时间:2023-04-10 15:16:04
序论:在您撰写纳米材料论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
(一)力学性质
高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。
(二)磁学性质
当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。
(三)电学性质
由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。
(四)热学性质
纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。
二、纳米材料在化工行业中的应用
(一)在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
(二)在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
(三)在精细化工方面的应用
精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。
纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
参考文献:
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
[2]严东生,冯端,材料新星?纳米材料科学,湖南科学技术出版社,1998年.
[3]H.Gleiter(德)著,崔平,方永,葛庭燧译,纳米材料,原子能出版社,1994年.
[4]DyerPE,FarleyRJ,GiedlR,etal..Excimerlaserablationofpolymersandglassesforgratingfabrication.AppliedSurfaceScience,1996.
纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的紫外可见光谱。可以看出,波长为368nm处出现一个比较强的金属锌及其氧化物吸收峰。在525nm处出现较宽的纳米Au的吸收峰[4]。纳米Au的吸收峰随Au含量的变大而不断变强,还伴随显著的红移现象[5]。可能是因为Au和金属锌及其氧化物之间的相互作用,致使纳米Au的吸收峰产生了显著的红移现象,可能给金属锌及其氧化物材料的气敏特性有重要作用。图2是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的XRD谱图。可以看出,谱线中存在很明显的六方相特征衍射峰,和金属锌及其氧化物的晶面吻合[6]。另外,加入纳米Au修饰量的金属锌及其氧化物谱线出现新的衍射峰,其峰位与立方相Au的晶面一一对应。纳米Au修饰量的衍射峰随着Au含量的变大而不断的变强。图3是纯金属锌及其氧化物和纳米Au修饰量在为10%时的金属锌及其氧化物的SEM形貌。可以看出,金属锌及其氧化物是由大量向外辐射分布的六棱锥纳米分枝构成的复杂的花型结构。金属锌及其氧化物的六棱锥分枝的表面比较光滑。金属锌及其氧化物的表面上均匀的分布着纳米Au粒子,金属锌及其氧化物的六棱锥分枝的表面出现了粗化的现象。这种粗化现象会导致表面缺陷的增加,对金属锌及其氧化物材料气敏特性有积极作用。
2金属锌及其氧化物的气敏特性
图4是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物气敏元件,在不同温度下对100μg/g丙酮的灵敏度图线。可以看出,纳米Au粒子可以有效地提高金属锌及其氧化物材料的灵敏氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。
图5为金属锌及其氧化物对不同气体的响应恢复动态曲线和灵敏度。可以看出,材料对还原性气体的灵敏度较高。另外,材料对丙酮的灵敏度比氢气、甲醛、苯和乙醇高得多,这说明Au修饰后金属锌及其氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。
3结论
1.1基于稀土上转换纳米材料的检测稀土上转换纳米材料被近红外光(980nm)激发发射出可见光,可以消除活体内检测时细胞和组织中自发荧光的干扰[25,36].Zijlmans等人在1999年首次利用上转换荧光材料实现了人类前列腺组织异性抗原的检测[20].随后,基于上转换纳米材料的荧光生物探针被用于各种分析物的生物检测.例如,Tanke课题组[21]使用上转换荧光材料来进行生物检测,将400nmY2O2S:Yb/Er上转换纳米颗粒与DNA偶联制备出DNA探针,检出限为1ng/L,比传统的花青染料探针灵敏度提高了4倍.Nied-bala等人[37]利用侧向免疫层析检测法,同时检测出唾液中安非他明、脱氧麻黄碱、苯环己哌啶和麻醉剂等物质.之后,Wang等人提出一种基于上转换纳米材料的夹心杂交检测方法并实现了对DNA的超灵敏检测[38].2013年,陈学元课题组[39]报道了一种新颖的上转换生物检测方法,用Yb3+,Er3+共同掺杂到上转换纳米颗粒作为生物探针进行溶液中痕量分析物(如抗生物素蛋白和肿瘤标记物等)的检测.多功能酶标仪可以收集上转换纳米颗粒近红外光激发发射出的可见光信号,量化分析物中的生物分子浓度.例如,利用Ln3+掺杂的上转换纳米颗粒的发光强度和抗生物素蛋白浓度成正比例关系检测抗生物素蛋白,检出限为90pmol•L-1.相同的结果也从尿激酶纤维蛋白溶酶原激活剂受体、癌胚抗原和α-胎蛋白中获得,其检出限范围为40~100pmol•L-1.本课题组[40]将核酸适配体与上转换纳米材料相结合,利用分子识别引入了一种检测潜指纹的新方法,如图1所示.通过水热法合成的上转换纳米颗粒表面包裹着一层油酸,油酸不仅起到表面活性剂的作用,还能够通过配体交换将聚丙烯酸连接到上转换纳米颗粒上,得到的上转换纳米颗粒既可溶于水又能够通过羧基将生物活性分子修饰到颗粒表面.将经氨基修饰的溶菌酶核酸适配体(lysozyme-bindingaptamer,LBA)连接到修饰了羧基的上转换颗粒(upconversionnanoparticles,UCNPs)的表面,形成核酸适配体功能化的稀土上转换纳米颗粒(简称UCNPs-LBA).UCNPs-LBA通过核酸适配体高效地与指纹中溶菌酶特异性结合并在近红外光的激发下发出可见光,指纹图像清晰呈现并被配有微焦镜头的单反相机记录.这种通过分子识别的潜指纹检测方法可以实现不同表面和不同人的潜指纹检测.潜指纹中除了包含有本身的分泌物外,还包含一些外源化学物质,如可卡因.将核酸适配体换成可卡因的适配体同样可以实现潜指纹的检测,该方法对可卡因的检出限可达0.5μg.该检测方法有望为刑事侦查提供有力的信息。
1.2基于荧光共振能量转移的检测Kuningas等人[23]首次提出了基于上转换纳米材料的荧光共振能量转移分析技术(upconversionFRETAssay,UC-FRET或UC-LRET),并通过使用抗生蛋白链菌素修饰的上转换纳米材料作为能量供体,生物素化的藻胆蛋白作为能量受体实现了生物素的高灵敏检测.此后,基于UC-FRET的分析方法得到了快速发展,例如:李富友课题组[41]构建了一种高灵敏度的DNA纳米传感器:用表面修饰有DNA捕获探针的NaYF4:Yb/Er上转换纳米颗粒作为能量供体,用标记有罗丹明的短链互补DNA序列作为能量受体构建UC-FRET结构,目标DNA通过链置换反应与DNA捕获探针进行互补配对从而破坏UC-FRET结构实现对目标DNA的检测,目标DNA的浓度与发射光的强度比存在线性关系,测量的目标DNA浓度极低,检测范围为10~60nmol•L-1.同样,Zhang等人[42]也报道了基于寡核苷酸修饰上转换纳米颗粒的生物传感器用来检测DNA,检出限低至到1.3nmol•L-1.贵金属纳米颗粒如纳米金等具有表面等离子体共振性质和较大的消光系数,将这些材料与上转换纳米材料相结合可以降低检测时的背景荧光干扰并提高检测灵敏度,因此贵金属纳米颗粒也常常被作为能量受体用于UC-FRET生物检测中[43].例如,Wang等人[44]报道了基于NaYF4:Yb/Er和金纳米颗粒的UC-FRET生物传感器用来检测抗生物素蛋白,检出限低至0.5nmol•L-1.最近,Deng等人[45]提出一种在溶液和活细胞中快速检测谷胱甘肽的新方法,该方法的基本原理是,谷胱甘肽能抑制上转换纳米颗粒表面的二氧化锰纳米片对上转换发光的猝灭作用.根据材料本身独特的电学和热学性能,石墨烯、氧化石墨烯和碳纳米颗粒也在基于UC-FRET的生物检测中被广泛用作能量猝灭剂。
2生物成像领域内的应用
2.1体内深层组织的荧光成像稀土上转换纳米材料所用到的激发光源(980nm)在生物组织中有很强的穿透能力、不会引起生物体自发荧光干扰而且对生物组织几乎无损伤,所以稀土上转换纳米材料是各种生物组织或生物体成像分析的理想荧光标记材料.Zhang课题组[49]使用PEI包裹的NaYF4:Yb/Er纳米颗粒首次实现了动物体成像,证明了稀土上转换纳米材料相比于量子点在体内深层组织成像中的优势.为了进一步增加稀土上转换发射光的组织穿透深度从而提高成像灵敏度,需要调节上转换发射光谱到红光区(600~700nm).这一波长范围内生物组织对发射光的散射和吸收均较小,且自发荧光干扰也很小,对深层组织成像至关重要.赵宇亮课题组[22]报道了Mn掺杂的发单色红光的NaYF4:Yb/Er上转换纳米材料用于活体成像,成像深度可延伸至15mm.Prasad课题组[50]也报道了一种新的体内成像方法,该方法利用NaYF4:Yb/Tm上转换纳米材料发出的近红外光(800nm)作为检测信号,在小鼠体内成像实验中获得了高对比度的荧光图像.在随后用Yb/Tm共掺杂的上转换颗粒进行小鼠全身荧光成像的实验中,实现了20mm的光穿透深度[51,52].此外,聚丙烯酸修饰的上转换纳米颗粒(PAA-NaLuF4:Yb/Tm)也被报道作为光学生物学探针用于正常黑鼠的体内荧光成像,而且该探针在兔子体内成像实验中也能获得很高的信噪比[53].多路复用成像是识别不同生物体最有效的方法之一,随着稀土上转换纳米材料合成方法的不断发展,可以通过调节掺杂元素的种类和含量在紫外到近红外光谱区内对稀土上转换纳米颗粒的发射光谱进行精确调节,并可以使其呈现多个发射峰.Yu等人[54]首次使用NaYF4:Yb/Er/La纳米棒实现了活体内多色成像.Cheng等人[55]将具有不同发射光谱的3种上转换纳米颗粒经皮下注射进入到小鼠体内,通过区分光谱反褶积实现小鼠的多色成像.荧光共振能量转移是另一种调节上转换纳米颗粒发射多色光的方法,基于该方法的基本成像原理是,利用近红外光激发上转换纳米颗粒并利用其发射光来激发颗粒表面的有机染料或量子点,使其发射出不同波长的荧光从而实现生物成像.刘庄课题组[56]利用有机染料和聚乙二醇(PEG)包覆的上转换纳米颗粒之间的疏水作用力将染料吸附在颗粒表面来调节复合材料在可见光区的发射光谱,并将该复合材料用于生物体多色成像体系中.
2.2多模态成像单模态成像技术通常只能反映生物体内单一的信息,因此,为了获得更多的生物体内相关信息,多模态成像技术应运而生.近年来,以稀土上转换纳米材料为基础的多模态成像技术得到了快速发展,例如,上转换荧光成像(upconversionimaging,UCL)与磁共振成像(magneticresonanceimaging,MRI)、电子计算机X射线断层扫描(computedtomography,CT)、正电子发射断层成像(positronemissioncomputedtomography,PET)和单光子发射计算机断层成像(single-photonemissioncompu-tedtomography,SPECT)等其他模态成像技术相结合的多模态成像技术已经取得了长足发展并在生物成像中发挥着越来越重要的作用[57,58].
2.2.1双模态成像当前的研究热点之一是将上转换荧光成像与MRI相结合构建双模态成像探针并探究其在生物医学领域内的应用.众所周知,荧光成像为生物体内成像提供了高的灵敏度,但它的激发光对生物组织的穿透深度较浅.相比于荧光成像,MRI为体内成像提供了良好的空间分辨率.但由于其灵敏度有限,所以通过结合上转换荧光成像和磁共振成像的优势,可以获得同时具备高灵敏度、高空间分辨率和较强激发光组织穿透深度的双模态成像探针.近年来,一些基于稀土上转换纳米材料的双模态成像探针制备方法已有报道.第一种制备方法是分子的功能化,即将Gd配合物等磁共振成像造影剂修饰在上转换纳米颗粒表面来构建UCL/MRI双模态成像复合探针.例如,Li等人[57]报报道了一种核壳结构的UCL/MRI纳米颗粒探针,该探针以上转换纳米颗粒为核并将Gd配合物担载在二氧化硅壳层中.第二种制备方法是通过连续生长或者包覆的方法实现其他磁性材料与上转换纳米材料的复合.超顺磁性氧化铁纳米粒子(SPIONS)由于其良好的磁性和生物相容性获美国FDA批准为商用磁共振成像造影剂;目前,SPIONS包覆的上转换纳米颗粒作为双模态成像探针的雏形技术已有报道.Xia等人[58]制备了NaYF4:Yb/Tm@FexOy纳米核壳结构的复合材料,并将其用于生物体T2加权MRI和UCL双模态淋巴管成像的造影剂.然而,上转换纳米颗粒的发光强度在这个核壳结构中将会逐渐减小,这是因为Fe3O4壳层既吸收发射光也吸收近红外激发光.为解决这一问题需要进一步制备反相的核壳纳米结构,所以Zhu等人又合成Fe3O4纳米颗粒为核而上转换纳米颗粒为壳层的纳米结构来避免Fe3O4对发射光和激发光的吸收[59].刘庄课题组[60,61]用层层自组装的方法制备了UCNPs-SIONPs纳米复合材料成像探针.该探针以上转换纳米颗粒为核,颗粒外包覆一层超薄氧化铁纳米颗粒,然后在最外层包裹一层金颗粒.该纳米复合材料可用于UCL/MRI双模态生物成像并在体内和体外进行定向的癌症光热治疗,还可用于干细胞的示踪和操控.这些结果表明UCNPs-SIONPs作为新型的多功能成像探针有潜力应用于体内转移性细胞的示踪和操控[62].然而,实现稀土上转换纳米材料与其他磁性材料结构和功能的复合非常困难并且会导致一些副作用(例如Fe3O4可能会猝灭稀土上转换材料的发射光).就这一点而言,含有Gd的材料(Gd2O3,GdPO4,GdF3,NaGdF4等)与稀土上转换材料有良好的相容性.将含有Gd的纳米壳层包裹在稀土上转换纳米颗粒表面来制备的复合纳米材料同时具有光学和磁学两种性质,可以用于多功能生物体系中[27~35].例如,赵宇亮课题组[32]成功合成了形貌可调的Ln掺杂的Gd2O3纳米颗粒,该颗粒具有多种颜色的上转换荧光成像和磁共振成像能力.Zhou等人[63]报道了基于Yb/Er(Tm)共掺杂NaGdF4纳米颗粒的小动物UCL/MRI双模态成像体系.第三种制备方法是将有磁性的离子掺杂到稀土上转换纳米颗粒中.例如,赵宇亮课题组[22]报道了NaYF4:Yb/Er纳米晶体掺杂Mn离子后表现出上转换荧光发射和磁性双重性质.Zeng等人[64]报道了NaLuF4纳米晶体掺杂Gd/Yb/Er三种元素离子的体系,该纳米晶体不仅具有近红外发射的性质还在室温下具有顺磁性,经生物分子功能化的NaLuF4上转换纳米颗粒有望应用于体内和体外的双模成像中(UCL/MRI).将UCL和SPECT相结合也是一种备受关注的双模态成像技术,SPECT成像在临床诊断中常用18F作为放射性同位素标记物,由于常用的上转换纳米颗粒的组成元素中含有氟,所以可以在合成上转换纳米颗粒时将F元素换成其带有放射性的同位素18F来获得UCL/SPECT双模成像性质.最近,Sun等人[65]报道了用含有18F的NaYF4:Yb/Tm纳米颗粒进行小动物全身UCL/SPECT双模成像,该纳米颗粒不仅可以在老鼠体内获得高灵敏度的图像,而且在大型动物体内也可以获得.然而,18F较短的半衰期(1.829h)限制了其在生物体内长时间成像中的应用,所以研究者们又进一步合成了长半衰期153Sm(46.3h)掺杂的NaLuF4:Yb/Tm纳米颗粒并将其用于生物体长周期UCL/SPECT双模成像[66];而且由于153Sm发射出中等能量的β射线,对生物体损伤较小,因此该成像探针更加适合用于长时间的生物成像.
2.2.2多模态成像最近,PET/MRI/UCL或着CT/MRI/UCL三模态成像受到人们越来越多的关注,将3种成像技术结合不仅可以提高成像的清晰度还可以提高诊断效率.例如,CT是根据人体不同组织对X射线的吸收和透过率不同而获得被检查部位的3D高分辨图像的非侵入性分子成像技术;然而,由于CT和MRI成像不仅平面分辨率有限而且不适用于细胞水平的成像,而UCL成像却具有极高的灵敏度和空间分辨率可以广泛地应用于生物医学研究领域的细胞和组织成像.因此,通过结合UCL,CT和MRI三种成像模式可以实现从细胞到活体超灵敏、多层面的分子成像.Liu等人[67]报道Gd2O3:Yb/Er的多功能探针可以在小动物体内进行UCL,MRI和CT多模态成像来提供诊断,治疗以及疾病的相关信息.Xia等人[68]制备了Gd配合物掺杂的NaLuF4上转换纳米颗粒可以在小动物体内进行UCL,MRI和CT多模态成像.比如Fe3O4@NaLuF4:Yb/Er(Tm)和NaYF4:Yb/Er/Tm@NaGdF4@TaOx纳米核壳结构也同样可以作为MRI,CT,UCL三模态成像的生物探针.李富友课题组制备了18F标记的NaYF4:Gd/Yb/Er纳米颗粒[69],该颗粒具有放射性,磁性和荧光性可以作为多功能的纳米探针进行体外荧光成像和MRI/PET活体成像.而Os(II)复合体包裹的NaYF4:Yb/Tm纳米复合物也已证明可以进行三模态成像[70].
3疾病治疗领域内的应用
稀土上转换纳米颗粒也可以应用到疾病治疗领域中,比如可以作为载体来运输小分子抗癌药物和治疗性多肽等物质,也可以根据其成像性质来实时、简单、有效地追踪药物输送路径并了解药物释放的效率.下文主要介绍稀土上转换纳米颗粒在作为药物和基因载体方面的发展现状并总结稀土上转换纳米颗粒在光动力学治疗和光热治疗的应用.3.1药物和基因输送近年来,由于中空和介孔结构有巨大的孔容量所以常用作理想的药物载体.例如,赵宇亮课题小组[33]将布洛芬(IBU)包载到带有介孔壳的Gd2O3:Yb/Er中空纳米颗粒中.另外,Yb(OH)CO3@Yb-PO4:Er和NaREF4:Yb/Er(RE=Yb,Lu,Y)纳米颗粒也可以通过包载药物进行药物释放诱导癌细胞死亡[71,72].核壳结构Fe3O4@nSiO2@mSiO2@NaYF4:Yb/Er(Tm)[73](mSiO2=介孔硅),NaYF4:Yb/Er@硅纤维[74],NaYF4:Yb/Er@nSiO2@mSiO2[75]和Gd2O3:Er@nSiO2@mSiO2[76]等纳米复合物也已证实可以作为药物载体并且可控制药物的释放.但是,由于介孔硅层的厚度很难控制到10nm以内,所以介孔二氧化硅包裹的上转换纳米颗粒由于介孔硅的包裹使得纳米颗粒的尺寸增加.除了硅封装,还可以利用药物分子与上转换纳米颗粒表面功能分子的相互作用来实现药物运输,该方法可以避免增加纳米颗粒的尺寸.Wang等人[77]合成了多色光谱的上转换纳米颗粒,并通过静电吸附作用利用PEG化的上转换纳米颗粒实现抗癌药物阿霉素(DOX)的包载与释放的行为研究.首先将PEG与叶酸(FA)共价交联形成新的化合物,然后表面修饰到油酸包裹的上转换颗粒表面,这种颗粒能够对叶酸受体有靶向效果,并进行了KB细胞与HeLa细胞对比,研究发现FA-PEG-UCNPs能够很快进入KB细胞而不能在相同的时间内进入HeLa细胞.值得注意的是,DOX在低的pH值条件下,具有更好水溶性,低pH值条件加速了DOX中-NH2基团的质子化,从而导致释放出更多的DOX分子.根据pH值进行药物释放的纳米复合颗粒对临床癌症治疗是具有实际意义的,因为肿瘤的细胞外组织、细胞内的溶酶体和核内体的微环境均是酸性的.通过利用稀土上转换纳米颗粒近红外激发紫外光发射的性质来控制包裹药物的笼状化合物进行药物释放和基因表达,避免了直接使用紫外光照射的组织穿透能力低和光毒性的缺点.目前,这种近红外激发紫外光发射的上转换纳米颗粒在智能药物领域的研究得到发展.Zhang课题组[78]通过包裹可光解的质粒DNA/siRNA分子到介孔氧化硅包覆的NaYF4:Yb/Tm上转换纳米颗粒的多孔硅中,该方法不仅提高了生物相容性且增加了载药能力.在近红外光激发下,上转换纳米颗粒发射紫外光刺激质粒DNA或者siRNA进行基因表达调控或者基因下调.Yang等人[79]首次证明通过共价键将阳离子可光解连接器与硅包覆的上转换纳米颗粒连接起来,在980nm激光辐射下,上转换的紫外光可以使光敏连接器分开,因此可以有效地释放siRNA并控制其在活体细胞中靶基因的表达.同时,这一方法可以应用于其他的笼状化合物比如说NO[80],羧酸[81],二硝基苯[33]和荧光素[82].另外可光解药物释放系统也可以应用于基于上转换纳米颗粒的其他光响应系统,例如,Yan等人[83]通过使用光敏水凝胶包裹的上转换纳米颗粒在近红外光激发发射紫外光的情况下可以引发溶胶-凝胶转变并且可以释放大的、无活性的生物大分子(比如说蛋白质)到溶液系统中.Liu等人[84]报道了基于偶氮苯基团(azo)修饰介孔氧化硅包裹的NaYF4:Yb/Tm@NaYF4上转换纳米颗粒在近红外光激发下,发射的紫外光可以引发偶氮分子从反式异构体转换到顺时异构体,以一种可控的反式异构体来引发药物释放.3.2光动力治疗光动力治疗(photodynamictherapy,PDT)采用光激活化学物质(光敏剂),从而产生单线态氧(1O2),最终导致癌细胞死亡.用于激活光敏剂的激发光通常在可见-近红外波段,由于其穿透能力有限,所以将光敏剂包裹到上转换纳米颗粒上来提高其组织穿透能力.当纳米微粒被980nm的近红外光激发时发出可见光然后可见光激发光敏剂释放1O2最后杀死癌细胞.Chen等人将光敏剂亚甲基蓝(MB)附着到表面包裹有二氧化硅的NaYF4:Er/Yb/Gd上转换纳米颗粒上,发现了显著的红光猝灭现象[85].Zhang课题组将光敏剂酞菁锌(ZnPc)包裹到NaYF4:Yb/Er-PEI上转换纳米颗粒或者NaYF4:Yb/Er@mSiO2上转换纳米颗粒[17,86,87],由于ZnPc的吸收峰(~670nm)与NaYF4:Yb/Er纳米颗粒的红色发射峰相重叠,所以在近红外光的照射下ZnPc产生了大量的1O2杀死癌细胞,增加了癌症的治疗效果.之后,Idris等人制备了与两种不同光敏剂即ZnPc和MC540(部花青540)吸收波长相匹配的上转换纳米材料,从而实现利用单一波长光源同时激发两种光敏剂的治疗方法[34],与单一负载的光敏剂相比,UCNs-ZnPc-MC540产生了大量的单线态氧并且减慢了荷瘤小鼠的肿瘤生长速率.另外,为了提高药物的靶向能力,将具有靶向作用的叶酸和抗体连接到上转换纳米颗粒上,使其既可以进行靶向光动力学治疗又拥有了更多的抗肿瘤效应[17,37,86].刘庄课题组报道了通过非共价键修饰的方式将Ce6光敏剂装载到NaYF4:Yb/Er@PEG上转换纳米颗粒上[77,88],构建了治疗和成像双功能的上转换纳米材料,通过构建4T1乳腺肿瘤Balb/c鼠动物模型,以瘤内注射的方式将UCNP-Ce6给药到瘤内,再经过980nm的激光照射,首次实现了利用基于上转换纳米粒子的光动力治疗在生物体应用,形成的光动力学治疗纳米复合物显示了更深的组织穿透深度并且提高了体内肿瘤的抑制效果.其他的光敏剂分子,包括MC540[37],四苯基卟啉(TPP)[89]和(4-羧基苯基)卟吩(TCPP)[77]也可以包裹到NaYF4:Yb/Er用做光动力学治疗药物.另外,将NaYF4:Yb/Er@NaGdF4或者NaYF4:Yb/Er/Gd应用于能量转换材料,可以实现MRI/UCL成像和光动力学疗法相结合[85,90].3.3光热治疗光热疗法(photothermaltherapy,PTT)是通过激光照射(近红外光)改变癌细胞所处的环境,将光能转换为热能,达到一定温度,可以诱发细胞内蛋白质的变性,破坏细胞膜,导致癌细胞的热消融.与化学疗法和外科手术相比较,PTT具有更少的侵入性,因此在癌症治疗中吸引了人们更多的关注.刘庄课题组制备了NaYF4:Yb/Er@Fe3O4@Au-PEG多功能纳米颗粒不仅可以用于MRI/UCL来进行成像还可以进行具有磁性的靶向光热癌症治[61].在动物实验中,通过静脉注射NaYF4:Yb/Er@Fe3O4@Au-PEG纳米颗粒到荷瘤小鼠体内,不仅肿瘤成像信号加强而且当使用808nm近红外光照射肿瘤时可以使肿瘤细胞热消融.另外,Dong等人将合成的NaYF4:Yb/Er@Ag纳米颗粒与HepG2细胞一起培养[91],在980nm近红外光下照射8~20min中,HepG2细胞的存活率从65.05%下降至4.62%,显示出光热治疗方法的疗效.
4结论与展望
关键词:纳米材料应用
纳米发展小史
1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。
1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。
什么是纳米材料
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。
一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
1、纳米技术在防腐中的应用
由加拿大万达科技(无锡)有限公司与全国涂料工业信息中心联合举办的无毒高效防锈颜料及其在防腐蚀涂料中的应用研讨会近日在无锡召开。
中国工程院院士、装甲兵工程学院徐滨士教授,上海交通大学李国莱教授,中化建常州涂料化工研究院钱伯荣总工等业内知名人士分别在会上作了报告,与会者共同探讨了纳米技术在防锈颜料中及涂料中的应用、无毒高效防锈颜料在防腐蚀涂料中的应用以及新型防锈涂料和防锈试验方法发展等课题。
徐院士就当前纳米技术的发展情况作了简单介绍,他指出:纳米技术的研究对人类的发展、世界的进步起着至关重要的作用,谁掌握了纳米技术,谁就站在了世界的前列。我国纳米技术的研究因起步较早,现基本能与世界保持同步,在某些领域甚至超过世界同行业。
作为国内表面处理这一课题的领头人,徐院士重点谈了纳米技术对防锈颜料及涂料发展的促进作用。他说,此前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒防锈颜料,有的性能不错,甚至已可与铬酸盐相比,但均因价格太高,国内尚未引进。我国防锈涂料业亟待一种无毒无害、性能优异而又价格低廉的防锈颜料来提升防锈涂料产品的整体水平,增强行业的国际竞争力。
中化建常州涂料化工研究院高级工程师沈海鹰代表常州涂料院,在题为《无毒高效防锈颜料在防腐蚀涂料中的应用》报告中,详细介绍了复合铁钛醇酸防锈漆及复合铁钛环氧防锈漆的生产工艺、生产或使用注意事项、防锈漆技术指标及其与铁红、红丹同类防锈漆主要性能的比较。
在红丹价格一路攀升的今天,这一信息无疑给各涂料生产厂商提供了巨大的参考价值,会场气氛十分热烈,与会者纷纷提出各种问题。万达科技(无锡)有限公司总工程师李家权先生就复合铁钛防锈颜料的防锈机理、生产工艺、载体粉的选择、产品各项性能指标及纳米材料的预处理方法等一一做了详细介绍。
目前产品已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,为此获得了中国专利技术博览会金奖.复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用,并已由总装备部作为重点项目在全军部分装备上全面推广使用。
本次会议的成功召开,标志着我国防锈涂料产业新一轮的变革即将开始,它掀开了我国防锈涂料朝高品质、高技术含量、高效益及全环保型发展的崭新一页。其带来的经济效益、社会效益不可估量。这是新型防锈颜料向传统防锈颜料宣战的开始,也吹响了我国防锈涂料业向高端防锈涂料市场发起冲击的号角2、纳米材料在涂料中应用展前景预测
据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。
由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。
在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。预期十五期间,各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。
纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。
我国每年房屋竣工面积约为18亿平方米,年增长速度大约为3%。18亿平方米的建筑若全部采用建筑涂料装饰则总共需建筑涂料近300万吨,约200~300亿元的市场。目前,我国建筑涂料年产量仅60多万吨,世界现在涂料年总产量为2500万吨,每人每年消耗4千克,为发达国家的1/10,中国人年均涂料消费只有1.5千克。因而,建筑涂料具有十分广阔的发展前景。
纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛
1.1纳米金刚石近年来,纳米尺度的金刚石作为新型碳纳米材料已经成为研究的热点之一。纳米金刚石具有优异的机械、光学和电学等性能。在场发射、剂和生物医学等领域具有应用价值。1961年Decarli等[5]首先用爆炸法制得了超细金刚石粉。目前,纳米金刚石的制备方法主要包括爆炸法、激光蒸发法、CVD法、高能离子轰击法及放电等离子烧结法等。Zhang等[6]使用碳纳米管(CNTs)做原料,在1500℃和80MPa的条件下,采用放电等离子烧结法制得了纳米金刚石。表征结果表明,制得的金刚石颗粒被一层无定形碳包裹着。Terranova等[7]采用热丝CVD法,使用平均粒径为40nm的碳颗粒做碳源,在分散有铁纳米颗粒的硅基底上制得了纳米金刚石。表征结果表明,制得的金刚石呈金字塔形,直径在20~100nm之间。
1.2碳纳米洋葱碳纳米洋葱是1992年Ugarte在显微镜中通过强电子束照射碳灰而发现的[9]。碳纳米洋葱的微观形貌为多层石墨构成的洋葱状颗粒,尺寸在纳米数量级。迄今为止,人们已经发展了多种制备碳纳米洋葱的方法,如电子束照射法、离子注入法、电弧放电法、碳烟灰的冲击波处理法及等离子体喷头上的碳沉积法等。电子束照射法是用具有一定能量的电子束照射含碳原料,使其汽化成碳原子和原子团,然后再重新结合、形成新的碳纳米材料的方法。一般情况下,电子束照射法制得的碳纳米洋葱呈球形,对称性好,形成的壳层在3~10层之间[8]。Sano等[9]采用水中电弧放电法,制得了碳纳米洋葱;表征结果表明,制得的碳纳米洋葱直径在4~36nm之间,石墨化程度不高,具有较大的表面积(984.3m2/g)。
1.3碳纳米笼碳纳米笼的结构和形貌多样,具有优异的理化性质。笼状结构的碳纳米颗粒之间存在空隙,很方便填充金属颗粒或其它分子,制备成具有特殊性质的纳米复合材料。由于范德华力的作用,碳纳米颗粒往往团聚严重,不易分散,使得其性质和应用研究受到限制。因此,制备分散性好、性质优异的碳纳米笼颗粒具有重要的意义。碳纳米笼的制备方法包括CVD法、超临界流体法、模板法、激光蒸发法及溶剂热法等。Li等[10]在超临界二氧化碳中,使用二甲苯为原料,在Co/Mo催化剂上沉积制得了碳纳米笼。表征结果表明,制得的碳纳米笼的表面积和孔体积的大小与反应温度和压力有关。在650~750℃之间制得的碳纳米笼直径在10~60nm之间;在650℃和10.34MPa的条件下,制得的碳纳米笼的孔体积为5.8cm3/g,表面积为1240m2/g。Wang等[11]使用乙醇和Fe(CO)5为原料,采用模板法,在600~900℃条件下,制得了碳纳米笼。研究结果表明,制得的碳纳米笼的直径在30~50nm之间,表面积在400~800m2/g之间;其可以分散在水中,几个月都不会团聚。
2应用
2.1催化剂载体碳元素以其特有的成键形式(sp、sp2和sp3)构成了形貌和结构多样的纳米颗粒材料,这类碳纳米材料独特的结构和奇异的物理化学性质赋予其广泛的用途。尤其是碳纳米笼颗粒,在众多的应用中作为催化剂载体而成为催化领域的研究热点之一。Yun等[12]将铂催化剂负载在中空碳纳米球颗粒上,并且催化烯烃加氢反应。结果表明,中空碳纳米球颗粒负载催化剂的催化效果要高于活性炭;考察了碳纳米颗粒的结构对负载铂催化剂催化环己烷脱氢反应性能的影响。杜建平等[13]采用爆炸辅助化学气相沉积法制得了石墨化程度不高,类似球形的碳纳米颗粒。考察了其负载钼催化剂含量对环己烷脱氢反应的催化性能。结果表明,钼含量对环己烷脱氢催化反应有较大影响。钼含量15%时,催化性能最佳。
2.2生物医药与其它维数的纳米材料相比,零维纳米材料除了尺寸小之外,更重要的是其具有较大的比表面积,这使得其表面活性也有所增大。碳纳米颗粒直径越小,处于表面的原子比例就越大,反应活性越高,其对生物组织、细胞伤害就越大;直径越大,其在生物体内的免疫性越强,容易遭到免疫系统的攻击,从而被器官捕获和降解。周兆熊等[14]采用高压均质方法,使用全氟碳纳米颗粒荷载药物地塞米松磷酸钠或醋酸地塞米松。研究结果表明,荷载地塞米松磷酸钠和醋酸地塞米松的全氟碳纳米颗粒直径分别为(224±6)和(236±9)nm。荷载地塞米松磷酸钠和醋酸地塞米松的包封率分别为(66.4±1.0)%和(95.3±1.3)%,首日溶出比率分别为77.2%和23.6%。与不用全氟碳纳米颗粒荷载相比,全氟碳纳米颗粒荷载顺磁性造影剂钆喷酸葡胺可增加信号强16%。因此,全氟碳纳米颗粒荷载药物具有较好的缓释性,能增加磁共振造影剂的信号强度,从而提高其检测灵敏性。
2.3磁性材料安玉良等[15]采用控温还原炭化过程,利用纤维素和硝酸铁为原料,制得了包裹金属的碳纳米颗粒。表征结果表明,该碳纳米颗粒直径分布在20~90nm之间;具有对电磁波的电损耗和磁损耗效应;电损耗角正切值在1.1~1.2之间,磁损耗角正切值在0.45~0.70之间;电损耗角正切值随着频率的增加而增加;这些结果表明碳包覆铁纳米颗粒可以作为较好的电磁材料。陈进等[16]采用电弧放电法制得了包裹铜粒子的碳纳米颗粒,考察了该碳纳米颗粒的导电性能。结果表明,该碳纳米颗粒具有核壳结构,内部为铜粒子核,外部为碳层且石墨化程度较高。该包裹铜粒子的碳纳米颗粒的导电性随着铜含量的增加而增加。当铜含量为80(wt)%时出现突跃。
2.4发光材料荧光碳纳米颗粒是一类较为理想的荧光标记和检测材料。因此,目前制备和研究荧光碳纳米颗粒成为一项受到广泛关注的课题。郭艳等[17]在恒定电压下,利用邻苯二甲酸氢钾、乙二胺四乙酸二钠、柠檬酸盐为电解液,采用电化学刻蚀石墨的方法,制得了带有荧光的碳纳米颗粒。与邻苯二甲酸氢钾和柠檬酸盐的电解液相比,同浓度的乙二胺四乙酸二钠为电解液制得的碳纳米颗粒的荧光最强。荧光强度随某种电解液浓度的减小而降低。研究表明,具有sp2结构的碳簇可能是碳纳米颗粒的发光中心。Bourlinos等[18]利用有机物碳化的方法制得了不具有晶体结构的,直径小于10nm的碳纳米颗粒,其可以发出多种可见光,得到了3%的荧光量子产率。
3结语与展望
纳米材料制备技术的发展为解决这个问题提供了可能。随着制备技术的提高,纳米材料的晶粒尺寸、制造成本不断降低,而致密度、晶粒尺寸均匀度不断提高。例如,采用脉冲电沉积技术制备纳米Ni和Ni基合金薄板,通过各种参数的控制可使晶粒尺寸接近10nm,且沉积层具有很窄的晶粒尺寸分布范围。采用纳米材料进行微塑性成形,即使零件特征尺寸降低到微米尺度,零件内部依然包含大量的晶粒,可以排除各向异性的影响,从而抑制甚至消除尺度效应,解决微成形技术工程化应用的瓶颈问题。同时,纳米材料具有优异的力学性能,可以提高零件的质量。采用纳米材料进行塑性微成形,又带来了新的问题。随着晶粒尺寸的显著降低,纳米材料的强度、硬度成倍增加,塑性变形能力却明显变差[18],如果采用常规微成形工艺进行成形,为保证成形精度,对模具材料性能的要求明显增加,模具昂贵,摩擦磨损严重,寿命短。这会严重阻碍微塑性成形的广泛应用。研究经验表明,比较好的解决方式是采用超塑成形技术进行微成形,例如,Saotome等人采用超塑微成形技术制造了微齿轮[7],张凯锋等人采用该技术制造了微槽和微柱[13]。在超塑状态下,材料的变形抗力可以降低几十甚至上百倍[19—21],变形抗力和摩擦力都明显降低,从而显著降低微成形工艺对模具性能的苛刻要求,提高工艺稳定性和成形精度。采用超塑微成形技术的条件是,成形的材料必须是超塑性材料,幸运的是,纳米材料通常具有超塑性。Mcfadden等人[22]发现1420铝合金和Ni3Al材料的晶粒减小到纳米尺度后,材料在较低的温度就可以获得良好的超塑性。在超塑状态下,应力明显降低,从而降低对微小尺寸成形模具的性能要求,使得大批量生产微小零件成为可能。随着微机电系统的发展,微型零件的需求量不断增加。微阵列是一种典型的微结构零件,在医疗、通讯、光学、化学等领域有广泛应用,如生物微针阵列、微生物芯片、光存储器、微化学反应芯片、微传感器等。微阵列的制造工艺包括光刻、离子蚀刻、同步X射线光刻塑模电铸等,但各种工艺间的生产成本、制造周期、产品质量及适用材料等方面有较大差别。如果采用超塑微成形技术制造微阵列,可以显著降低生产成本,提高生产效率和工艺稳定性。而且,采用超塑微成形技术还可以胀形出空心圆柱微阵列,在生物芯片、微化学反应芯片上会有重要应用。拟采用电沉积技术制备镍基纳米材料,系统研究其超塑性微成形机理,实现微阵列的批量制造,不仅能够解决微成形技术工程化应用的瓶颈问题,而且有助于深入理解微成形的科学理论。
2微成形研究现状
微成形的工艺可以分为体积微成形和薄板微成形两种。体积微成形的加工工艺主要有微压缩、微锻造、微铸造等;薄板微成形工艺主要有微拉深、微弯曲、微冲裁等。随着微成形技术的发展,工件尺寸越来越微小,而在加工过程中,会由于工件尺寸的变小,得到的实验结果与宏观理论恰恰相反,许多宏观上得到应用的理论,不能简单地缩放就应用在微成形上[23—24],对于微成形中的尺寸效应,需要得出全面的实验结论和微观可用的理论[25]。MichaelD.Uchic等人利用微压缩实验和模拟以位错为基础的变形过程进行了深入的研究[26],清楚地证明了尺寸的变化对于材料性能的影响,如晶粒的受力变形或产生应变梯度等,并也发现了小尺寸样品会产生应变突变,这对于理解位错自由组合消耗能量具有新的理解意义,并可以推动尺寸变形理论的产生。美国的Mara等人利用微压缩测试Cu/Nb纳米层状复合材料的机械力学性能,其微柱的压缩形变在相对于圆柱轴和压缩方向的45°方向被观察到,剪切带也是显而易见地被发现,且出现了比较大的塑性变形和相对于压缩轴的旋转[27]。H.Justinger等人利用8mm到1mm直径的冲头对不同的晶粒尺寸和箔材的厚度比的材料进行了微拉深试验,观察到冲头的力出现了明显的变化,同时改变粗糙度会显著影响杯型的几何形状[28]。建立了一个不同数量晶粒的单位体积的立方体基本模型,可以在下一个微成形过程中估计单一晶粒的可能取向,并解释了不同影响条件在微拉深中压缩和拉伸过程的流变应力变化的原因。日本的K.Manabe等人成功地利用微拉深工艺将20μm厚的铝箔制造成直径为500μm的微杯,并对杯子的几何形状、厚度应变分布以及表面粗糙度进行了测定[29]。研究表明,降低表面粗糙度更有益于微拉深的成形,表面粗糙度的增大不仅影响表面质量,还对成形极限产生影响,材料表面的光滑和拉深冲头的光滑,仍然是研究的重点方向。中国台湾学者Cho-PeiJiang和Chang-ChengChen,利用V型弯曲测试系统研究了板材的晶粒尺寸效应与弯曲板材厚度之间的关系,平均晶粒尺寸为25~370μm,板材厚度为100~1000μm,T/D为1~30,结果表明当平均晶粒尺寸恒定时,屈服强度和最大冲压力随着T/D的减小而降低,而随着T/D的增大,回弹量变小;当板材厚度一定时,平均晶粒尺寸变化的回弹现象类似于宏观尺寸的板材V型弯曲试验结果[30]。
3实验研究与讨论
3.1电沉积过程影响因素研究
3.1.1电流密度变化Ni-Co/GO复合材料电沉积过程中,不同电流密度(1.1,1.4,1.7,2.0,2.3,2.6A/dm2)的常温拉伸工程应力-应变曲线图如图1所示,总体的变化趋势是随着电流密度的增大,应变出现先增大后减小的状态,应力在1.1A/dm2时较小,为721MPa,在2.0A/dm2时达到最大,为1260MPa,其余的电流密度对应的应力大小较接近,在870~930MPa之间变化。不同电流密度的高温拉伸真实应力-应变曲线图如图2所示,图中右上角的曲线图为不同电流密度与延伸率的关系图。随着电流密度的增大,延伸率出现先增大后减小的情况,在电流密度为2.0A/dm2时产生的延伸率最大,达到535.8%。较高的电流密度可以得到较高的过电势,产生较大的成核速率,形成较多的晶核数,从而使得晶粒细化,因此随着电流密度的提高,复合材料的晶粒尺寸减小,能够有效地提高材料的常温和高温拉伸性能。当电流密度过高时,在一个脉冲周期的导通时间内会快速沉积,因为受到电镀液中扩散速率的影响,导致达到下一个脉冲周期时阴极表面的金属离子较少,对沉积速率及沉积得到的复合材料的性能产生较大的影响。
3.1.2pH值变化图3是镀液中不同pH值制备的复合材料常温拉伸的工程应力-应变曲线图,pH值依次为2,3,4,5.5。在工程应力-应变曲线图中可以看到,随着pH值的增加,应力、应变随之增加,在pH值为2时应力最小,为773MPa,当pH值为5.5时,应力达到1260MPa。当pH值较低时,虽然能够提高阴极电流密度的范围,增大了沉积速率,但会导致阴极析氢增加,从而导致内部和外部出现气孔,降低复合材料的力学性能。而过高的pH值会使镀层的脆性增加,也不利于力学性能的提高。
3.2单向拉伸试验研究
3.2.1应变速率变化研究图4为常温条件下应变速率变化的工程应力应变曲线图。当应变速率为1.68×10-2和1.68×10-3时,应力约为630MPa,应变约为0.41;当应变速率为1.68×10-4时,应力和应变都出现明显增加,应力可以达到1245MPa,应变约为0.69;而当应变速率为1.68×10-5时,应力出现非常明显的减小,降到937MPa,应变变化较小,约为0.67。出现这个现象主要是因为,复合材料中由于存在一些空隙和位错,当应变速率较大时,位错来不及滑移,其他晶粒也来不及补充到空隙位置,导致在位错或空隙位置出现断裂,从而得不到较好的力学性能;随着应变速率变小,晶粒可以填充空隙位置,位错也出现滑移等,有效地增加复合材料的应力应变等力学性能;而当应变速率继续减小,填充的量增加,滑移也比较明显,出现了应变增大但应力增加较小的现象。
3.2.2复合材料的厚度变化研究图5是复合材料不同厚度的常温拉伸工程应力应变曲线图。从图中可以看出,随着复合材料的厚度的增加,材料应变随之增大,这主要是因为复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会一直存在晶粒被拉应力的作用,不会因为空隙导致突然断裂,从而导致应变增大。当复合材料较薄时,应力会稍小一些,这主要是因为试样薄,位错和间隙存在的情况下,会出现某部位突然断裂,从而影响材料的应力,而当复合材料厚度增加后,会因为存在较多晶粒,从而增加材料的应力。
3.2.3试样宽度变化研究图6是不同宽度试样的常温拉伸工程应力应变曲线图。由图6可以看出,随着试样宽度的增加,应变也随之增加。当试样宽度增加时,复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会存在有效的拉应力作用在不同的晶粒上,导致应变增大;同时不同的试样宽度,拉应力基本相同,这是因为虽然试样的宽度不同,但是作用在每个晶粒上的力基本相同,拉应力变化不大。
3.3微半球体高温气体胀形图7是电沉积液中GO不同加入量时的高温气体胀形得到的微半球体,图7a—c的GO的添加量依次为0.01,0.03,0.05g/L。所得到的高温胀形件的高度依次为2.5,2.7,3.0mm,模具的孔半径为2.5mm,因此,H/r依次为1,1.08,1.2。这与高温拉伸的数据符合,都实现了高温超塑性。图8为胀形件厚度分布图。微半球自底端至顶端,厚度逐渐变薄。厚向应变不均匀,这主要是胀形件在不同位置应力状态差异造成的。胀形件的顶端为等轴应力状态,而靠近底端的部分,由于模具夹持作用,限制了板材沿圆周方向变形,因此这个位置的应力状态为平面应变状态。由于局部应力的差异导致不同位置具有不一样的应变速率,最后造成零件不同位置厚度的差别。在顶端区域由于有较大的应变速率,造成了显著的变薄效应。图9为胀形件胀破断口的SEM图。断口的晶粒粒径比较均匀,为1~2μm,在图9中发现存在GO,且存在GO的位置的晶粒较其他部分的晶粒稍小一些,说明GO的加入可以提高材料的热稳定性,抑制金属晶粒在高温下的长大,但加入量比较少,对材料晶粒长大的抑制作用较小。在胀破断口很难寻找到GO的存在,是因为在高温下,GO出现了挥发,且由于GO的厚度比较小,在产生挥发后很难在SEM下发现。
4结论
1.1炭干凝胶的制备
传统炭凝胶的制备一般经过有机凝胶的形成、干燥和炭化过程3个步骤,炭干凝胶的具体合成步骤如下:首先采用间苯二酚和甲醛为原料在碱性催化剂下合成聚合物中间体,再经过进一步的交联形成空间网络状结构的气凝胶;然后在常压下直接蒸发干燥;最后在惰性气氛(氮气或氩气)或真空条件下高温炭化。经上述步骤制得的炭干凝胶具有比表面积大、导电性能好等特性。炭干凝胶是指在干燥步骤采用常压干燥的方式制备所得的材料。尽管常压干燥会引起材料孔道塌陷,但因其成本低廉成为近年来研究的热点。
1.2炭干凝胶的改性
近年来,国内外学者采用掺杂和复合的方法对炭干凝胶进行改性,改善并提升了其物理化学性质,使其更为广泛地应用于各个领域。
1.2.1氮掺杂炭干凝胶
Castilla等采用3-羟基吡啶等为氮源合成了氮掺杂炭干凝胶,研究结果表明,采用不同的原料配比和不同的炭化温度(500~900℃)可以得到一系列氮含量不同的炭干凝胶。Gorgulho等在间苯二酚和甲醛为原料的基础上,添加三聚氰胺和尿素为氮源,成功合成了氮掺杂炭干凝胶,以调控炭干凝胶的表面功能基团。结果表明,经过氮源掺杂合成的炭干凝胶,材料的表面碱度均有提升。
1.2.2金属掺杂炭干凝胶
为了增强炭干凝胶的导电、催化等性能,很多学者成功制备了各种金属掺杂的炭干凝胶。Pramanik等成功合成了锰、钴和钙等金属掺杂的炭干凝胶,研究了金属掺杂对材料比表面积及形貌的影响。研究结果表明,当间苯二酚与甲醛摩尔比为0.35,初始酚醛树脂溶液pH为3.0,掺杂的锰盐同间苯二酚质量比为11%时,得到的锰掺杂炭干凝胶比表面积最大。Liu等对铁、钴和镍掺杂的炭干凝胶进行了表征,并对其磁性进行了检测。结果表明,不同金属掺杂对炭干凝胶的结构性质有显著影响,3种金属掺杂的炭干凝胶在室温下均呈现出典型的铁磁特性。
1.2.3炭干凝胶复合材料
Gomes等采用溶胶-凝胶法合成了二氧化钛-炭干凝胶的复合材料,炭干凝胶作为载体增强了二氧化钛与铂颗粒的结合作用,该复合材料也成功应用于铂纳米颗粒的光化学沉积。此外,Fernández等成功合成了碳纳米管-炭干凝胶的复合材料,通过循环伏安法、充放电等手段对该复合材料的电化学性质进行测试后发现,碳纳米管的引入提升了材料的电容,而且在提升材料有效固相电导率的同时,还提升了液相电导率。
2炭干凝胶的应用研究进展
2.1储氢
近年来,多孔炭材料因其具有高比表面积和轻质的网状结构被广泛地应用于储氢领域。Tian等采用酸性催化剂合成了炭干凝胶,并测试了其储氢性能。结果表明,在pH为4.8的条件下合成的炭干凝胶,比表面积为1924m2/g,微孔容积为0.86cm3/g。在温度为77K以及压力为3.9MPa的条件下,合成所得炭干凝胶的储氢量为4.65%(wt,质量分数),证实了炭干凝胶是一种极具前景的储氢材料。
2.2电化学领域
炭干凝胶由于具有成本低廉、高比表面积和高电导率等优良性能,是一种理想的电极材料。FernNdez等将炭干凝胶用于电化学超级电容器,通过循环伏安法、计时电势分析法及交流阻抗测试研究了电容器阻抗理化参数同电化学行为之间的关系,研究结果表明炭干凝胶具有极高的比电容,可达280F/g。此外,炭凝胶电容器电吸附去除水溶液中重金属和无机盐的研究表明炭干凝胶用作电吸附剂在水体净化等领域拥有广阔的应用空间。
2.3催化剂及其载体
炭干凝胶所具备的比表面积大、稳定性好、高度交联的多孔结构等特性使之成为催化剂及其载体的最佳选择。Xin等采用锰掺杂的炭干凝胶作为催化剂,进行了液相放电等离子体去除微囊藻毒素的研究,随着炭干凝胶的加入,微囊藻毒素的去除率从75.3%提升到90.2%,并提出了相应的氧化-吸附动力学模型。Xu等将炭干凝胶作为金催化剂的载体,并筛选了用于苯甲醇选择性氧化的最佳载体,原因在于炭干凝胶材料表面具有足量的含氧官能团。Rodrigues等同样将金催化剂负载于炭干凝胶上,并将其用于甘油的氧化,通过改变炭干凝胶的中孔大小来改变催化剂的选择性。此外,Ale-gre等将铂负载在炭干凝胶上用来催化甲醇的电氧化,同催化剂Pt/E-TEK相比,其催化性能提升了2倍多。炭干凝胶还可以用作用作质子交换膜燃料电池的催化剂载体,该催化剂具有较高的循环电压和一氧化碳及甲醇氧化电流,并且在采用炭干凝胶作为催化剂载体的燃料电池中,贵金属颗粒的烧结趋势很小。还有许多研究人员将炭干凝胶作为催化剂用于污染物的催化氧化。CA等研究了炭干凝胶以及二氧化铈掺杂的炭干凝胶催化臭氧氧化的性能。对草酸的催化臭氧氧化结果表明,所有的催化剂均能在1h内将其全部降解。
2.4环境保护领域
在环境保护领域,炭干凝胶已广泛地应用于水处理方面。Ca等将炭干凝胶应用于亚甲基蓝的吸附。结果表明,炭干凝胶微孔容积和微孔比表面积的增加能够显著提升其对亚甲基蓝的吸附量,并且通过朗格缪尔模型计算得到的结合能同商业的微孔活性炭相比有了45倍的提升。Figueiredo等将制备得到的炭干凝胶用于2种阴离子染料的吸附,获得了良好的吸附效果。Almazan等研究了炭干凝胶结构特性对于挥发性有机物甲基碘动力学吸附的影响,结果表明吸附量同孔容密切相关,而且内扩散的传质阻力同孔结构密切相关。此外,Girgis等将炭干凝胶用于水中铜离子的吸附,吸附量为32~130mg/g,该研究为去除水体中的重金属离子提供了一种新型的纳米级多孔性炭材料。
3结语与展望
炭干凝胶作为一种新型的纳米材料。具有许多独特的性能,在近年来引起了广泛关注。针对目前存在的问题,炭干凝胶今后努力的方向大致为以下几个方面。
(1)制备工艺的完善与创新。
虽然目前国内外已经成功合成了不同孔径结构的炭干凝胶,并采用各种手段对其进行了性能改良,但是离实现产业化还有一定的距离。寻求适合工业发展的制备工艺,简化流程、降低生产成本是今后努力的方向。
(2)理论体系的完善。
尽管目前已经对炭干凝胶合成的机理有了很深入的研究,但如何实现孔径结构的完全可控还需要进一步的研究。此外,在炭干凝胶网络结构的形成机理以及聚合单体的生长动力学等方面也需要进一步的努力。
(3)应用领域的进一步拓展。