欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

高等数学课程论文范文

时间:2023-04-06 18:46:26

序论:在您撰写高等数学课程论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

高等数学课程论文

第1篇

[关键词]高职教育;高等数学;课程建设

目前,中国的高职教育已进入“大众化”阶段,其发展状况如何将直接关系到整个社会经济的发展。而高职教育必须至少抓好三项建设,即实训基地建设、专业建设和课程建设,其中课程建设是基础[1]。高职院校的课程建设虽然是以“饭碗课”为主,但是高等数学是高职院校的一门主要基础课程,不仅为学生学习后继课程和解决实际问题提供了必不可少的数学知识和数学方法,而且也有助于培养学生思维、分析解决问题和自学的能力,以及使学生形成良好的学习方法;对于日后计算机运用、数控机床和单片机编程能力等方面都将发挥着不可替代的功效。因此不管是从精品课程建设的需要,还是从提高教学质量、培养学生能力与素质的角度来看,可以说高等数学教学质量的好坏在一定程度上直接影响后续课程的教学质量。因此,要培养高质量的人才,充分发挥高等数学课程在高职教育中的作用,就必须全面系统地做好高等数学的课程建设。

一、高等数学教学的现状

许多人以为,高等数学没有什么用。这一想法的由来是对纯数学和应用数学的认识不清。目前在高职中所开设的数学课一般都是大学一年级的高等数学,其内容和纯数学基本相同,仍然是变量数学。但在高职中需要解决的是工程与实践中的现实问题,是应用性问题,而不再是纯数学理论。例如,同样是讲述“函数”,高职中更应强调的是如何建立现实问题中变量之间的关系,即函数方面的数学建模,而不再是纯粹强调定义域和对应法则问题。但即便是高职中的高等数学也不是应用数学,它要求学生理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。其实数学教育在学校教育中占有的特殊地位是毋庸置疑的,它能使学生表达清晰,思考有条理,使学生学会用数学的思考方式解决问题、认识世界等。另一方面,目前的这种状况也给所有从事数学教学的同仁们敲了一次警钟,使我们认识到数学教学已经到了必须改革的时候了。

二、高职高等数学课程建设应注意的问题

高职院校在人才规格、人才培养目标等各方面的特殊性决定了其课程建设也不同于其他院校的课程建设,在建设中应注意以下几方面的问题:

1.岗位群要求综合知识多但不深

高职培养的学生一般是适合某一岗位或是岗位群。这一培养目标就决定了其对于知识的学习要多,但并不需要很深,这也就是平时所说的“必需、够用”。例如同样数控专业的学生将来并不都是从事数控编程,也可能是操作机床或是销售、维修工作,这些不同就导致了对知识的需求有所差别。因此为适合岗位群的要求,在学习中就必须涉及到该专业的所有可能知识。同时由于学生就业的凭证是“技能”,所以对理论知识不需要太深。

2.基础课学时少、训练少、习题少,但培养学生能力方面要求却很高

同样由于高职培养目标决定了对于基础课程的学时较少,由此带来的学生训练的机会较少,而且结合专业可供使用的实践性习题也不多,但是对于知识的要求却并不低。

3.专业需求对于知识点的要求不一,众口难调

不同的专业对高等数学的需求是不一样的,有些专业要求仅以一元函数微积分为基础,而有些专业则还需要多元函数的微积分,对于有些专业复变函数的知识比较重要,而有的则侧重于线性代数等等,众口难调。

4.学生水平参差不齐,吃不饱和学不了的是两个大头

目前许多人对于高职院校还存在着看法,总认为其就业出路是工人,所以只有在上不了大学的情况下才会选择高职,造成高职院校的学生基础普遍较差。当然也不乏一部分对高职前景看好的基础较好的学生,这些构成了高职学生的主体,基础水平参差不齐。基础好的吃不饱,基础差的学不了。

5.要考虑少数人的需求

高职中有一部分学生的去向是专升本,虽然这部分学生数量较少,但作为培养单位的学校也同样应考虑他们的需求,因此开设的课程中,应考虑为他们将来的升本科打好基础。

三、对高等数学课程建设的几点建议

1.一纲多用,同时建立不同专业的课程评价标准

既然高等职业院校以能力本位教育为基础,而非学科本位为基础,就应该建立与人才培养方案相一致的教学大纲和课程评价标准。统一制订适合高职特点的教学大纲。同时根据不同专业的要求制订相关的课程评价标准,使一个大纲能为多个专业所用,而不同的专业又有不同的侧重点,即不同的课程模块。除此之外,高等数学要想真正建设好,还必须联合不同专业共同制订本专业的课程评价标准。其实课程评价已经不再是某一学校的事,在以市场标准取向的前提下,高等职业教育质量的鉴定应实现内部评价和外部评价的互动统一,也称为“内审与外审”。其中“外审”则是社会“第三方”或上级教育机构对学校的各种评估或检查,以确定其社会认可度;“内审”则要求学院建立相应的评价标准和监督机制对课程本身进行审核[2]。因此,一纲多用,同时建立不同专业的课程评价标准是提高高职院校内涵的一项实质性工作。高等数学作为一门公共基础课程,在统一的教学大纲指导下,各有侧重地建立该专业课程评价标准,以促进高等数学更好地为专业服务。

2.围绕课程评价标准大胆整合数学课程

课程评价标准是针对职业院校不同专业而建立的,其效用等同于具体的教学大纲,但是又比教学大纲更具有灵活性。由于作为基础课的高等数学教学大纲只有一个,但是课程评价标准是因专业而设置,而且一经建立,势必促使教师根据不同的专业需求对数学课程进行大规模整合。因为一方面各个专业对数学基础要求不一样,另一方面能力本位的指导思想不可能在基础课程上花太多的课时。而为了达标,必须对高等数学、线性代数、概率、数理统计等模块进行整合,使其能够满足不同的专业需求。而且确定的课程评价标准也限定了不同的专业有不同的教学重点。例如,“导数的应用”中经济管理专业应侧重曲线的单调性、凸凹性的特点以及利用导数分析边际问题和弹性问题的应用;而模具专业就应该侧重于曲线凸凹性以及利用导数分析曲率的相关问题上等。同时还应结合不同的教学内容,所布置的作业同样应有所针对性,以满足不同的专业需求。

3.增设有关高等数学的公共选修课和讲座

以上提到一个大纲多专业使用,同时整合课程内容,使得不同专业的教学重点有所针对性。但是总的来说,不可能在有限的课时内将所有的模块都涉及到;而且高职学生的毕业去向中有一部分学生可能会选择继续深造,也有一部分学生基础较好对数学又有兴趣,希望能够学到更多的数学知识。鉴于以上情况,应该在基本的必修课程之后,继续开设这一方面的公共选修课,而且选修课程的范围可以覆盖所有高等数学的内容。部分内容较少的模块如傅立叶变换、曲率、边际与弹性等可以以讲座的形式进行,其他的内容一般来讲,一个模块设置为一门选修课,例如多元函数的微积分、线性代数、概率论、数理统计、复变函数等可独立开设。而且不管是讲座还是公选课,如果涉及到某个专业的理论基础,可以要求该专业学生限选,其他内容学生可以根据自己的喜好和需求选择不同的课程。这样既满足了部分学生的愿望,解决了部分学生专升本的问题,同时又丰富了高职院校的课程结构和学生的业余生活,而且由于公共选修课门数的增加也有利于完全学分制的实施。

4.培养“双师”型数学教师或鼓励数学教师进行“专业”培训

目前我国的高等职业院校大多都是从普通中专或高等专科学校套转过来的,作为高等院校的时间不长,其中的大部分教师都只有理论的知识和相应的教学经验,但对于实践这一块比较陌生,尤其是数学教师大都是从事理论教学的,对于实践几乎是一无所知,对高职中不同专业所需要的理论基础也了解甚少。要想真正能够适应高职的发展必须加强实践能力,进行“双师素质”培养。同时,也可以直接将数学教师相对固定到具体的专业,通过对其进行本专业的培训,使之了解本专业的理论基础,以在数学教学中更有效地发挥教学效果。其实,目前已有相当一部分院校都是这样做的,在引进人才时就直接引进一些本科专业为基础数学或者英语,硕士研究生专业为管理或者机械的毕业生,这样的人才在进校以后,既可以从事基础课的教学,又可以从事专业课的教学,而且他们在基础课的教学中,更能贴近专业。也可以引进学基础数学或是英语专业的本科生,在岗位上将其培养成能为具体专业所用的懂“专业”的“双师”型教师。

5.教学方式与考核方式的改革

传统的数学教学方式主要是讲授式,这种方式虽然比较节省时间,而且有利于教师组织教学,但是讲授式很难体现“教学”“双边活动”的过程,学生参与太少,久而久之,容易造成学生懒散、不愿意动脑筋的习惯,不利于学生能力的培养。事实证明活泼多样的教学形式如讨论式、竞赛式等更能增加师生之间的互动、激发学生的学习兴趣。因此改革以往纯粹的讲授式教学方法,针对概念、例题、理论或应用等不同的内容采取不同的教学方法并结合现代化的教学手段定能起到事半功倍的效果。除此之外,考核方式的改革也是课程建设的一个重要方面。目前高等数学的考核方式主要以笔试为主,该课程确实是一门理论课程,其考核历来也都是笔试,但在能力本位的高职院校是否可以像其他课程一样考虑不用笔试,即就不同的章节,针对不同的专业,设计相应的实践性练习,要求学生在规定的时间完成,在整个课程结束之后,综合学习过程中的作业完成情况给学生一个成绩。在此过程中一方面培养了学生的动手动脑的习惯,改变了以往纯粹灌输式的死的理论;另一方面锻炼了学生运用所学知识解决实际问题的能力。例如在机械类学生学习误差理论时,便可设计一测量问题要求学生以单、双精度变量的不同方式来估计误差,同时还可以就两种不同计算方式所确定精确度的高低、所用时间的多少等方面来比较两种方式的优缺点;或是估计误差的可信区间(在给定的可信度下)等。

6.开展数学实验及数学建模能力训练

数学实验是利用实验手段和实验器材,设计系列问题增加辅助环节,从直观、想像到发现、猜想,从而使学生亲身经历数学的建构过程的一种试验。也就是在多媒体手段的支持下,把我们的数学课堂教学变成一间功能齐全的“数学实验室”。在数学实验室里,学生从“听”数学的学习方式变成在教师的指导下“做”数学;数学实验中也将更多的探索、分析、思考的任务交给了学生。诚如有心理学家所说:“听过会忘记,看过会记住,做过会学会”[3]。这也是数学学习方式转变的具体体现,学生的主体性得到充分发挥的有效途径。而开展数学建模活动与数学实验是相辅相成的,学生在实验过程中体验了数学创作的快乐,通过建模活动进一步发挥其创造性思维和应用知识的能力,将数学理论与实际问题结合起来,充分调动学生的主观能动性。而且在平时的训练中,可以针对专业设置相应的建模练习。通过实际问题的演练,避免了纯数学理论教学的枯燥性,可以提高学生学习的主动性,培养了学生应用知识的能力,同时也加强了学生的数学素养。除此之外,开展此类活动,老师必然要先行学习、锻炼、实践,因此这种方式也是培养数学类“双师”的有效途径。

7.注重对学生数学素养乃至综合素质的培养

素质教育虽然已经不同程度地被写进了教学大纲,但真正能够在实施过程中实现的却是非常少。教育部有关文件也着重指出,高职教育要“主动适应社会经济发展对高职高专教育的需要,全面推进素质教育,树立科学的人才观、质量观和价值观”[4]。这一决定表明高职院校对人才培养目标定位的准确性和社会对高职院校学生的社会需求性。高等数学作为高职课程之一在教学过程中除了教会学生基本的理论知识和学会应用知识的能力之外,还有一项重要的任务就是让学生在学习中体会到数学的完美与精巧,培养学生热爱数学、愿意钻研数学的精神和毅力。例如把问题数学化,可以提高分析、解决实际问题的能力,培养学生具有思维的逻辑性和方法的灵活性,形成良好的思维品质;数学史上探索精神和思想方法对学生的熏陶会影响人的一生,使其受益终生。所以数学是一种文化,它不仅使人得到了数学方面的知识修养,而且可以全面提高人的素质。

课程建设作为专业建设的基础,它是高职教育中的一项重要内容。高等数学因其课程自身的特殊性决定了它也同

样应该受到高度的重视,而不再是可有可无的。高职教育要注意纠正学生在专业课程与公共课程中的一重一轻的倾向,避免因这种倾向造成知识的偏差、人格的移位。

[参考文献]

[1]李南峰,施复兴,罗芸红.高职院校课程建设问题探析[J].十堰职业技术学院学报,2004,17(4):14-16.

[2]苟建忠.谈高职教育课程的多元整合[EB/OL].[2006-12-16]./g-jxgg/kcgg/8255.shtml.

第2篇

使用网络媒体,高等数学教学资源可以多种方式组合,以适应A级、B级、C级不同学习者的需要。高等数学的教学从单纯课堂教学延伸到了网络上的协同辅导、学习和工作。网络提供的各种学习资源还可以被不同高校共享,并在每个学习者需要的时间和地点被使用,使高等数学的教学突破了时间和空间的限制。本设计利用云南省昆明市西南林业大学已经建设完成的遍布各教室、各学生宿舍的校园网络,以高等数学课程教学内容为核心,以高等数学教学资源库、网络课程、模拟测试题库等为资源支撑,建设高等数学课程教学网站,为教师所需集成各自教学内容、为学生自主学习和个性化培养提供全面的支持和服务。

2课程学习网站功能模块结构

2.1数学新闻

数学新闻信息显示,由课程负责人在后台添加新闻信息,包括标题、添加时间、简要描述、详细描述等内容,前端以列表形式进行展示,学生点击新闻标题,进入相应的新闻详细信息页浏览新闻内容。对新技术、新知识的分享,让学生能从课堂之余学习新知识。

2.2教学团队

办学质量的好坏,取决于学校管理的各个方面,而最关键乃教学管理。该项主要展示学校数学的教育师资力量。

2.3数学史话

数学科学具有悠久历史,与自然科学相比,数学更是积累性学科,其概念和方法更具有延续性。从古至今,从国内到国外的著名数学大师趣事收集于此,不仅能让学生更多的了解数学发展历程,还能提高学习兴趣,从各素材中汲取养分,为今后学习奠定基石。

2.4课程安排

学生进入高等数学课程网站后,从导航菜单中进入课程安排选项,浏览每位教师制定的教学安排计划,了解各个学习阶段应要学习或掌握的知识,并能根据教师的课程安排计划合理调整自身的学习计划,以不断增强自身知识结构,复习和预习课程内容。

2.5学习园地

学习园地模块共分为两个小的模块,分别为查看作业布置和作业提交。查看作业布置可以查询本次课或以前课程的课后作业,并能进行在线练习,或记录下来再学习。作业提交,学生根据教师的要求,完成作业后,进行作业的提交。当然,为了安全考虑,在学生上传文件前必须首先进行登录,上传文件仅为rar或zip的压缩包文件,上传文件大小不超过3Mb。作业上传路径为教师布置作业时产生的路径,教师收取作业时进入该路径即可。

2.6在线测试

传统考试从出题、组卷、印刷到试卷的分发、答题、收卷等程序,使得整个过程人工参与量大、周期长,容易出错,还需做好保密工作,使得学习考试成本较大。而在线测试可以实现无纸化、网络化、自动化,教师可以从题库中按所需自动组题成一套试卷,学生也可自行到系统内抽取题目进行测试,该过程充分合理利用资源,节省了财力、物力、人力,同时也大大提高了学生学习的主动性和积极性。

3数据库设计

第3篇

许多人以为,高等数学没有什么用。这一想法的由来是对纯数学和应用数学的认识不清。目前在高职中所开设的数学课一般都是大学一年级的高等数学,其内容和纯数学基本相同,仍然是变量数学。但在高职中需要解决的是工程与实践中的现实问题,是应用性问题,而不再是纯数学理论。例如,同样是讲述“函数”,高职中更应强调的是如何建立现实问题中变量之间的关系,即函数方面的数学建模,而不再是纯粹强调定义域和对应法则问题。但即便是高职中的高等数学也不是应用数学,它要求学生理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。其实数学教育在学校教育中占有的特殊地位是毋庸置疑的,它能使学生表达清晰,思考有条理,使学生学会用数学的思考方式解决问题、认识世界等。另一方面,目前的这种状况也给所有从事数学教学的同仁们敲了一次警钟,使我们认识到数学教学已经到了必须改革的时候了。

二、高职高等数学课程建设应注意的问题

高职院校在人才规格、人才培养目标等各方面的特殊性决定了其课程建设也不同于其他院校的课程建设,在建设中应注意以下几方面的问题:

1.岗位群要求综合知识多但不深

高职培养的学生一般是适合某一岗位或是岗位群。这一培养目标就决定了其对于知识的学习要多,但并不需要很深,这也就是平时所说的“必需、够用”。例如同样数控专业的学生将来并不都是从事数控编程,也可能是操作机床或是销售、维修工作,这些不同就导致了对知识的需求有所差别。因此为适合岗位群的要求,在学习中就必须涉及到该专业的所有可能知识。同时由于学生就业的凭证是“技能”,所以对理论知识不需要太深。

2.基础课学时少、训练少、习题少,但培养学生能力方面要求却很高

同样由于高职培养目标决定了对于基础课程的学时较少,由此带来的学生训练的机会较少,而且结合专业可供使用的实践性习题也不多,但是对于知识的要求却并不低。

3.专业需求对于知识点的要求不一,众口难调

不同的专业对高等数学的需求是不一样的,有些专业要求仅以一元函数微积分为基础,而有些专业则还需要多元函数的微积分,对于有些专业复变函数的知识比较重要,而有的则侧重于线性代数等等,众口难调。

4.学生水平参差不齐,吃不饱和学不了的是两个大头。

目前许多人对于高职院校还存在着看法,总认为其就业出路是工人,所以只有在上不了大学的情况下才会选择高职,造成高职院校的学生基础普遍较差。当然也不乏一部分对高职前景看好的基础较好的学生,这些构成了高职学生的主体,基础水平参差不齐。基础好的吃不饱,基础差的学不了。

5.要考虑少数人的需求

高职中有一部分学生的去向是专升本,虽然这部分学生数量较少,但作为培养单位的学校也同样应考虑他们的需求,因此开设的课程中,应考虑为他们将来的升本科打好基础。

三、对高等数学课程建设的几点建议

1.一纲多用,同时建立不同专业的课程评价标准

既然高等职业院校以能力本位教育为基础,而非学科本位为基础,就应该建立与人才培养方案相一致的教学大纲和课程评价标准。统一制订适合高职特点的教学大纲。同时根据不同专业的要求制订相关的课程评价标准,使一个大纲能为多个专业所用,而不同的专业又有不同的侧重点,即不同的课程模块。除此之外,高等数学要想真正建设好,还必须联合不同专业共同制订本专业的课程评价标准。其实课程评价已经不再是某一学校的事,在以市场标准取向的前提下,高等职业教育质量的鉴定应实现内部评价和外部评价的互动统一,也称为“内审与外审”。其中“外审”则是社会“第三方”或上级教育机构对学校的各种评估或检查,以确定其社会认可度;“内审”则要求学院建立相应的评价标准和监督机制对课程本身进行审核[2]。因此,一纲多用,同时建立不同专业的课程评价标准是提高高职院校内涵的一项实质性工作。高等数学作为一门公共基础课程,在统一的教学大纲指导下,各有侧重地建立该专业课程评价标准,以促进高等数学更好地为专业服务。

2.围绕课程评价标准大胆整合数学课程

课程评价标准是针对职业院校不同专业而建立的,其效用等同于具体的教学大纲,但是又比教学大纲更具有灵活性。由于作为基础课的高等数学教学大纲只有一个,但是课程评价标准是因专业而设置,而且一经建立,势必促使教师根据不同的专业需求对数学课程进行大规模整合。因为一方面各个专业对数学基础要求不一样,另一方面能力本位的指导思想不可能在基础课程上花太多的课时。而为了达标,必须对高等数学、线性代数、概率、数理统计等模块进行整合,使其能够满足不同的专业需求。而且确定的课程评价标准也限定了不同的专业有不同的教学重点。例如,“导数的应用”中经济管理专业应侧重曲线的单调性、凸凹性的特点以及利用导数分析边际问题和弹性问题的应用;而模具专业就应该侧重于曲线凸凹性以及利用导数分析曲率的相关问题上等。同时还应结合不同的教学内容,所布置的作业同样应有所针对性,以满足不同的专业需求。

3.增设有关高等数学的公共选修课和讲座

第4篇

关键词:高职教育;高等数学;课程建设

目前,中国的高职教育已进入“大众化”阶段,其发展状况如何将直接关系到整个社会经济]的发展。而高职教育必须至少抓好三项建设,即实训基地建设、专业建设和课程建设,其中课程建设是基础[1]。高职院校的课程建设虽然是以“饭碗课”为主,但是高等数学是高职院校的一门主要基础课程,不仅为学生学习后继课程和解决实际问题提供了必不可少的数学知识和数学方法,而且也有助于培养学生思维、分析解决问题和自学的能力,以及使学生形成良好的学习方法;对于日后计算机运用、数控机床和单片机编程能力等方面都将发挥着不可替代的功效。因此不管是从精品课程建设的需要,还是从提高教学质量、培养学生能力与素质的角度来看,可以说高等数学教学质量的好坏在一定程度上直接影响后续课程的教学质量。因此,要培养高质量的人才,充分发挥高等数学课程在高职教育中的作用,就必须全面系统地做好高等数学的课程建设。

一、高等数学教学的现状

许多人以为,高等数学没有什么用。这一想法的由来是对纯数学和应用数学的认识不清。目前在高职中所开设的数学课一般都是大学一年级的高等数学,其内容和纯数学基本相同,仍然是变量数学。但在高职中需要解决的是工程与实践中的现实问题,是应用性问题,而不再是纯数学理论。例如,同样是讲述“函数”,高职中更应强调的是如何建立现实问题中变量之间的关系,即函数方面的数学建模,而不再是纯粹强调定义域和对应法则问题。但即便是高职中的高等数学也不是应用数学,它要求学生理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。其实数学教育在学校教育中占有的特殊地位是毋庸置疑的,它能使学生表达清晰,思考有条理,使学生学会用数学的思考方式解决问题、认识世界等。另一方面,目前的这种状况也给所有从事数学教学的同仁们敲了一次警钟,使我们认识到数学教学已经到了必须改革的时候了。

二、高职高等数学课程建设应注意的问题

高职院校在人才规格、人才培养目标等各方面的特殊性决定了其课程建设也不同于其他院校的课程建设,在建设中应注意以下几方面的问题:

1.岗位群要求综合知识多但不深

高职培养的学生一般是适合某一岗位或是岗位群。这一培养目标就决定了其对于知识的学习要多,但并不需要很深,这也就是平时所说的“必需、够用”。例如同样数控专业的学生将来并不都是从事数控编程,也可能是操作机床或是销售、维修工作,这些不同就导致了对知识的需求有所差别。因此为适合岗位群的要求,在学习中就必须涉及到该专业的所有可能知识。同时由于学生就业的凭证是“技能”,所以对理论知识不需要太深。

2.基础课学时少、训练少、习题少,但培养学生能力方面要求却很高

同样由于高职培养目标决定了对于基础课程的学时较少,由此带来的学生训练的机会较少,而且结合专业可供使用的实践性习题也不多,但是对于知识的要求却并不低。

3.专业需求对于知识点的要求不一,众口难调

不同的专业对高等数学的需求是不一样的,有些专业要求仅以一元函数微积分为基础,而有些专业则还需要多元函数的微积分,对于有些专业复变函数的知识比较重要,而有的则侧重于线性代数等等,众口难调。

4.学生水平参差不齐,吃不饱和学不了的是两个大头

目前许多人对于高职院校还存在着看法,总认为其就业出路是工人,所以只有在上不了大学的情况下才会选择高职,造成高职院校的学生基础普遍较差。当然也不乏一部分对高职前景看好的基础较好的学生,这些构成了高职学生的主体,基础水平参差不齐。基础好的吃不饱,基础差的学不了。

5.要考虑少数人的需求

高职中有一部分学生的去向是专升本,虽然这部分学生数量较少,但作为培养单位的学校也同样应考虑他们的需求,因此开设的课程中,应考虑为他们将来的升本科打好基础。

三、对高等数学课程建设的几点建议

1.一纲多用,同时建立不同专业的课程评价标准

既然高等职业院校以能力本位教育为基础,而非学科本位为基础,就应该建立与人才培养方案相一致的教学大纲和课程评价标准。统一制订适合高职特点的教学大纲。同时根据不同专业的要求制订相关的课程评价标准,使一个大纲能为多个专业所用,而不同的专业又有不同的侧重点,即不同的课程模块。除此之外,高等数学要想真正建设好,还必须联合不同专业共同制订本专业的课程评价标准。其实课程评价已经不再是某一学校的事,在以市场标准取向的前提下,高等职业教育质量的鉴定应实现内部评价和外部评价的互动统一,也称为“内审与外审”。其中“外审”则是社会“第三方”或上级教育机构对学校的各种评估或检查,以确定其社会认可度;“内审”则要求学院建立相应的评价标准和监督机制对课程本身进行审核[2]。因此,一纲多用,同时建立不同专业的课程评价标准是提高高职院校内涵的一项实质性工作。高等数学作为一门公共基础课程,在统一的教学大纲指导下,各有侧重地建立该专业课程评价标准,以促进高等数学更好地为专业服务。

2.围绕课程评价标准大胆整合数学课程

课程评价标准是针对职业院校不同专业而建立的,其效用等同于具体的教学大纲,但是又比教学大纲更具有灵活性。由于作为基础课的高等数学教学大纲只有一个,但是课程评价标准是因专业而设置,而且一经建立,势必促使教师根据不同的专业需求对数学课程进行大规模整合。因为一方面各个专业对数学基础要求不一样,另一方面能力本位的指导思想不可能在基础课程上花太多的课时。而为了达标,必须对高等数学、线性代数、概率、数理统计等模块进行整合,使其能够满足不同的专业需求。而且确定的课程评价标准也限定了不同的专业有不同的教学重点。例如,“导数的应用”中经济管理专业应侧重曲线的单调性、凸凹性的特点以及利用导数分析边际问题和弹性问题的应用;而模具专业就应该侧重于曲线凸凹性以及利用导数分析曲率的相关问题上等。同时还应结合不同的教学内容,所布置的作业同样应有所针对性,以满足不同的专业需求。

第5篇

[关键词]高等数学;多媒体技术;旅游管理

1引言

高等数学是高等院校的一门十分重要的基础课程,也是专业教学计划中的一门主干课程。自从20世纪50年代开始,国内引进苏联教育的教材体系,高等数学课程逐渐形成了现有的、较为完善的教学体系。虽然经过1958年和1978年的两次高等院校教学改革运动,高等数学课程也得到了一定程度的改进,但课程的总的教学思想和教学体系没有发生根本性的改变。而在20世纪80年代,世界范围内出现了大学数学改革浪潮,西方发达国家,也都争先恐后地对大学数学的教育体系进行了不同程度的改革。国家教育部于1996年启动了“高等教育面向21世纪教学内容和课程体系改革计划”,1998年10月教育部又在北京香山召集了部分大学数学教育的专家、学者,以及来自教学第一线的数学教师,举办了“数学教育在大学教育中的作用”的研讨会。此后,大学数学教育的改革受到各方面更加广泛的关注和重视[1,2]。

自1999年国家开始实行的高校招生扩招政策以来,全国的高等教育形势发生了很大变化,出现了许多新的情况和问题。特别需要指出的是,各个高等院校的在校学生人数不断大幅增加,而教师数量并没有相应地得到同步增加,因此就造成高等院校的教学设施和教学人员的普遍短缺,数学教师尤为严重。为了保证学生有课上、课程有人讲,像高等数学这样的专业基础课,不得不采用大班来组织课堂教学,学生人数一般都在150人左右,有时多达200人。面对这样的困境,如何来保证高等数学课程的教学质量并有效地提高学生的数学素质?就成为一个值得高校有关各方认真考虑和研究的课题。

本文将借助当代教育心理学的一些理论和思想,从数学的教育作用、高等数学课程教学的现状和问题、以及多媒体技术在高等数学课程教学中的应用几个方面,来研究高等数学课程的教学改革问题,并结合我校的具体实际情况,提出一些能有效提高高等数学课程的教学质量的新建议。

2数学与数学教育

数学的发展历史是非常悠久的,大约在1万年前,人类就从社会生产实践中逐渐认识并形成了“数”和“形”的概念,但是真正产生数学理论还是从古希腊人欧几里得(Euclid,公元前300年)开始的。

2000多年以来,数学的发展大体可以分为3个阶段:17世纪以前是数学发展的初级阶段,这一时期出现了常量数学,如初等几何,初等代数;从文艺复兴时期开始,数学进入了第二个阶段,即变量数学阶段,这一时期产生了微积分、解析几何、高等代数;从19世纪开始,数学获得了巨大的发展,形成了近代数学阶段,这一时期产生出实变函数、复变函数、泛函分析、微分方程、近世代数、非欧几何、拓扑学、计算数学、数理逻辑、概率论、数理统计等一大批新的数学分支。到目前为止,数学已发展成为拥有100多个学科分支的庞大的知识体系。

恩格斯曾说过:“数学是现实世界中的空间形式与数量关系”。然而现代数学的内容已经大大超出一般意义下的“形”与“数”的范畴。对于大多数人来说,数学,特别是现代数学,在他们的印象中往往只是一大堆符号和公式,而并不真正了解数学为何物。为简单起见,我们可以用较为生动形象的语言来描述数学,数学是一切科学的共同语言,数学是一把打开科学大门的钥匙,数学是一种思维的工具,数学是一门创造性的艺术。不仅如此,数学还是一门内容丰富的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家是十分有用的,而且对政治家和神学家的学说观点也会产生影响,它满足了人类探索宇宙的好奇心和对美妙音乐的冥想,甚至以难以觉察到的方式无可置疑地影响着现代历史的进程。

数学作为一门教育课程进入学校,可追溯到公元前的柏拉图(Plato,公元前427-公元前347)时期,至今已有2400年左右的时间。柏拉图曾规定不懂几何学的人就不得进他的哲学学校。他甚至认为:“如果说不知道正方形的对角线和边是不能用同一单位度量的,那他就不值得人的称号”。由此可以看出,那时人类就已经把数学与教育、数学与人的全面发展联系起来了。

1990年,联合国研究机构提出了“知识经济”的说法,1996年经合组织明确给出这一概念的定义,即以知识为基础的经济。在知识经济时代,知识经济人才的首要标准是要真正有知识,联合国系统曾对高科技产业的研究者、决策者和管理者应具备的个人基本知识做过一个总结———高等数学;在研究与发展的某一领域中的实践;计算机的基础知识;现代管理方法;外语知识;社会科学的基本知识。值得注意的是在所列的基本知识当中高等数学被放置于首位,这从一个侧面充分说明了高等数学在人才培养过程中的重要作用。事实上,数学教育在提高人才的推理能力、抽象能力、分析能力和创造能力上是任何其它训练都无法代替的。

3高等数学课程教学的现状和问题

北京第二外国语学院是一所以外国语言文学为主体学科,以旅游管理为特色学科,文学、经济学、管理学、法学等多学科门类共同发展的教学型大学。高等数学是旅游管理学院和国际经济贸易学院的各专业本科生的专业必修课,也是国际传播学院、法政学院以及外语类各系的本科生的公共选修课。教学内容涉及到微积分学、线性代数、概率论和数理统计4门不同的数学课程,教学计划144学时,实际教学课时约为120学时。

就旅游管理学院的旅游管理专业、市场营销专业、财务管理专业、会议展览专业而言,经过近几年的教学实践和研究,目前在高等数学课程教学中主要存在如下的问题:

(1)国内具有同类专业的一流高等院校大都设置250学时左右的大学数学课程,相对来说上述专业的数学课程存在严重的学时不足问题。

(2)由于大学扩招而兴起的大班课堂教学,以及长期以来所形成的重视课堂教学的传统,而导致了“注入式”教学方法更加流行。

(3)由于同一专业实行文理科招生制,再加上生源地的不同,造成学生入学数学水平的差距增大,这就给教师组织教学带来很大的困难。

(4)由于数学教师的缺乏,造成教学任务非常繁重,从而导致教师长期无暇接触科学研究,成为名副其实的“教书匠”,更严重的是数学教师看不到个人的职业发展前景。

(5)由于教学学时的不足,又为了完成教学内容赶进度,致使习题课名存实亡,只能在课堂上找时间多讲几个例题来代替。

(6)由于过分强调“专业教育”,而形成了对大学数学教育的片面理解,在人们的观念里,认为数学只是“为专业服务”的工具仍然根深蒂固,严重忽视大学数学在人才培养中的素质教育作用。

4多媒体技术在高等数学课程教学中的应用

现在,从数学教师的角度出发,借助当代教育心理学的一些理论和思想[3],来研究多媒体技术在高等数学课程教学中的应用,以便克服和改善在高等数学课程教学中存在的主要问题。

课堂板书教学是高等数学课程教学的一个特点。符号语言是数学的一个重要特征,如同音乐利用符号来代表和传播声音一样,数学也是利用符号来表示数量关系和空间形式的。数学符号语言与日常讲话用的语言是不同的,因为日常语言是习俗的产物,也是社会和政治运动的产物,而数学符号语言是经过慎重地、有意地和精心地设计的。借助于数学符号语言的严密性、简洁性和精确性,数学家们就可以表达和研究数学思想,而这些思想如果用普通语言来表达的话,就会显得非常冗长不堪。另外,数学符号语言的这种简洁性还有助于提高思维的效率。数学符号语言中含有大量的符号和几何图形,这些符号和图形常使得不懂其意义的人感到莫名其妙。因此,要想完整准确地表达和传递数学信息,仅仅依靠普通人类语言是不够的,还必须借助数学的符号语言才能办到。由此可见,数学课程的教学不仅需要大量的说,而且需要大量的写和大量的画。这就决定了数学课程的教学必须借助大量的板书来组织课堂教学。

创建一个能够充分调动学生的各个感觉器官的客观环境是高等数学课堂教学的一个起码条件。神经生物学家的实验研究已经表明,人类自然接受信息是通过视觉、听觉、触觉、嗅觉和味觉等感官来进行的,其中视觉和听觉起着最重要的作用。通过视觉获得的信息占83%,通过听觉获得的信息占11%,因此来自视觉和听觉的信息就达到94%。对于同样的学习材料,单用视觉,3小时后能保持所获得知识的72%,3天后下降到20%。单用听觉,3小时后能保持所获得知识的70%,3天后下降到10%。如果视觉和听觉并用,3小时后能保持所获得知识的85%,3天后下降到65%。因此从提高学生学习高等数学的效率来讲,创建一个能够充分调动学生的各个感觉器官的学习环境是十分重要的。

目前高等数学课程是以大班方式组织教学的,每班合计人数约为140人(4×35=140),这主要是由于专职数学教师数量不足而造成的。如果数学教师不能在近期内有效地增加的话,那么在这样的教学环境中继续使用传统教学法来组织课堂教学,由大课堂教学所引起的一系列问题,比如坐在教室后面的学生看不清黑(白)板上老师的板书、听不清老师的声音之类问题,就会更加严重。根据近年来的教学研究和实践,笔者认为将多媒体技术应用到高等数学课程教学中是走出这一困境的一个最合适的办法。

随着办学设施的逐步改善,学校已经建成一些多媒体教室,配置了计算机、多功能投影仪、视频展台、有线话筒、高保真音响、影碟机以及录像机,这就为开展高等数学的多媒体教学创造了必要的物质条件。对于高等数学课程来说,借助多媒体技术来组织课堂教学,会弥补传统教学法的某些缺陷,具有无可比拟的优势。

良好的视听环境。电子教案经多媒体演示后,文字规范,字体可大可小,图形直观清晰,色彩丰富,并可设置动画,视觉效果较好且具有形式上的美感。另外,高保真的话筒和音响,更增加了声音的立体效果。这些优势基本上可以解决学生在课堂上看不清板书和听不清声音的问题,使学生获得了一个良好的课堂教学环境。

生动形象的教学情景。传统教学手段难以表达的抽象数学概念和思想,借助多媒体技术可以生动形象地展示出来。如极限概念,从图形上通过计算机对极限过程的动画演示,学生就能比较容易地理解和接受这个抽象的极限概念。对于定积分和二重积分的概念,经过动画演示,学生很容易理解和接受分割、近似代替、求和以及取极限这个重要思想。

精确直观的空间图形。传统教学手段难以演示的空间图形和形成过程,借助多媒体技术可以精确直观地展示出来。三维空间的几何图形,如柱面、二次曲面、旋转体、曲面的截痕、球体被柱面所截得立体等等,这些特殊的曲面和立体的图形,对于大多数学生来说是难以想象出全貌的。通过计算机的三维动画软件,能够直观地演示这些难以想象的几何图形的形成过程,并精确地展示出来。借助图形的直观效果,有助于学生对于数学思想、概念和原理的认识和理解。

增加课堂教学的信息量。电子板书的合理演示,节省了数学教师的大量板书时间,使教师能够将更多的精力和时间用于教学内容的讲授上,进而有效地增加课堂教学的信息量,提高全面地提高课堂教学的有效性。

提高学生的学习积极性。多媒体技术带来的良好的视听环境、生动形象的教学情景和精确直观的空间图形,极大地增强了数学课程的趣味性和吸引力,特别是现代教育技术的引进,使学生在心理上产生一种积极上进的愿望,继而提高学生学习数学课程的积极性。

提高数学教师的业务水平。将多媒体技术引入高等数学的课堂教学中,对数学教师也是一种挑战,从认真备课到吃透教材,从钻研教学课件到制作体现自己教学理念和教学方法的电子教案,都需要去做大量的课前准备工作。另外,对于一般的数学老师来说,熟练使用计算机和电子教案的制作工具也不是一件轻松的事情。这个准备的过程无疑会大大提高数学教师的能力和业务水平。

需要指出的是,多媒体技术是一种辅助高等数学课程教学的工具,它也具有两面性。如果多媒体技术在课堂教学中使用恰到好处,那么就能够成功解决目前高等数学课程教学中存在的部分的问题,从而极大地提高高等数学的教学质量。如果使用不合理得当,也会出现一些传统教学中的常见的问题,如满堂灌现象,特别是由于课堂教学的信息量加大和节奏加快,容易使学生眼花缭乱,难以真正吸收和消化教师在课堂上提供的数学思想和知识。

课堂教学是一门艺术,也是一种创造性劳动,要做好这项工作,需要教师的敬业精神,更需要教师对学生的爱心。

5提高教学质量的一些建议

翻开国内的学术期刊,不难见到有关高等数学教学改革的研究文章,但这些文章大多数是从教师的角度去考虑高等数学课程的教学改革问题,很少有人从宏观的角度去思考。如何来有效地提高高等数学课程的教学质量,这是一项复杂的、艰巨的系统工程,需要教育部门、院校主管、数学教师、接受教育的学生,各施其职,各尽其力,通力合作才能够奏效。

具体需要以下几个前提条件:

一是有关各方对数学教育在大学人才培养过程中的作用要有一个明确的认识,高等数学是学生掌握数学工具的主要课程,而数学工具可用来处理和解决本学科中普遍存在的数量化问题和逻辑推理问题;数学是学生培养理性思维的重要载体,而理性思维会潜移默化地在学生日后的工作中发挥作用;数学是学生接受美感熏陶的一条途径,而美学四大中心构架(诗词、音乐、造型和数学)之一就是数学;数学是学生从事一切科学研究的共同语言,而数学语言会促进学生在知识、能力和素质的综合协调发展。

二是各级管理机构要加大教育经费的投入,制定切实可行的相关配套政策,鼓励和支持大学教师积极从事数学教学改革的研究和实践,使从事教学研究的教师看到自己的职业发展前景,使通识教育真正落实到实处。

三是数学教师要更新教育观念,自觉运用教育学和心理学的观点来指导数学的教学活动,敬岗敬业热爱学生,设法培养学生们的学习兴趣,使学生们能真正地认识到学习高等数学对他们日后职业发展的重要性,充分调动学生的学习积极性和主动性,并培养学生们的独立思考能力和创新能力,使得学生能够不断地提高他们的学习能力,进而树立终身不断追求学问的理想。

四是学生要积极向上,具有良好的学习动机,并能够认识到学习高等数学的重要作用,积极配合教师的教学活动,不断改进自己的学习方法和策略,提高自己的学习能力,逐渐养成探求问题的习惯。如果这些前提条件能够满足或大部分满足的话,那么经过有关各方的努力,有效地提高高等数学课程的教学质量是完全可能的。

总之,为加快我校向多学科综合型大学发展的速度,跟上国家大学数学教育改革的步伐,尽快提高高等数学的教学质量,建议有关各方转变对数学教育在大学人才培养过程中的作用的认识,更新大学数学的教育观念,大力倡导数学素质教育,健全大学数学教育的管理机构,明确管理机构的职责,加大对大学数学教育的经费投入,加强大学数学课程师资队伍的建设,制定切实可行的相关配套政策,使从事教学研究的教师看到自己的职业发展前景,调动各方面人员的积极性,保证大学数学课程必要的教学课时,设置数学课堂合理的学生人数,为数学教学改革和提高教学质量创造一个更加宽松的良好环境,努力为国家培养更多的高素质人才,为中华民族的复兴做出贡献。

[参考文献]

[1]萧树铁,谭泽光,曹之江,朱学贤.面向21世纪大学数学教学改革的探讨[J].高教数学研究,2000,3(3):5-9;2000,3(4):6-11;2001,4(1):4-12;2001,4(2):6-10.

第6篇

一、近年来高考试题中涉及工科高等数学知识的考题类型及难度分析

1、涉及函数与极限部分的试题

这部分试题大都以客观题的形式出现,分值不大,难度中等或较低,只需结合初等数学知识作简单整理和代入。但是学生必须熟练掌握简单极限的求法以及函数连续的定义。如(2009年陕西12题),(2009年湖北6题),(2011年四川5题)

2、涉及导数及其应用部分的试题

此类试题考试形式灵活,涉及导数的几何意义、单调性、极值、最值、不等式的证明以及实际应用问题等,所占分值在12分左右。客观题难度较低,主观题第二小问通常有一定难度,而且有些问题需要借助于高等数学的定理来证明(例6需要拉格朗日定理作依托)。完整解答问题需要学生具有良好的数学素养,能全面考察学生能力。如(2011全国大纲卷8题),(2010安徽17题),(2010辽宁21题),(2011福建18题)

3、涉及向量及其运算的试题

直接涉及向量内积、向量夹角、向量间关系试题多以客观题形式出现,立体几何中证明线、面平行、垂直、求动点的轨迹、最值等“动态”型问题通常以主观题形式考查且分值都在10份以上。主要考察学生用向量知识识把抽象的空间图象关系、空间中的点、线、面的位置关系转化为具体的数量关系,降低思维难度,淡化推理论证,简化思维过程的能力。如(2011安徽13题),(2011全国大纲卷19题),(2010江苏15题)

4、涉及定积分的试题

由于新课程标准的实施,涉及定积分制试点的试题出现在近年来全国新课标卷中,基本是以客观题的形式出现,分值不高,主要考查定积分的定义、几何意义以及简单的计算。如(2011全国新课标9题)

除了涉及高等数学的知识点外,高考命题越来越注重“能力立意”。增加了有关数学建模思想、数学算法思想以及数学探究等开放性试题,在考查学生一般数学能力(思维能力、计算能力、空间想象能力)的基础上,全面地测量学生观察、试验、联想、猜测、归纳、类比、推广等思维活动的水平以及抽象、概括并建立数学模型的能力。

为了做好高中数学到高等数学的过渡和衔接,我们就本课程的教学改革给出几点建议: 二、关于工科高等数学课程教学改革的几点建议

1、明确教学目标,优化课程体系,整合教学内容

工科数学教学的基本任务是为培养跨世纪的工程技术人才而服务,使他们具有必要的数学能力,以适现代社会知识爆炸与科技高速发展的挑战。因此,高校除了按照“工科院校高等数学课程教学基本要求”制订教学目标外,还必须将培养学生思维能力、应用能力和自学能力放在教学目标的第一位。课程体系与教学内容是实现教学目标的保障。课那么我们就应该对现有高等数学的教学内容作适当的修改和补充,对于高中已经讲过的极限、导数、向量以及定积分的知识作系统的复习和高等数学的解释,对于高中没有涉及的知识点作翔实的论证,补充与高等数学知识相关的实际应用模型案例及习题,增加数学软件应用的教学。

2、加强数学建模教学,提高学生的数学能力

高等数学的教学不能只讲定理和公式的证明和解题方法,而应当和实际联系起来提高学生分析问题和解决问题的能力。数学建模的思想和方法在这方面有很好的作用。模型准备是将实际背景转化为数学问题;模型假设是抓住问题本质,忽略次要因素,做出必要、合理的简化假设;模型构成是根据假设用数学语言和符号建立反映事物内在规律的数学模型;模型求解是利用各种数学方法以及数学软件求出模型的解;模型分析是对所求解作误差分析;模型检验是将问题的解与于分析结果拿到实际背景中去加以验证,检验模型的合理性与实用性;模型应用就是将反复修改的模型应与于实际。因此,教师有意识的选取一些与教学内容密切结合的实例,将数学建模的思想方法有机的结合到课堂当中,不但可以加深对数学概念、方法的理解,而且也有利于学生的应用意识和数学素养的提高。

3、增加数学软件教学,开设数学实验,提高学生的理解能力和应用能力

高等数学的概念和定理比较抽象,要提高学生的兴趣,加深对概念和定理的理解,就需要重现概念和定理产生的过程,将抽象的概念形象化,数学实验的开设为我们提供了再现数学概念和定理的可能。另外随着科技水平的不断提高,数学和各学科的联系越来越紧密,马克思说“一门科学,只有当它成功地运用数学时,才能达到真正完善的地步”。数学模型的地位越来越明显,而数学模型的求解、分析和验证的过程大都是借助于数学软件和计算机来完成的。因此,增加数学软件教学就相当于给工科数学的教学添上了有力的翅膀,这双翅膀使数学问题的求解更精确更快捷,为学生解决实际问题提供了强大的武器。

第7篇

【论文摘要】数学教育是一个完整的科学体系,中学数学与高等数学是有密切联系的,高质量人才的培养必须靠两者的相互衔接和共同努力。本文通过讨论高等数学与中学数学课程的衔接问题,提出通过数学教学培养学生分析问题、解决问题的能力及实现数学的价值是十分重要的。

高等数学是自然科学和工程科学的基础。一方面,高等数学能为后继课程和解决实际问题提供必不可少的数学基础知识及常用的数学方法。另一方面,通过学习高等数学,可逐步培养学生具有初步抽象概括问题的能力,一定的逻辑推理能力,比较熟练的运算能力,综合运用所学知识去分析问题、解决问题的能力。扎实的数学基础及数学思维方法的运用是学生成才必备的素养。在高等数学的教学中,发现许多理科进校的学生觉得很多内容好像已学过。但是高等数学与初等数学相比,对学生的要求却有很大的不同,对数学的定理、概念的叙述及分析更加深入、更加严密,不仅要求学生熟练掌握最基本的运算,而且要求学生具备分析问题、解决问题的能力。这也是大部分学生学习高等数学的一个难点,因而怎样在中学的基础上讲授高等数学,以便很好引导学生适应这种转变和要求值得研究。笔者就该问题谈一些看法,不妥之处,敬请指教。

一、深入调查,摸清情况,循序渐进

首先应研究中学教材,了解学生的实际情况。许多学生数学的运算能力是不错的,但学习数学的方法不够科学,他们往往是死套公式,背结论,忽视了每一个定理、公式适用的条件和范围。超出了这些限制,公式就完全不能应用。还有的学生表达能力较差,简单的证明题说不清楚,能够简洁扼要叙述的不多。考虑到学生逻辑思维能力的形成与发展是一个循序渐进的过程,只有呈现思维形成的轨迹,才能便于学生操作,引导学生逐渐获取思维的方法,进而实现内化,强调形成性。要掌握一个数学概念本来就不容易,因此我们不能要求学生碰到一个新概念就能深刻理解,可以从初步认识到熟练掌握循序渐进,然后通过多次反复实践,逐步提高。例如高等数学中“导数”这个概念,许多学生在中学已学会了求导,而且有部分学生对一些简单的求导运算相当熟练,但可以说绝大部分学生对“导数”这个概念十分模糊。为了能正确理解导数是什么,在讲概念之前先从几个学生非常熟悉的例子中,例如变速直线运动的质点的瞬时速度问题和曲线的切线问题引申出导数的概念,使学生对一个抽象概念有一个直观的认识;为了能对它有个更巩固深刻的理解,在求分段函数的导数时特别强调分段点必须用导数的定义求,有相当一部分学生求分段点的导数是利用导函数的极限去求的,即他们认为limxaf'(x)就是a点的导数。但我们可以举一个简单的例子,设函数为f(x)=x2sin1x,x=00,x=0,用导数定义有,f'(0)limx0x2sin1xx=limx0xsin1x=0得在x=0点可导。但又发现用公式f'(0)=limx0f'(x)=limx02xsin1x-cos1x极限不存在,结论x=0点不可导。从矛盾的结论让学生先发现问题,再让他们寻找问题的根源,最后得出结论是:忽视了公式适用的条件,而引起了错误。其实用f'(x)的极限去计算某一点的导数,需要两个条件:其一要求f(x)在a点连续;其二要求limxaf'(x)极限必须存在。当f(x)在a点不连续时,可得f(x)在a点必不可导,而当第二条件不满足,即limxaf'(x)不存在时未必不可导。前面例子就说明这一问题,从中使学生懂得不仅要熟练计算出导数,而且要理解导数的真正含义。

二、明确基本要求,抓重点和难点

考虑到学生在高中已具备一定的数学知识,如第一章中许多概念在中学时已学过,因此课堂上对已掌握的内容可不讲或只是总结一下。对已学过但未能掌握好的内容,讲课时应尽量避免与中学重复,可以从不同方面去阐述,或先提出一些问题,引导学生去思考,激发他们的兴趣,然后再把问题讲深讲透,加深学生对某些概念的理解,这样教学的效果会好些。如许多学生对极限这个概念只有一个很初步的认识,往往错误地说成:“变量与某一常量之差越来越接近与零,称这常量就是该变量在变化过程中的极限。”要使学生认识到这句话的错误可举一个例子,如xn=1+(-1)nn,显然有limn∞xn=0。但它没有满足越来越接近于零的要求。又如许多学生不能正确区分“越来越接近”和“无限接近”的含义,也可通过例子xn=1n,得limn∞xn=0,但当n+∞时,1n与-1也越来越接近,我们能否说-1是数列1n的极限呢?显然是不正确的。所以要真正理解这个概念,一定要真正理解极限这个概念所描述的接近程度,使学生对极限有更深一层的认识。再如学生对极限的四则运算有了一定的了解,但他们往往只能解决一些简单的极限问题,而对于稍复杂点的题目就无从着手。存在这一问题的根本还是在于死套公式,没有真正理解公式所使用的条件。

三、培养学生自学能力,引导学生改进学习方法

自学能力是每一个大学生必备的能力之一,授人以“渔”。因材施“导”,努力教会学生自学,培养自学能力,是教之根本。开始时可以列出自学指导提纲,引导学生阅读教材,怎样读,怎样的疑点和难点,怎样归纳,然后逐步放手,学生逐步提高。使学生课前做到心中有数,上课带着问题专心听讲,课后通过复习,落实内容才做习题,这样能使学生开动脑筋,提高成绩,而学生有了自学习惯和自学能力,就能变被动为主动学习。

引导学生养成课前预习的习惯。高等数学课堂容量大,知识点多,有时一节课便要学习几个定义、定理、公式,学生若不进行课前预习,便很难跟上教师讲解,也难保证听课的针对性。事实上,学生做好课前预习,真正做到带着问题听讲,可以明显地提高教学效率,也就能较快适应强度较大的高等数学学习;引导学生学会听课。学生在课堂上必须专心听讲,特别是教师对核心概念的介绍、定理的分析、典型例题的讲解,同时要善于独立思考,归纳总结出解题的数学思想和方法,找出解题的一般规律和特殊规律,最后还应适当作些笔记或批注,以提高听课效率;引导学生培养自我反思自我总结的良好习惯。高等数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,归纳总结。为此,在每章结束时,我们应帮助学生进行自我章节小结,在解题后,积极引导学生反思解题思路和步骤,思一题多解和一题多变,加深对概念和知识的理解,掌握数学的基本思想方法。

参考文献

[1]余立.教育衔接若干问题研究[M].上海:同济大学出版社,2003.