时间:2023-03-29 09:24:40
序论:在您撰写检测系统设计论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
针对垛储机采棉温湿度采集点多,数据传输距离远的特点,提出了以电子技术和微控制技术为核心技术的机采棉温湿度自动检测系统方案。该系统由温度传感器、湿度传感器、变送器、主从单片机、RS485总线、显示及键盘等部分组成。图1为垛储机采棉温湿度检测系统框图。工作时,安装在探头上传感器采集该处机采棉的温湿度值,通过变送器和转换器将该处的各点温湿度数据信号送至该处的从机;从机将采集来的信号进行归一化处理,取加权平均值,再将加权平均值通过RS485总线送至主机,通过键盘输入机采棉霉变预警的温湿度阈值;主机将传输来的数据和预警阈值相比较,判断是否达到预警条件,如果达到预警条件,发出命令,控制预警装置发出警报,并且显示出霉变或有霉变趋势的机采棉位置。
2系统设计
2.1硬件部分
本设计的主机所要实现汇总从机发来的信息和预先设定的霉变阈值相比较,判断每个从机位置的机采棉情况。如果出现异常,主机控制警报系统工作,显示屏可以利用键盘控制其翻页功能,实时显示出每个从机位置的机采棉情况。从机主要负责将采集来的温湿度信息,经处理后,送入主机。鉴于以上因素,主、从机都选用单片机STC89C516RD+。该款单片机具有加密性强、低功耗、速度快和精度高等特点,其核内有64kB的flash,1280B的RAM,16kB的ROM,可以满足控制的需要。每个从机位置的温湿度信息检测,采用探头检测,在每个探头的不同位置,均匀分布4个温度传感器和4个湿度传感器,分别构成该从机的温度传感器组和湿度传感器组。湿度传感器选用HM1500,模拟量输出,在5V供电条件下,输出0~4V范围的电压对应相对湿度值0~100%;因为是线性输出,所以可以直接和单片机相连,为了检测信号的稳定性,可以将湿度传感器的输出量经过同相跟随器将信号稳定后送入单片机。温度传感器选用AD590为模拟信号输出需要驱动电路驱动后才能使温度信号经A/D转换送入单片机;可测量范围-55~150℃,供电范围宽,4~30V;图2为温度传感器AD590的驱动电路图。显示模块要求实时显示各个从机控制的检测探头位置的温湿度以及每个探头所在位置的坐标值,通过键盘的上下键控制显示屏的翻页和刷新。所以,采用液晶显示器LCD1602两行显示,就可以达到系统设计要求。键盘模块是向主机输入预设的参考值以及控制显示屏的翻页与刷新,基于以上功能采用4×4的行列式键盘。
2.2软件部分
首先,根据设计目标,细化软件每一部分的功能,统筹设计各部分功能之间的逻辑关系。垛储机采棉温湿度检测系统的软件设计采用keiluvision2编程环境,编程实现主从机的功能。keilC51是一个比较主流的单片机研发设计的开发工具,主从机的程序编写采用模块化编程。其调试程序、完成各部分编程后,将程序的.hex工程文件烧录至Proteus软件下的仿真电路图,仿真效果达到最佳时,记录电路设计的优化参数;根据此优化参数,设计垛储机采棉温湿度自动检测系统的实物硬件。垛储机采棉温湿度自动检测系统的主机程序流程图,如图3所示。
3试验结果分析
系统的软硬件调试完成后,在南口农场进行测试试验。系统测试了垛储机采棉的温湿度值。表1为垛储机采棉温湿度检测系统测试的温湿度数据。从表1中可以看出,本文设计的检测系统检测出的机采棉温湿度值和人工测量的实际值近似相符。试验结果表明:该系统能够精确、实时地检测垛储机采棉的温湿度,达到了垛储机采棉储存情况的安全控制。
4结论
考虑到仅是文本的储存,且该软件为小型单机软件,占用空间较小,所以我们选择了MicrosoftOfficeAc-cess数据库。此举不仅节约了空间,降低了开发成本,也提高了软件的性能。基于MicrosoftOfficeAccess数据库,图2系统框架图通过开发环境实现了电磁兼容检测信息管理系统,同时采用MicrosoftOfficeWord文字编辑软件作为电磁兼容检测报告的基础软件,采用MicrosoftOfficeExcel电子表格作为部分数据的导入、导出文件格式。这四个软件都源自同一公司,因此四者之间的交互相对来说会比较简易快捷。
1.1检测信息的输入
电磁兼容检测需要输入的主要信息包括:(1)被测件的名称、型号、编号、生产厂家;(2)被测件供电情况,被测件的供电类型及供电电压大小,包括直流还是交流,若是交流,则输入供电频率;(3)被测件电缆情况,被测件的电缆的类型,包括电源线、信号线等;(4)委托单位名称和地址;(5)检测依据的技术文件的名称、编号,包括被测件电磁兼容检测所依据的试验大纲;(6)被测件描述,被测件工作状态、被测件敏感判据;(7)检测说明,被测件在检测过程中需要说明的内容,例如一些同标准测试不同的地方,或被测件整改后的情况等;(8)报告编号、密级;(9)检测项目及检测结论,每个检测项目符合要求与否的结论;(10)检测费用及结算情况等。根据所输入的信息,并进行数据校验,校验正确后存入数据库。
1.2软件配置
为了提高软件的使用效率,通过配置ComboBox控件的下拉列表,可大大提高软件信息输入的效率,例如委托单位的名称,一般一个委托单位会多次对个产品到电磁兼容实验室进行电磁兼容检测,那么,提前配置好委托单位名称的下拉列表,实际使用时,只需要通过点选即可,提高了数据录入的速度和准确性,大大节省输入的时间,提高输入效率。
1.3报告自动生成
通常一个产品的电磁兼容实验涉及到多个电磁兼容项目,而每个电磁兼容项目都需要原始记录和检测报告。而不少信息是需要重复输入的,例如原始记录的表头信息,完全可以通过编程的方法来自动生成。事先分别建立每个电磁兼容项目的报告模板,把这些报告模板放在一个文件夹下以方便软件调用。在自动生成某产品电磁兼容检测报告时,根据产品所检测的电磁兼容项目在报告模板文件夹中选择相应的模板,并根据已经输入的信息,根据报告模板中的书签和表格等样式定位位置,自动生成电磁兼容检测报告。这样可以避免由于人工书写检测报告时由于个人因素编制不慎出现的错误,也提高了报告编制的工作效率。通过电磁兼容检测报告自动生成功能,可以避免由于人员水平参差不齐导致的检测报告不规范,从而满足检测报告的质量要求。
1.4检测仪器设备管理
电磁兼容检测仪器设备的基本信息包括名称、型号规格、编号、测量范围、准确度、计量的有效期、安放位置、保管人、设备状态等。在出具电磁兼容检测报告时,可方便地调用,选择某仪器设备后可自动显示该仪器设备的详细信息,同时根据被测件的具体检测日期同该仪器设备的计量有效期进行比较,可方便快捷的提示哪些仪器设备的计量有效期需要更新,以免在最终的电磁兼容检测报告中出现计量有效期过期的低级错误。同时,根据仪器设备的校准周期,计算下次校准日期,制定送检计划,实验室人员定时检查仪器设备情况,填写校准记录。
1.5查询与统计
提供电磁兼容检测的基本查询和统计功能。可根据客户进行查询统计,研究系统中委托单位、被测件信息和检测项目的关系,分析不同的客户群体,方便采取不同的市场开发策略、不同折扣等级,提供更个性化服务;可根据原始的测试费用来统计电磁兼容实验室的产值情况;可根据实际收到的测试费用统计电磁兼容实验室的实际创收情况;统计检测费用的结算情况,可根据此做好年底时的催款、请款工作;根据检测人员所检测的被测件,统计不同检测人员的工作量,方便实验室的管理和考核。
2结束语
防潮是粮食储存过程中一项重要内容,对粮食的储存质量有很重要的作用。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用扦样式玻璃温度计,人工判读等最原始的测温方法,工作量大,难以控制,滞后严重,做好日常的粮情检查工作,可以发现问题,及时处理,以保证储粮的安全。本论文侧重介绍“单片机温度检测系统”的软、硬件设计及相关内容。论文的主要内容包括:采样、LED显示,单片机89C51的开发以及系统应用软件开发等。作为控制系统中的一个典型实验设计,单片机温度检测系统综合运用了单片机技术、模拟电子技术、通信技术、数码显示技术等诸多方面的知识。
2粮仓湿度检测系统硬件设计
粮情测控系统是计算机硬件与软件的结合体,实现了计算机对储粮的检测与预警。系统硬件由控制部分和信号检测部分组成,其中,控制部分包含五个模块:控制器模块、手动按键、显示模块、通信模块和报警模块;信号检测部分包含一个模块:湿度检测模块。
2.1核心单元电路
综合考虑系统的方便性,可靠性,性价比等因素,系统主机芯片采用AT89C51。AT89C51是控制系统常用的单片机,应用在很多领域,利用它完成的报警系统很多。使用AT89C51单片机构成的计算机系统能够实现准确的采样煤气浓度,能够达到题目的设计要求,而且AT89C51单片机相对于其它型号的单片机,更加易于学习和掌握,性能也相对比较好。
2.2检测传感器和检测电路
湿度检测采用的是湿度传感器HS1101。在粮情测控系统中主要是检测室内与室外的湿度,一般一个粮仓有两个湿度检测点,且精度要求不高。
2.3显示电路设计
系统显示模块采用数码管动态显示原理,清晰的显示实时湿度值
3软件设计
整个系统软件设计分为两个部分,作为主控的上位机的软件设计及作为数据采样的单片机终端节点的软件设计。系统采用模块化编程,将各部分功能分别实现,主要的功能子程序有:数据采集、标度变换、线性校正、数制转换、数值显示、发送、接收和部分中断子程序。
4系统调试
本次设计采用的是模块化电路和模块化程序,因此在联调时只需要把各模块进行正确的连接就可以实现仿真,其模块与电路图在前面已经介绍这里只是给出总体调试的效果,把软件调试的.HEX文件烧入其中的AT89C51中就可以运行了。
5结语
1.1系统体系结构
该系统主要由多个手持设备终端和监控中心端组成。每个手持设备终端都由R2868紫外线型火焰传感器和ZigBee节点构成,实时检测火场中残余火种的情况,并通过无线传输网络发送给监控中心。监控中心由ZigBee的FFD设备、监视器和SQL数据库组成,主要功能是完成数据的接收、处理、分析、显示、存储等功能。
1.2系统拓扑结构
ZigBee的网络拓扑结构有星型网络、簇—树型网络和Mesh网状网络,在结构、建网、控制方面特性各有优劣。针对火场复杂的环境,考虑到系统配置、系统稳定性等问题,本文采用Mesh网状网络拓扑结构。该拓扑结构的优势在于:结构简单、建网容易、网络控制机制相对简单。节点间路径相对星型结构要多,但比簇—树型结构要简单。数据的碰掩和阻塞情况相对减少。局部的故障不会影响整个网络的正常工作,因此,网络工作的可靠性高。
2手持设备硬件结构设计
手持设备终端主要由微处理器CC2530、火焰传感器R2868、温湿度传感器、拨码开关、声光报警、液晶屏显示和电源管理模块组成。
2.1传感器驱动电路设计
采用一个1∶70的变压器,将5V电压转换成350V电压。由于紫外线传感器的工作原理是基于金属的光电发射效应和电子繁流理论,传感器一旦开始放电,就会处于一种自保持放电方式,这样就不能正确地检测紫外线。由于传感器本身没有自动抑制火花的特性,所以,必须从外部加入灭弧电路。采用周期性地减小阳极电压,使其低于放电维持电压的方法可以防止放电电流的自保持。
2.2信号处理电路设计
CC2530芯片使用的8051CPU内核是一个单周期的8051兼容内核,同时该芯片可以配置输入脉冲捕捉模式。信号处理电路根据不同情况下传感器输出脉冲的特点,利用CC2530的输入脉冲捕捉功能,将传感器的输出脉冲捕捉回来,输入到CC2530的相应引脚内。利用CC2530内部的计数器计算接收回来的脉冲数。同时结合CC2530内部的的定时器,设定一个单位时间。单位时间内,如果计数大于设置的阈值,CC2530的相关管脚则输出高电平;否则,相关管脚一直处于低电平。
3系统的软件设计
系统的软件设计包括手持终端软件设计和监控中心管理软件设计两部分。本设计主要对手持终端软件进行设计,对监控中心管理软件进行部分设计。
3.1手持终端软件设计
手持终端的主要职责是检测火场是否有残余火种的存在。手持终端开机后先进行系统初始化,完成系统正常工作时需要的基本配置。接下来手持终端会自动检查自身拨码开关的情况,根据拨码开关不同的组合,设置相应的灵敏度。然后手持终端会主动地与监控中心的设备相连,并将自己的ID号发送给监控中心。利用微处理器输入脉冲捕捉中断,实时捕捉R2868火焰传感器单位时间内输入的脉冲个数。判断有无残余火种存在。为了使检测情况精确无误,避免误判情况的出现,软件设计采用比较限制法解决这一问题。如果第一次检测到输入的脉冲数大于设定的阈值,系统不是立刻报警。因为这次可能是系统采集的干扰值。系统接着进行第二次检测,如果第二次输入的脉冲数仍然大于阈值,则判定为有残余火种存在;如果小于阈值,则证明上一次是由背景噪声引起的误判。
3.2监控中心管理软件设计
ZigBee监控结点主要负责信息的接收,将TTL电平转换成RS—232电平,通过串口将信息传送给主机。监控软件采用VB作为开发工具编写,安装在监控中心的主机上,负责对火场传回信息的处理、分析、显示、存储和统计等功能。数据库开发软件采用方便集成和移植的SQL数据库,在实时显示动态数据的同时,将数据录入到数据库中。这些数据可以在火灾过后进行分析归纳,指导消防人员高效地进行残余火灾的检测。
4测试结果与分析
在有火焰的时候,R2868传感器输出的脉冲波形通过分析该波形图可以看出:输出脉冲的频率f<2Hz,即有少量紫外线射入。通过分析此脉冲信号,确定R2868可以正常的工作。设置三个检测点,检测点的ID号分别为000,001,002,将它们分别放置在以下情况下,测试设备在不同环境下声光报警是否有效。紫外线是电磁波谱中波长从100~400nm辐射的总称,太阳光透过大气层时波长短于290nm的紫外线被大气层中的臭氧吸收掉,该紫外线传感器就是利用太阳光谱盲区(日盲区),只对185~260nm狭窄范围内的紫外线进行响应。将手持设备置于太阳光下,手持设备声光报警均不工作,证明紫外线传感器确实不受太阳光的影响。用手持设备检测分别在太阳光环境下、黑暗环境下、烟雾环境下的火焰,均会引起设备的声光报警功能。只有在火焰的存在的条件下,手持设备才能进行声光报警,手持设备受外界环境的影响非常小。利用上述三个检测点对设备的检测范围和可以检测的火焰大小进行了测试。在相同环境下,分别改变火焰长度和测试距离。经过多次实验可以看出:检测距离与火焰长度的大小呈正比,火焰长度越长,检测范围越大。设备可以在5m的范围内,准确地检测到大于1cm的火焰。针对系统的稳定性进行测试,在实验中关掉传播途径中的一部分路由器,模拟火场中路由器发生故障时的状态,手持终端设备可以通过其他路由器传播数据。通过多次改变手持设备发送的数据与接收端数据的情况对比发现,只要有可用的传播途径,手持设备就可以将数据发送给监控中心。
5结论
检测系统由数据采集端、嵌入式网关远程发送端以及检测管理中心三部分组成。首先,传感器通过ZigBee协议发送所采集的植物生理参数信息到网关中的协调器节点,协调器将数据通过RS—232串口发送到基于ARM9的CDMADTU嵌入式模块,CDMADTU模块对数据进行处理后通过CDMA2000网络和Internet网络将数据发送到由PC构建的Web服务器,发送到服务器的优点是数据易存储易查询。最后,检测中心还能通过基于LabVIEW编写的上位机软件根据已知的数据分析出植物的生理生长状况,并设计了一种根据蒸腾速率和叶绿素含量等参数的自动报警界面,从而可以更精确地判断和控制植物的长势和各项经济指标。
2系统硬件设计
2.1数据采集节点硬件设计
数据采集节点组要负责采集植物的各项生理参数(茎秆与果实直径、叶绿素含量、植物茎流等)和无线发送采集到的数据。无线收发芯片选用TI公司推出的CC2530作为ZigBee网络的射频收发送模块。CC2530是应用于ZigBee网络的真正片上系统(SOC)解决方案,包括一个高性能的2.4GHz射频收发器,内含一个高性能、低功耗的增强型8051内核和一个8通道12位A/D转换器。CC2530较以往常用的CC2430芯片具有灵敏度更高、功耗更小、通信距离更远等优点,因此,满足无线传感器及其网络对高性能、低成本、低功耗的要求。本设计中需要测量的茎秆直径采用基于LVDT的植物茎秆传感器,叶绿素含量测量采用基于透射型活体叶绿素传感器,植物茎流测量采用基于热平衡法传感器,这些传感器的输出均为模拟信号,在传感器部分对输出信号进行调理就能够直接与CC2530芯片连接。
2.2嵌入式网关硬件设计
嵌入式网关主要负责对接收的数据进行处理与存储,并实现ZigBee协议与TCP/IP协议之间的转换,从而将数据发送到远程检测系统。嵌入式网关主要由协调器和基于AM9的CDMADTU模块组成,CDMADTU模块包括AM9微处理器和DTU发送模块。本设计的CDMADTU选用CDMA2000通信模块,该模块采用AM9高性能工业级嵌入式处理器,供电范围宽(5~32VDC),数据传输速度高,系统稳定可靠。在使用CDMADTU之前需要做两步准备:一是因为本设计采用动态IP链接Internet网络与Web服务器,因此,要申请域名,申请域名解析服务后可以通过域名自动建立通信。接入CDMA网络前,需要向电信公司申请SIM卡,SIM卡可为CDMADTU提供链接Internet网络服务。二是使用前需要用终端软件或AT命令对参数设置,以决定进入网络透明数据传输模式的工作方式。
2.3锂电池供电模块设计
植物生理检测系统的实际应用环境很复杂,电源供给很难保障,因此,本设计中采用3.6V锂电池供电。但植物生理检测系统中传感器模块、CC2530等模块需要不同的电源供给,因此,本设计采用DC-DC芯片NCP500SN33G获得稳定的3.3V,该电压适用于SOC工作电压。采用TPS61040将3.6V自举到适用于各类传感器工作的12V电压。其电路图分别如图4、图5所示。
3系统软件设计
3.1数据采集节点软件设计
采集端传感器节点主要负责采集植物各项生理信息并组网将数据发送给嵌入式网关。本设计采用IAR集成开发环境自底向上构建ZigBee网络。为了节省电量,采用的传感器节点一般处于低功耗模式,直到收到上位机命令后才将对应的检测数据上传到网关。为了提高效率,上位机可设置每隔一段时间后对传感器发送上传数据命令。另外,还采用了中值平均滤波算法来消除个别传感器系统内部的随机干扰,提高了传感器的测量精度。
3.2嵌入式网关软件设计
嵌入式网关的软件设计是建立在Linuxredhatlinux操作系统上的,该操作系统具有多任务操作进程、支持硬件广泛、程序模块化、源代码公开等诸多优点而被广泛使用。使用IAR集成开发环境来建立嵌入式网关和远程检测管理中心的网络连接。
3.3上位机软件设计
系统采用LabVIEW平台编写上位机软件,根据设计要求,将软件分为数据显示模块、数据分析模块、数据存储三大模块。数据显示模块主要是将接收到的数据和分析后的结果显示在上位机的前面板上。数据分析模块主要是根据所要检测植物参数的不同选择合适的分析和处理方法。本系统分析模块实现的功能是:当测量数据在正常范围内时指示灯显示绿色,表示植物长势正常。当某一参数超出或者低于正常范围时,其对应的指示灯显示红色报警。数据存储模块主要是将数据存储到数据库中,由于LabVIEW不能直接访问数据库,因此,采用SQL语言来完成对数据库的访问。
4实验结果与分析
为了对设计的系统性能各方面进行验证,在29℃的温室环境下选择了4株番茄做为测试对象,4株番茄均匀分布于250mm×250mm的测试区域,将协调器放置在温室的中心区域从而组建星型网络结构。每株番茄同时采集茎流、叶绿素含量、番茄果实的直径等生理参数并将参数发送到上位机显示界面,采集间隔为2h,总检测时间为24h。
5结论
系统概述
待检测车辆需要经过检测通道,如图1所示。将红外摄像头放置于通道中间,获得车底部热感应图像。为了获取较广的视角以及较小形变的图像,红外摄像头安放的仰角为40°。由于监控室与检测通道的距离较远,且通道数较多,因此需要通过光端机将所获取的视频传输给监控室控制台PC机。检测软件根据本文提出的检测算法对捕获到的图像进行分析,若判断车辆底部藏人则向系统发出报警信号,以便其通过控制安全杆做出相应拦截措施。视频传输示意图,如图2所示。
软件设计
软件设计采取的基本实现策略是先定位后检测。首先进行运动车辆检测,其次根据车辆的自身特征,定位可疑目标在车辆底部可能的藏匿部位。当区域定位完成后,对该区域进行感兴趣区域(RegionOfInterest,ROI)的选取。最后对ROI进行检测,判断是否藏人。检测系统流程图如图3所示。通过对车辆的扫描检测过程,查出藏匿于车底的可疑目标,实现自动检测。
1图像去噪
图像去噪是图像预处理的一个环节,也是整个图像预处理中的关键一步。在对运动车辆定位的过程中,针对车辆与环境对比度大、信息丰富,受噪声影响较小等特点,只需对图像采用常规的均值滤波进行处理。而在检测目标时,为了在去除噪声的同时,最大程度的保存目标的边缘信息,采用了基于开关控制的组合滤波。滤波器的基本思路是将图像划分为三类区域:孤立噪声点区、平坦区和边缘信息区。其主要处理原则为:孤立噪声点区的灰度与其邻域往往有较大的差异,可按照椒盐噪声进行处理,选用中值滤波器;平坦区往往包含高斯噪声,可采用加权均值滤波器加以消除;边缘信息区包含了图像的细节信息,应作为保留区域不做处理。将处理后的三个区域加以合成,即得到了去噪后的图像。
滤波器性能的关键在于分类开关的设计,借用顺序统计滤波的思路,将滤波器设计成N×N的掩模算子,N为奇数,使该掩模在整个图像上滑动,对它所覆盖的图像中的像素点xi进行排序,得到序列x(1),x(2)……x(N^2),利用排序结果设计下面的分类规则:a、b为排序后的位置偏移量,Ta和Tb为阈值。基于开关控制的组合滤波算法就包括这么几个步骤:(1)对掩模覆盖的图像像素点进行排序;(2)利用分类规则进行三个区域划分;(3)对孤立噪声点区进行中值滤波,对平坦区进行均值滤波;(4)将处理后的区域合成,得到去噪图像。
2车辆检测及目标区域的定位
2.1运动车辆检测
对于实时性要求较高的场合,运动目标的检测一般用背景差分法和帧间差分法。背景差分法是利用序列中当前帧图像与背景图像的差分来消除背景、提取运动目标区域的一种技术。背景差分法可根据实际情况设定差分阈值,所得到的结果直接反映了运动目标的大小、形状和位置,可以得到比较精确的运动目标信息,但该方法应用于红外目标检测时易受环境温度、天气等外界条件变化的影响。帧间差分法是利用视频序列中连续的两帧或多帧图像的差异来检测和提取运动目标。该方法对场景的变化不太敏感,适用于动态环境,稳定性好。不足之处是:1)无法抽取完整的运动目标,仅能得到运动目标的边界;2)运动目标提取效果依赖于帧间时间间隔的合理选择。本文针对待检测目标所处背景在短时间内为静态背景,而较长时间内背景会发生动态变化的特点,并结合两种方法的优点,设计出改进的背景差分法。算法原理图如下:其中F(K)为当前帧,B为通过隔帧帧差法求得的当前背景图像,D为差分结果图,R为二值化图像。
该算法继承了帧间差分法对场景变化不太敏感的优点,能准确更新背景差分法所需要的当前背景图,进而提取出完整的运动目标。下面是采用基本背景差分法和改进后背景差分法,在不同时候背景更新保存的背景图片。基本背景差分法在系统长时间运行之后,会出现背景更新出错,检测流程紊乱,从而产生检测系统失效现象。而采用改进的背景差分法,即使是经过长时间运行,系统也能确保背景更新的准确。
2.2目标区域定位
由于运动车辆特性已知,在其运动的过程中,可以通过对目标局部图像进行特征提取,定位可疑区域。目标的一般特征包括点、边缘、区域和轮廓。点特征对图像的分辨率、旋转、平移、光照变化等有很好的适应性,常用的点特征描述算子如SIFT、SURF等都具有很高的精度,但这些算法复杂度高,难以满足实时检测的要求,并且红外图像特征点往往较少,采用点描述算子并不能达到令人满意的效果。因此本文根据实际目标的特性,采用了对线、面特征进行描述的方法来标注运动车辆。运动的车辆受车底传动抽、燃烧室以及空间限制,目标一般躲藏于车厢后轮位置。
为了准确定位目标区域,目标区域进入视场之前的运动车辆局部特征需要重点描述。车厢底部进入摄像头视场时如图6(a)所示。为了提取车辆的直线特征,需要对车底图像进行边缘提取。常见的边缘检测算子有:Laplace、Sobel以及Canny等。由于Laplace算子常常会产生双边界,而Sobel算子又往往会形成不闭合区域,对后面直线检测都会产生不利的影响。
Canny算子克服了上述算子的缺陷,能够尽可能多的标识出图像中的实际边缘,并且能够将较小的间断点进行连接,因此能够形成较为完整的边界线。Canny算子是最优的阶梯型边缘检测算法,本文采用选用Canny算子进行图像的边缘检测。边缘检测结果如图6(b)所示,较为明显且具有特征不变性的为直线边缘。当可能藏人的区域进入摄像头视场时,车底图像的直线特征随之消失(如图6(c)),因此可以利用图像的直线特征来定位后轮检测区域。Hough变换检测直线是较为理想的直线检测方法,由PaulHough于1962年提出。经过Hough变换后,根据已知的目标直线位置、角度、长度,选取符合条件的直线。图6(b)、(c)中白色粗线为所检测出的目标直线。
受环境因素的影响,车底直线特征可能并不明显,因此单一的直线特征提取难以满足检测精度要求,如图7所示情况。实验发现车底面特征不易受到周围环境、温度的影响,因此可以进行面特征提取。选定区域为图6(b)中虚线框内,满足要求的特征为梯度小于一定阈值,即具有平滑特征,判断方法是计数虚线框内边缘点数,判断其是否小于给定阈值。采用Sobel内核计算图像差分其中src为输入图像,dst为输出图像,xorder为x方向的差分阶数,yorder为y方向的差分阶数。
由于当车底藏人时,其进入摄像头视场会阻断车底原有的平滑特征如图6(d),因此当平滑特征消失时,这时判断是否符合定位位置特征,若符合即可进行定位检测;若车底没有藏人时,车底平滑特征会持续到车尾部位才结束,这时只需判断到达车尾就可以结束检测流程。
实验表明,基于这种车箱底部中间区域光滑特征去定位检测对环境适应能力强,而基于两侧直线特征定位的方法又能够比较准确的定位到目标区域。综合上述两种思路,设计出的定位流程如下图8所示:应用中是否满足直线以及平滑特征是通过检测连续多帧图像来实现的,这样可以尽量减少偶然因素导致的定位失败。
3藏人的检测
3.1基于高亮度特征的ROI的选取
如图9为定位之后的待检测目标图。为了排除车底本身热源的干扰(如车轮)缩小检测范围,必须对原图进行ROI的选取。行进过程中的车轮一般在红外图像中会呈现高亮度特征。基于此特征,从图片左右两侧分别搜索列像素平均灰度值最高的部分(最可能为车轮内钢圈),加上一定偏移量即可求出ROI左边界位置(PositionofLeft,PL)。ROI下边界线也采用同样的方法,上边界采用默认值。当车轮不明显时采用默认感兴趣区域即可下面图9为采用固定ROI选取和基于高亮度特征的ROI提取结果对比。实验表明,这种基于具体特征的感兴趣区域提取方法,对于车轮出现的偏差具有良好的适应性,即使车辆行驶时发生较大的偏移也能做出正确的ROI选取。
3.2目标的检测
对于已知形状、外貌以及姿态等特征目标检测采用特征匹配、直方图反向投影等方法都能取得较为理想的效果。但对于躲藏姿势未知并且本身形状较为模糊的红外目标,采用匹配的方式效果并不明显。
红外目标与目标区域的周围存在一定的灰度差异,改变了原有区域梯度小、较为平滑的特征。针对这种改变采用评价函数f(x,y)对目标区域进行评估,若达到一定的阈值,即可预判车底藏人。评价函数依据不同区域可疑信息权重不一样而选定(ROI内中间部位权重较高、四周权重较低),表示如下其中T为警戒阈值,Warnflag为预警标志。具体检测步骤如下:
1)对原图的感兴趣区域进行组合滤波处理;
2)对感兴趣区域进行边缘梯度检测(图10);
3)采用评价函数对目标区域进行评分并判断是否超过给定阈值;
4)重复步骤1-3,若连续三帧超出阈值则发出报警指令,否则表示无人。对应的报警截图如图11所示
实验结果
为了验证系统工作的稳定性以及算法的可靠性,在不同的货检口岸、时间段、天气条件进行了多次实验。测试结果如下。结果表明,在不同月份检测误报率十分低,漏报率也能满足相应指标。设计出的车底藏人自动检测系统有很高的实用价值,达到了预期的目标,说明了这套检测系统的可靠性和准确性。软件界面如图12所示。
关键词:健康监测监测系统监测项目桥梁
20世纪桥梁工程领域的成就不仅体现在预应力技术的发展和大跨度索支承桥梁的建造以及对超大跨度桥梁的探索,而且反映于人们对桥梁结构实施智能控制和智能监测的设想与努力。近20年来桥梁抗风、抗震领域的研究成果以及新材料新工艺的开发推动了大距度桥梁的发展;同时,随着人们对大型重要桥梁安全性、耐久性与正常使用功能的日渐关注,桥梁健康监测的研究与监测系统的开发应运而生。由于桥梁监测数据可以为验证结构分析模型、计算假定和设计方法提供反馈信息,并可用于深入研究大跨度桥梁结构及其环境中的未知或不确定性问题,因此,桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。本文结合近十年来桥梁健康监测的研究状况以及大跨度桥梁工程的研究与发展,较系统地阐述桥梁健康监测的内涵,并由此探讨监测系统设计的有关问题。
一、桥梁健康监测系统与理论发展简况
1.监测系统
80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。该系统是最早安装的较为完整的监测系统之一,它实现了实时监测、实时分析和数据网络共享。建立健康监测系统的典型桥梁还有挪威的Skarnsundet斜拉桥(主跨530m)[2]、美国主跨440m的SunshineSkywayBridge斜拉桥、丹麦主跨1624m的GreatBeltEast悬索桥[3]、英国主跨194m的Flintshire独塔斜拉桥[4]以及加拿大的ConfederatiotBridge桥[5]。我国自90年代起也在一些大型重要桥梁上建立了不同规模的结构监测系统,如香港的青马大桥、汲水门大桥和汀九大桥,内地的上海徐浦大桥以及江阴长江大桥等[6~8]。
从已经建立的监测系统的监测目标、功能以及系统运行等方面看,这些监测系统具有以下一些共同特点:
(1)通常测量结构各种响应的传感装置获取反映结构行为的各种记录;
(2)除监测结构本身的状态和行为以外,还强度对结构环境条件(如风、车辆荷载等)的监测和记录分析;同时,试图通过桥梁在正常车辆与风载下的动力响应来建立结构的"指纹",并藉此开发实时的结构整体性与安全性评估技术;
(3)在通车运营后连续或间断地监测结构状态,力求获取的大桥结构信息连续而完整。某些桥梁监测传感器在桥梁施工阶段即开始工作并用于监控施工质量;
(4)监测系统具有快速大容量的信息采集、通讯与处理能力,并实现数据的网络共享。
这些特点使得大跨度桥梁健康监测区别于传统的桥梁检测过程。另外需要指出的是,桥梁健康监测的对象已不再局限于结构本身:一些重要辅助设施的工作状态也已纳入长期监测的范围(如斜拉索振动控制装置[4]等)。
2.理论研究
十多年来,桥梁健康监测理论的研究主要集中于结构整体性评估和损伤识别。由于基于振动信息的整体性评估技术在航天、机械等领域的深入研究和运用,这类技术被用于土木结构中除无损检测技术以外的最重要的整体性评估方法并得到广泛的研究【1,7,9~11】。人们致力于基于振动测量值的整体性评估方法研究的另一个原因是,结构振动信息可以在桥梁运营过程中利用环境振动法获得,因此这一方法具有实时监测的潜力。
结构整体性评估方法可以归结为模式识别法、系统识别法以及神经网络方法三大类【1】。结构模态参数常被用作结构的指纹特征,也是系统识别方法和神经网络法的主要输入信息。另外,基于结构应变模态、应变曲率以及其他静力响应的评估方法也在不同程度上显示了各自的检伤能力[10]。然而,尽管某些整体性评估技术已在一些简单结构上有成功的例子,但还不能可靠地应用于复杂结构。阻碍这一技术进入实用的原因主要包括:①结构与环境中的不确定性和非结构因素影响;②测量信息不完备;③测量精度不足和测量信号噪声;④桥梁结构赘余度大并且测量信号对结构局部损伤不敏感。
另外,从评估方法上,目前对大跨度桥梁的安全评估基本上仍然沿袭常规中小桥梁的定级评估方法,是一种主要围绕结构的外观状态和正常使用性能进行的定性、粗浅的安全评价。
二、桥梁健康监测新概念
桥梁健康监测的基本内涵即是通过对桥梁结构状态的监控与评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护潍修与管理决策提供依据和指导。为此,监测系统对以下几个方面进行监控:
·桥梁结构在正常环境与交通条件下运营的物理与力学状态;
·桥梁重要非结构构件(加支座)和附属设施(如振动控制元件)的工作状态;
·结构构件耐久性;
·大桥所处环境条件;等等。
与传统的检测技术不同,大型桥梁健康监测不仅要求在测试上具有快速大容量的信息采集与通讯能力,而且力求对结构整体行为的实时监控和对结构状态的智能化评估。
然而,桥梁结构健康监测不仅仅只是为了结构状态监控与评估。由于大型桥梁(尤其是斜拉桥、悬索桥)的力学和结构特点以及所处的特定环境,在大桥设计阶段完全掌握和预测结构的力学特性和行为是非常困难的。大跨度索交承桥梁的设计依赖于理论分析并过风洞、振动台模拟试验预测桥梁的动力性能并验证其动力安全性。然而,结构理论分析常基于理想化的有限元离散模型,并且分析时常以很多假定条件为前提。在进行风洞或振动台试验时对大桥的风环境和地面运动的模拟也可能与真实桥位的环境不全相符。因此,通过桥梁健康监测所获得的实际结构的动静力行为来验证大桥的理论模型、计算假定具有重要的意义。事实上,国外一些重要桥梁在建立健康监测系统时都强调利用监测信息验证结构的设计。
桥梁健康监测信息反馈于结构设计的更深远的意义在于,结构设计方法与相应的规范标准等可能得以改进;并且,对桥梁在各种交通条件和自然环境下的真实行为的理解以及对环境荷载的合理建模是将来实现桥?quot;虚拟设计"的基础。
还应看到,桥梁健康监测带来的将不仅是监测系统和对某特定桥梁设计的反思,它还可能并应该成为桥梁研究的"现场实验室"。尽管桥梁抗风、抗震领域的研究成果以及新材料新工艺的出现不断推动着桥梁的发展,但是,大跨度桥梁的设计中还存在很多未知和假定,超大跨度桥梁的设计也有许多问题需要研究。同时,桥梁结构控制与健康评估技术的深入研究与开发也需要结构现场试验与调查。桥梁健康监测为桥梁工程中的未知问题和超大跨度桥梁的研究提供了新的契机。由运营中的桥梁结构及其环境所获得的信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息。另外,桥梁振动控制与健康评估技术的开发与应用性也需要现场试验与调查。
综上所述,大型桥梁健康监测不只是传统的桥梁检测加结构评估新技术,而是被赋予了结构监控与评估、设计验证和研究与发展三方面的意义。
三、健康监测系统设计
1.监测系统设计准则
两座大型桥梁健康监测系统的测点布置情况可以看出,两个监测系统的监测项目与规模存在很大差异。这种差异除了桥型和桥位环境因素外,主要是因为对各监测系统的投资额和(或)建立各个系统的目的(或者说是对系统的功能要求)不同。因此,桥梁监测系统的设计实际上有意或无意地遵循着某些准则。
显然,监测系统的设计应该首先考虑建立该系统的目的和功能。上节所述的桥梁健康监测三方面的意义也正是桥梁健康监测的目的和功能所在。对于特定的桥梁,建立健康监测系统的目的可以是桥梁监控与评估,或是设计验证,甚至以研究发展为目的;也可以是三者之二甚至全部。一旦建立系统的目的确定,系统的监测项目就可以基本上确定。另外,监测系统中各监测项目的规模以及所采用的传感仪器和通信设备等的确定需要考虑投资的限度。因此在设计监测系统时必须对监测系统方案进行成本一效益分析。成本-效益分析是建立高效、合理的监测系统的前提。
根据功能要求和成本一效益分析可以将监测项目和测点数设计到所需的范围,可以最优化地选择并安装系统硬件设施。因此,功能要求和效益-成本分析是设计桥梁健康监测系统的两大准则。
2.监测项目
不同的功能目标所要求的监测项目不尽相同。绝大多数大跨度桥梁监测系统的监测项目都是从结构监控与评估出发的,个别也兼顾结构设计验证甚至部分监测项目以桥梁问题的研究为目的[5]。文献[12]通过对国内多座运营中的斜拉桥进行大量病害调查与检测分析,提出了用于斜拉桥状态监控与评估的颇具代表性的监测项目。
如果监测系统考虑具有结构设计验证的功能,那就要获得较多结构系统识别所须要的信息。因此,对于大跨度余支承桥梁,须要较多的传感器布置于桥塔、加劲梁以及缆索/拉索各部位,以获得较为详细的结构动力行为并验证结构设计时的动力分析模型和响应预测。另外,在支座、挡块以及某些连结部位须安设传感器拾取反映其传力、约束状况等的信息。
目前,某些监测系统以开发结构整体性与安全性评估技术为目的之一。结合桥梁问题研究的监测系统虽不多见,但有些系统也有监测项目是专为研究服务的。与理论研究相关的监测项目可以根据待研究问题的性质来确定。从目前桥梁工程的发展状况看,以下几方面的问题可以借助桥梁健康监测进行深入研究或论证。
·抗风方面:包括风场特性观测、结构在自然风场中的行为以及抗风稳定性。
·抗震方面:包括研究各种场地地面运动的空间与时间变化、土-结构相互作用、行波效应、多点激励对结构响应的影响等。通过对墩顶与墩底应变、变形及加速度的监测建立恢复力模型对桥梁的抗震分析具有重要的意义。
·结构整体行为方面:包括研究结构在强风、强地面运动下的非线性特性,桥址处环境条件变化对结构动力特性、静力状态(内力分布、变形)的影响等。这对于发展基于监测数据的整体性评估方法非常重要。
·结构局部问题:例如边界、联接条件,钢梁焊缝疲劳及其他疲劳问题,结合梁结合面(包括剪力键)的破坏机制,等等。索支承桥梁缆(拉)索和吊杆的振动与减振、局部损伤机制等也值得进一步观察研究。
·耐久性问题:桥梁结构中的耐久性问题尚有许多问题须要深入研究。缆(拉)索与吊杆的腐蚀、锈蚀问题尤须重视。
·基础:大直径桩的采用也带来一些设计问题,直接套用原先用于中等直径桩的计算方法不很合理。借助大型桥梁监测系统调查大直径桩的变形规律、研究桩的承载力问题,也是设计部门的需要。
四、小结
(1)桥梁结构健康监测不只是传统的桥梁检测技术的简单改进,而是运用现代传感与通信技术,实时监测桥梁运营阶段在各种环境条件下的结构响应与行为,获取反映结构状况和环境因素的各种信息,由此分析结构健康状态、评估结构的可靠性,为桥梁的管理与维护决策提供科学依据。同时,大型桥梁结构健康监测对于验证与改进结构设计理论与方法、开发与实现各种结构控制技术以及深入研究大型桥梁结构的未知问题具有重要意义。因此,健康监测为桥梁工程的发展开辟了新的空间。
(2)大型桥梁健康监测三方面的意义反映了从事桥梁维护管理、设计咨询和理论研究不同领域人员所关注的问题。监测系统的设计应以功能要求和效益-成本分析为基本准则。此外,监测系统的设计应该通过布点优化分析,并且考虑到系统实施中的非常重要的通信问题。