概念等重要信息,让投资者可以一目了然地把握影响上市公司股价的重要信息,发现隐藏的线索,抓住转瞬即逝的投资机会。

第4篇

人工智能的含义于1956年第一次问世以后,于科研行业里快速兴起,不断发展成了一系列把计算机作为主导,涉及到生物学、心理学、语言学、数学逻辑、医学、信息论、控制论与自动化等覆盖面较广的新科技。与人工智能结合,让机器具有和人们智能阶段相似的体系,可以成功实现人类智能可以做完的任务。人工智能机理为讨论、研制怎样拓展、仿真人的智能的机理。人工智能技术是新发展起来的计算机科学其中的一个领域,它诠释了智能的本质,且于这个基础之上加工出一系列和人类智能相似的智能机器。这个行业的探究涉及机器人、语言分辨、图像分辨、自然语言处理等多个体系。电气工程主要探究的是与电气工程相关的信息处理、信息处理与计算机、体系运作、开发研究、自动控制及电子电气技术等。由于科学技术进步越来越快,计算机技术现已在人们生活里无处不在。快速进步的计算机编程技术有利于宣传、自动化输送及宣传。人们的大脑是非常精密的仪器,计算机编程不仅可以模仿它给信息实施研究、解决、互换、采集与答复,因此对人类大脑技术的研究可以有利于电气工程自动化的进步。电气自动化控制对于加大互换、加工、配置及运输等起着关键的作用,完成电气工程的自动化,能够减少投资的人力费用,节约更多时间。

二、人工智能控制器的好处

对于不一样的人工智能控制,必须采用不一样的措施来分析。然而部分人工智能控制器,比如:遗传算法、神经、模糊与模糊神经全部为一类不是线性的函数近似器。使用以上区分的方法有益做整体的分析,而且能够有利于为控制方案做整体性的研究。上面提到的人工智能函数近似器拥有普通的函数近似器而没有的好处。第一,大部分情形下,准确地知道控制物体的动态方程是相当繁杂的,所以控制器规划现实控制物体的模板的时候,常常能够出现许多无法预料的原因,比如参数改变和非线性时等,这些往往不能够掌控。但是人工智能控制器规划时能够无需控制物体的模板。按照降下的时间与回复的时间不一样,人工智能控制器经过一定的调节能够加强本身的功能。比如从降下的时间角度分析,模糊逻辑控制器优于PID控制器的四倍;从升起的时间角度分析,模糊逻辑控制器优于PID控制器的两倍。和传统的控制器比较,人工智能控制器拥有容易调整的特点。虽然没有专业人员的实时引导,人工智能控制器也可以采用回复数据以实施规划。还能够经过使用语言和有关信息等形式实施规划。人工智能控制拥有非常大的同一性,键入以前没有见过的数据便可以出现非常高的数值,能够减少驱动器给其造成的不良反应。针对一些控制物体,即使现在未使用人工智能控制器也能够有非常好的影响,然而针对别的控制物体,并不确定是否有类似的非常好的影响,所以对于规划需要根据实际问题制定具体的解决方案。对于模糊化与反模糊化,假如使用适应模糊神经控制器与隶属函数,可以准确地实施定期核实。对于完成此成果的多种方案里面,唯有经过体系工艺的应用才可以获得固定的数值,加上简便的拓扑组构,可以达到非常快的自学程度。

三、人工智能于电气自动化里的应用

人工智能探究的重要目的是让机器可以完成部分一般要人类智能胜任的繁杂任务,电气自动化为分析和电气工程相关的体系运作。人工智能的组成部分包含逻辑推导、定理证明、机器人学、专家体系、自然语言理解,人工智能的使用表现在问题解答、自动程序规划、行为功能、思维功能与感知功能等。但是以上方面全部表现了自动化的特点,传达了同一个主旨内容,那就是加强机械人们意识功能,提高控制自动化。所以人工智能对于电气自动化行业将会起到非常重要的作用,电气自动化控制同时也需要人工智能的加入。由于人工智能技术进步地越来越快,许多科研工作者开展了对于人工智能在电气工程自动化控制中的探讨,比如:怎样把人工智能体系使用到问题的判断及预料、电气产品规划及爱护或控制等。从如何更好地规划产品角度讲,规划电气装置是相当复杂的任务。需应用电器、电路、电机和磁场等多课程的专业知识,还需应用传统规划里的经验。

四、结语

第5篇

1、人工智能的定义 

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。 

2.人工智能的研究历史 

人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的亚里士多德,给出了形式逻辑的基本规律。英国的哲学家、自然科学家培根,系统地给出了归纳法。“知识就是力量”德国数学家、哲学家布莱尼兹。提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运 算和推理。做出了能做四则运算的手摇计算机英国数学家、逻辑学家布尔实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统——布尔代数。 

第一阶段: 50 年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题求解程序LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。 

第二阶段: 60 年代末到70 年代,专家系统出现,使人工智能研究出现新DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969 年成立了国际人工智能联合会议。 

第三阶段: 80 年代,随着第五代计算机的研制,人工智能得到了很大发展日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统K I P S”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 

第四阶段: 80 年代末,神经网络飞速发展1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。 第五阶段: 90 年代,人工智能出现新的研究由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。 

3. 人工智能的发展方向 

3.1人工智能的研究新课题。人工智能的长远目标是要创造人类智能的机器,用机器模拟人类的智能。这是一个十分漫长的过程,人工智能研究者将通过多种途径、从不同的研究课题入手进行探索。 在近期,有几方面的研究课题可供选择:更完善更新的人工智能理论框架;自动或半自动的知识获取工具;能实现海量高速存储并具有学习功能的联想知识库;新型推理机制和推理机;分布式人工智能与协同式专家系统;智能控制与智能管理;智能机器人;人工智能机;新一代的电脑模型。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,主要研究领域有专家系统,有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。其发展可以归纳为:人机融合、机器智能、智能机器。 

3.2人机融合。人工智能的近期研究目标在于建造智能计算机,用以代替人类从事脑力劳动,即使现有的计算机更聪明更有用。正是根据这一近期研究目标,我们才把人工智能理解为计算机科学的一个分支。人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。在重新阐述我们的历史知识的过程中,哲学家、科学家和人工智能学家有机会努力解决知识的模糊性以及消除知识的不一致性。这种努力的结果,可能导致知识的某些改善,以便能够比较容易地推断出令人感兴趣的新的真理。 

3.3机器智能。 

第6篇

那未来是不是基金经理和交易员就没有用武之地了,大量人工智能的运用将改变股市的交易模式和策略。我觉得,人工智能作为一种投资方法和途径,的确可以投资股市,并且获得一种风险和收益相对可预期的模式。但是人工智能的“股市狗”不可能百战百胜,甚至有可能导致某个公司倾家荡产。

人工智能首先我想起了长期资本(LTCM)的故事。套利之父、债券之王、诺贝尔奖获得者一群精英的梦幻组合,于1994年创立了美国长期资本管理公司,主要活跃于国际债券和外汇市场,利用私人客户的巨额投资和金融机构的大量贷款,专门从事金融市场炒作。它与量子基金、老虎基金、欧米伽基金一起被称为国际四大对冲基金,一度取得骄人业绩。它以“不同市场证券间不合理价差生灭自然性”为基础,制定了“通过电脑精密计算,发现不正常市场价格差,资金杠杆放大,入市图利”的投资策略。最后因为俄罗斯金融风暴、公债违约导致公司几乎濒临破产。有人分析,它的问题出在历史数据统计的模型不能代替未来方向。实际上,我觉得,从更高层面来说,这是一种对社会现象能否进行数理分析的根本哲学问题。

社会现象能否用公式去穷尽各种因子,从而成功推测出未来的方向?简单说,遵循数理逻辑的人认为可以,而认为社会现象中的研究者无法做到数理现象的纯粹观测者来研究,因此无法得到答案。德州扑克非常像股市二级市场,不同位置、不同对手风格、不同筹码量都会导致同样牌面不同的决策。另外,运气成分占很大比重。

第7篇

 

政策催化进一步加强

 

国内AI有望“弯道超车”

 

目前,各国政府都高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入。美国主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。可以说,人工智能成为各国“大脑”计划的重要内容。

 

当下我国社会面临老龄化压力、经济转型和制造业升级,对此,国务院在印发的《中国制造2025》中明确指示,要把智能制造和高端技术创新作为重点建设工程,特别提出要发展和培育一批产值超过100亿元的人工智能核心企业。

 

国内市场的扶持政策频出。2015年7月,国务院印发《“互联网+”行动指导意见》,将发展人工智能提升到国家战略层面;2016年1月,科技部部长万钢提出“科技创新-2030项目”,智能制造和机器人成为重大工程之一。

 

在2016年3月两会召开期间,《国民经济和社会发展第十三个五年规划纲要(草案)》正式出炉,其中提到,要大力推进先进半导体、机器人、智能系统、智能交通、精准医疗、智能材料等新兴前沿领域的创新和产业化,形成一批新增长点。

 

政策和资金的支持、人才储备、技术的积累和突破等都为人工智能的发展提供了基础条件。科技部高技术研究发展中心研究员刘进长认为,我国人工智能与机器人技术的快速发展,一是因为国家的高度关注与政策支持,二是得益于金融界的重视与大企业的不断进入。

 

“2014年,中国市场的工业机器人销量猛增54%,我国智能语音交互产业规模达到100亿元,指纹、人脸、虹膜识别等产业规模达100亿元。”广证恒生副首席分析师赵巧敏向《经济》记者分析称,在利好因素的促进下,我国人工智能技术攻关和产业应用发展势头良好。

 

在她看来,目前国际巨头在人工智能技术上还没有完全形成垄断。我国在人工智能的研究上与发达国家相比,甚至与美国相比都不算落后,这是难得的历史机遇,是提升综合国力和影响力的绝佳机会。

 

“我国完全有可能利用市场需求优势、用户数据优势等,抢占人工智能技术和产业的制高点,实现人工智能技术‘弯道超车’。”赵巧敏称。

 

人工智能大潮来袭

 

千亿市场规模可期

 

人工智能已经开始进入一个新的阶段。从Siri识别到无人驾驶,都是人工智能的实现载体,涉及到的技术和领域跨越多学科,包括深度学习、智能识别、专家系统、神经网络、智能机器人等。

 

未来,人工智能需求将会激增。据BBC预计,到2020年,全球人工智能市场规模将达到183亿美元,约合人民币1190亿元。

 

“目前人工智能的应用领域主要还是以工业制造为主,但是随着经济结构的转型,以及不断攀升的劳动力成本,未来包括机器人在内的人工智能产品的市场需求将会不断扩大。”爱建证券研究所研究员刘孙亮向《经济》记者表示,随着人均可支配收入的增加,以及人口老龄化时代的来临,人工智能家庭化的现象将会普及,届时家用助老服务机器人、医疗机器人以及家用清洁机器人的市场需求将会激增。

 

国内著名的咨询机构艾瑞咨询在参考人工智能行业全球市场规模后预计称:在不包括硬件产品销售收入、信息搜索、资讯分发、精准广告推送等的情况下,预计2020年中国人工智能市场规模将达到91亿元人民币。

 

而目前市场的关注点还只是在智慧金融、智能家居等应用领域,对于人工智能的发展空间来说,这只是冰山一角。

 

赵巧敏表示,由于人工智能属于基础型技术,与机器人和大数据联系紧密,其水平的提升将带来多领域的应用扩展,大幅拓宽传统产业的发展之路,造成未来5-10年的巨大颠覆性影响,产生10-100倍的溢出效应,由此将打开万亿规模的市场空间。

 

“仅仅以工业机器人领域为例,在智能化水平提高后,将降低固定资产投资成本近30%,降低人工成本近60%-70%,在汽车整车、零部件制造、食品工业及物流等行业产生8-10倍的产业集群带动作用,对应着800亿-1000亿元的市场规模。”赵巧敏说。

 

实际上,中国人工智能的商业化应用环境甚至能创造更大的市场空间。我国人工智能的商业应用水平已经十分繁荣,这一概念已经渗透了教育、金融、医疗、文体娱乐等领域,且获得了很好的市场反响。

 

“市场关心的IT和互联网领域几乎所有的主题和热点,例如智能硬件、O2O、机器人、无人机和工业4.0,发展突破的关键环节都是人工智能。”赵巧敏表示,人工智能的发展是必然趋势,它将成为未来30年内我国技术发展的重心,也会给互联网领域带来新的突破,给人们的生活带来翻天覆地的变化。

 

在人工智能应用领域,我国已经发展得较为全面,包括家居领域、安防领域、医疗领域、企业领域、金融领域和教育领域。

 

然而尽管目前我国自主知识产权的文字识别、工业机器人、娱乐机器人等智能科技成果已经进入大规模实际应用,但市场空间仍然很大。中泰证券首席宏观策略师罗文波向《经济》记者表示,我国机器人的“密度”只有德国、日本的1/10,行业发展空间巨大。

 

VC青睐人工智能

 

巨头加速并购

 

人工智能一直是硅谷大佬们疯狂追求的领域,谷歌、Facebook、IBM均重金投资人工智能,是目前AI领域的领导者。微软、谷歌和Facebook等全球科技巨头都认为2016年是AI迅速进化的关键节点。

 

Google希望在人工智能领域复制Android的成功,并力图打造一个机器人帝国;Facebook计划在2016年制造出能够在家务和工作上帮助自己的人工智能;苹果4天内接连收购两家人工智能初创公司……

 

据罗文波统计,目前全球人工智能企业已经超过了900家,大多集中在北美和西欧。这些人工智能初创企业总估值超过87亿美元。“随着日本、北美、欧洲的‘大脑’计划大规模布局人工智能,2040年全球很有可能实现广义的人工智能。”

 

除互联网巨头外,敏锐的资本方也在积极布局人工智能领域,近年来风投不断加大对人工智能初创企业的投资,持续布局人工智能这个重要风口。

 

“2014年人工智能企业融资总量首次超过10亿美元,2015年融资总量更是超过12亿美元。2016年到现在,全球在人工智能领域的投资已经超过4亿美元。”渤海证券研究所证券分析师齐艳丽向《经济》记者表示,随着科技巨头在人工智能领域的布局将提速,VC/PE在人工智能领域的投资也将随之爆发。

 

“反过来,资本层面的爆发也将持续带动人工智能行业加速爆发。”齐艳丽认为,虽短期看人工智能仍处于大规模投入期,较难变现,但未来人工智能应用于无人驾驶汽车、辅助诊断、刑侦监测等领域将会产生巨大的商业价值和社会价值。

 

在全球市场火爆的背景下,国内市场也充满了巨头和风投的博弈与布局。

 

出于对人工智能行业商业前景的看好,国内巨头纷纷进军人工智能领域,百度、阿里、腾讯均在人工智能领域发力。

 

其中,百度2014年研发投入接近70亿,同时涉足了深度学习与自动驾驶领域,并推出了“百度大脑”计划;阿里巴巴推出了国内首个人工智能平台DTPAI;腾讯推出了撰稿机器人Dream writer,开放了视觉识别平台腾讯优图,同时成立了腾讯智能计算与搜索实验室。一些具有创新性眼光的巨头公司也相应进入,让整个行业迎来了爆发的机会。

 

“互联网巨头公司和创业公司是我国AI技术基础研究主力军。在国家政策大力支持下,无论是科研机构还是企业都在加大人工智能研究的力度,由此也取得了较为不错的成绩。”据罗文波介绍,截至2015年底,我国人工智能领域已有近百家创业公司,约65家获得投资,共计29.1亿元。人工智能领域布局如火如荼。

 

巨头的基础层切入为人工智能基础领域的研究带来了巨大的资金优势和人才支持,使得部分技术达到世界一流水平。例如,我国的视觉、语音识别的技术已经处于国际领先水平。

 

而近两三年,风投也开始加速了在这一领域的投资步伐。2014年开始,我国人工智能领域投资金额、数量、参与投资机构数量均大幅增加,2015年更是实现了跨越式的增长。“2015年我国投资人工智能的机构数量已经高达48家,是2012年投资机构数量的6倍;投资额为14.23亿元,是2012年投资额的23倍。”赵巧敏表示。

 

短期看好应用开发

 

长期关注技术研究

 

二级市场一向是搜寻热点的风向标。人工智能市场的火爆也催热了资本市场的相关行业。在市场空间巨大、产业前景明朗的背景下,占据资金优势的上市公司纷纷瞄准人工智能领域,分享广阔蓝海。

 

随着人工智能的不断进步和发展,最先实现产业化的AI应用层将最早迎来投资机会。银河证券分析师杨华超向《经济》记者分析称,无人驾驶、工业4.0、智慧医疗等主题将成为未来中长期的热点,建议关注相关主题的优质标的。“同时,AI数据层和应用层作为准入门槛较高的环节,之前具有技术积累和数据资源的公司将优先受益,可以关注目前已经在人工智能领域已经有技术和规模优势的公司。”

 

对此,罗文波则建议投资者,选择人工智能领域的标的,要分长短期来考量。“短期可关注在人工智能商业化应用有所突破的企业,长期可关注具备技术研究实力的公司。”

 

在他看来,具备竞争力的上市公司主要有两类,一是与机器人硬件制造相关的公司,它们一般拥有较好的智能制造业基础,在未来产业升级过程中,拥有强大的竞争优势;二是在人工智能商业化应用有所突破的公司。

 

对此投资逻辑,赵巧敏也表示认同,“短期看好应用开发领域,特别是基于当下较为成熟的感知智能技术如语音、视觉识别的服务、硬件产品等的应用开发将是短期的投资亮点”。

 

“目前下游应用领域也面临着大量需求,如人口老龄化对服务机器人的需求、定制化生产对3D打印的需求、物流配速对无人机的需求等。”赵巧敏分析称,穿戴设备、3D打印、无人驾驶、服务机器是最值得看好的应用场景。

 

而从长期来看,在以现有技术为基础的应用领域基本饱和之后,只有技术研究才能推动新一轮的应用创新,赵巧敏称。技术研究是长期的投资关注点,“应该关注核心技术模块提供商和数据传输、运算、存储过程所涉及的基础设施运营商”。

 

与此同时,在主板之外,一些新三板标的同样值得关注。从2015年起,挂牌新三板的人工智能企业数量明显增加。以机器人子行业为例,仅2015年一年就有35家机器人企业在新三板挂牌,还有10家机器人企业在待挂牌状态,20多家公司在审查待挂的状态。投资者可以有选择地关注其中较好的标的。