时间:2023-03-29 09:24:38
序论:在您撰写图像处理技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
论文摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。
1.引言
近20多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。20世纪70年代初,X-CT的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI:MagneticResonanceImaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。
在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。
本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。
2.医学图像三维可视化技术
2.1三维可视化概述
医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$/&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。
2.2关键技术:
图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、弹性模型、区域生长、神经网络等适用于医学图像分割的具体方法。
由于可以对同一部位用不同的成像仪器多次成像,或用同一台仪器多次成像,这样产生了多模态图像。多模态图像提供的信息经常相互覆盖和具有互补性,为了综合使用多种成像模式以提供更全面的信息,需要对各个模态的原始图像进行配准和数据融合,其整个过程称为数据整合。整合的第一步是将多个医学图像的信息转换到一个公共的坐标框架内的研究,使多幅图像在空间域中达到几何位置的完全对应,称为三维医学图像的配准问题。建立配准关系后,将多个图像的数据合成表示的过程,称为融合。在医学应用中,不同模态的图像还提供了不互相覆盖的结构互补信息,比如,当CT提供的是骨信息,MRI提供的关于软组织的信息,所以可以用逻辑运算的方法来实现它们图像的合成。
当分割归类或数据整合结束后,对体数据进行体绘制。体绘制一般分为直接体绘制和间接体绘制,由于三维医学图像数据量很大,采用直接体绘制方法,计算量过重,特别在远程应用和交互操作中,所以一般多采用间接体绘制。在图形工作站上可以进行直接体绘制,近来随着计算机硬件快速发展,新的算法,如三维纹理映射技术,考虑了计算机图形硬件的特定功能及体绘制过程中的各种优化方法,从而大大地提高了直接体绘制的速度。体绘制根据所用的投影算法不同加以分类,分为以对象空间为序的算法(又称为体素投影法)和以图像空间为序的算法!又称为光线投射法",一般来说,体素投影法绘制的速度比光线投射法快。由于三维医学图像的绘制目的在于看见内部组织的细节,真实感并不是最重要的,所以在医学应用中的绘制要突出特定诊断所需要的信息,而忽略无关信息。另外,高度的可交互性是三维医学图像绘制的另一个要求,即要求一些常见操作,如旋转,放大,移动,具有很好的实时性,或至少是在一个可以忍受的响应时间内完成。这意味着在医学图像绘制中,绘制时间短的可视化方法更为实用。
未来的三维可视化技术将与虚拟现实技术相结合,不仅仅是获得体数据的工具,更主要的是能创造一个虚拟环境。
3.医学图像分割
医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。
3.1基于统计学的方法
统计方法是近年来比较流行的医学图像分割方法。从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义Markov随机场的能量形式,然后通过最大后验概率(MAP)方法估计Markov随机场的参数,并通过迭代方法求解。层次MRF采用基于直方图的DAEM算法估计标准有限正交混合(SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法来简化这些参数的估计。林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs随机场模型参数无监督及估计难等问题,使分割结果更为可靠。
3.2基于模糊集理论的方法
医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。所以有人将模糊理论引入到图像处理与分析中,其中包括用模糊理论来解决分割问题。基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。这种方法的难点在于隶属函数的选择。模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。Venkateswarlu等[改进计算过程,提出了一种快速的聚类算法。
3.2.1基于模糊理论的方法
模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C-均值(FCM)聚类技术的应用最为广泛。FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。然而,FCM算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割(FFCM)是最近模糊分割的研究热点。FFCM算法对传统FCM算法的初始化进行了改进,用K-均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。它实际上是两次寻优的迭代过程,首先由K-均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。
3.2.2基于神经网络的方法
按拓扑机构来分,神经网络技术可分为前向神经网络、反馈神经网络和自组织映射神经网络。目前已有各种类型的神经网络应用于医学图像分割,如江宝钏等利用MRI多回波性,采用有指导的BP神经网络作为分类器,对脑部MR图像进行自动分割。而Ahmed和Farag则是用自组织Kohenen网络对CT/MRI脑切片图像进行分割和标注,并将具有几何不变性的图像特征以模式的形式输入到Kohenen网络,进行无指导的体素聚类,以得到感兴趣区域。模糊神经网络(FNN)分割技术越来越多地得到学者们的青睐,黄永锋等提出了一种基于FNN的颅脑MRI半自动分割技术,仅对神经网络处理前和处理后的数据进行模糊化和去模糊化,其分割结果表明FNN分割技术的抗噪和抗模糊能力更强。
3.2.3基于小波分析的分割方法
小波变换是近年来得到广泛应用的一种数学工具,由于它具有良好的时一频局部化特征、尺度变化特征和方向特征,因此在图像处理上得到了广泛的应用。
小波变换和分析作为一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测,典型的有如Mallat小波模极大值边缘检测算法[6
3.3基于知识的方法
基于知识的分割方法主要包括两方面的内容:(1)知识的获取,即归纳提取相关知识,建立知识库;(2)知识的应用,即有效地利用知识实现图像的自动分割。其知识来源主要有:(1)临床知识,即某种疾病的症状及它们所处的位置;(2)解剖学知识,即某器官的解剖学和形态学信息,及其几何学与拓扑学的关系,这种知识通常用图谱表示;(3)成像知识,这类知识与成像方法和具体设备有关;(4)统计知识,如MI的质子密度(PD)、T1和T2统计数据。Costin等提出了一种基于知识的模糊分割技术,首先对图像进行模糊化处理,然后利用相应的知识对各组织进行模糊边缘检测。而谢逢等则提出了一种基于知识的人脑三维医学图像分割显示的方法。首先,以框架为主要表示方法,建立完整的人脑三维知识模型,包含脑组织几何形态、生理功能、图像灰度三方面的信息;然后,采用“智能光线跟踪”方法,在模型知识指导下直接从体积数据中提取并显示各组织器官的表面。
3.4基于模型的方法
该方法根据图像的先验知识建立模型,有动态轮廓模型(ActiveContourModel,又称Snake)、组合优化模型等,其中Snake最为常用。Snake算法的能量函数采用积分运算,具有较好的抗噪性,对目标的局部模糊也不敏感,但其结果常依赖于参数初始化,不具有足够的拓扑适应性,因此很多学者将Snake与其它方法结合起来使用,如王蓓等利用图像的先验知识与Snake结合的方法,避开图像的一些局部极小点,克服了Snake方法的一些不足。Raquel等将径向基网络(RBFNNcc)与Snake相结合建立了一种混合模型,该模型具有以下特点:(1)该混合模型是静态网络和动态模型的有机结合;(2)Snake的初始化轮廓由RBFNNcc提供;(3)Snake的初始化轮廓给出了最佳的控制点;(4)Snake的能量方程中包含了图像的多谱信息。Luo等提出了一种将livewire算法与Snake相结合的医学图像序列的交互式分割算法,该算法的特点是在少数用户交互的基础上,可以快速可靠地得到一个医学图像序列的分割结果。
由于医学图像分割问题本身的困难性,目前的方法都是针对某个具体任务而言的,还没有一个通用的解决方法。综观近几年图像分割领域的文献,可见医学图像分割方法研究的几个显著特点:(1)学者们逐渐认识到现有任何一种单独的图像分割算法都难以对一般图像取得比较满意的结果,因而更加注重多种分割算法的有效结合;(2)在目前无法完全由计算机来完成图像分割任务的情况下,半自动的分割方法引起了人们的广泛注意,如何才能充分利用计算机的运算能力,使人仅在必要的时候进行必不可少的干预,从而得到满意的分割结果是交互式分割方法的核心问题;(3)新的分割方法的研究主要以自动、精确、快速、自适应和鲁棒性等几个方向作为研究目标,经典分割技术与现代分割技术的综合利用(集成技术)是今后医学图像分割技术的发展方向。
4.医学图像配准和融合
医学图像可以分为解剖图像和功能图像2个部分。解剖图像主要描述人体形态信息,功能图像主要描述人体代谢信息。为了综合使用多种成像模式以提供更全面的信息,常常需要将有效信息进行整合。整合的第一步就是使多幅图像在空间域中达到几何位置的完全对应,这一步骤称为“配准”。整合的第二步就是将配准后图像进行信息的整合显示,这一步骤称为“融合”。
在临床诊断上,医生常常需要各种医学图像的支持,如CT、MRI、PET、SPECT以及超声图像等,但无论哪一类的医学图像往往都难以提供全面的信息,这就需要将患者的各种图像信息综合研究19],而要做到这一点,首先必须解决图像的配准(或叫匹配)和融合问题。医学图像配准是确定两幅或多幅医学图像像素的空间对应关系;而融合是指将不同形式的医学图像中的信息综合到一起,形成新的图像的过程。图像配准是图像融合必需的预处理技术,反过来,图像融合是图像配准的一个目的。
4.1医学图像配准
医学图像配准包括图像的定位和转换,即通过寻找一种空间变换使两幅图像对应点达到空间位置上的配准,配准的结果应使两幅图像上所有关键的解剖点或感兴趣的关键点达到匹配。20世纪90年代以来,医学图像配准的研究受到了国内外医学界和工程界的高度重视,1993年Petra等]综述了二维图像的配准方法,并根据配准基准的特性,将图像配准的方法分为两大类:基于外部特征(有框架)的图像配准和基于内部特征(无框架)的图像配准。基于外部特征的方法包括立体定位框架法、面膜法及皮肤标记法等。基于外部特征的图像配准,简单易行,易实现自动化,能够获得较高的精度,可以作为评估无框架配准算法的标准。但对标记物的放置要求高,只能用于同一患者不同影像模式之间的配准,不适用于患者之间和患者图像与图谱之间的配准,不能对历史图像做回溯性研究。基于内部特征的方法是根据一些用户能识别出的解剖点、医学图像中相对运动较小的结构及图像内部体素的灰度信息进行配准。基于内部特征的方法包括手工交互法、对应点配准法、结构配准法、矩配准法及相关配准法。基于内部特征的图像配准是一种交互性方法,可以进行回顾性研究,不会造成患者不适,故基于内部特征的图像配准成为研究的重点。
近年来,医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最大化的互信息量作为配准准则进行图像的配准,在配准对象方面从二维图像发展到三维多模医学图像的配准。例如Luo等利用最大互信息法对CT-MR和MR-PET三维全脑数据进行了配准,结果全部达到亚像素级配准精度。在医学图像配准技术方面引入信号处理技术,例如傅氏变换和小波变换。小波技术在空间和频域上具有良好的局部特性,在空间和频域都具有较高的分辨率,应用小波技术多分辨地描述图像细貌,使图像由粗到细的分级快速匹配,是近年来医学图像配准的发展之一。国内外学者在这方面作了大量的工作,如Sharman等提出了一种基于小波变换的自动配准刚体图像方法,使用小波变换获得多模图像特征点然后进行图像配准,提高了配准的准确性。另外,非线性配准也是近年来研究的热点,它对于非刚性对象的图像配准更加适用,配准结果更加准确。
目前许多医学图像配准技术主要是针对刚性体的配准,非刚性图像的配准虽然已经提出一些解决的方法,但同刚性图像相比还不成熟。另外,医学图像配准缺少实时性和准确性及有效的全自动的配准策略。向快速和准确方面改进算法,使用最优化策略改进图像配准以及对非刚性图像配准的研究是今后医学图像配准技术的发展方向。
4.2医学图像融合
图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理来提高图像的清晰度。不同的医学影像设备获取的影像反映了不同的信息:功能图像(SPECT、PET等)分辨率较差,但它提供的脏器功能代谢和血液流动信息是解剖图像所不能替代的;解剖图像(CT、MRI、B超等)以较高的分辨率提供了脏器的解剖形态信息,其中CT有利于更致密的组织的探测,而MRI能够提供软组织的更多信息。多模态医学图像的融合把有价值的生理功能信息与精确的解剖结构结合在一起,可以为临床提供更加全面和准确的资料。
医学图像的融合可分为图像融合的基础和融合图像的显示。(1)图像融合的基础:目前的图像融合技术可以分为2大类,一类是以图像像素为基础的融合法;另一类是以图像特征为基础的融合方法。以图像像素为基础的融合法模型可以表示为:
其中,为融合图像,为源图像,为相应的权重。以图像特征为基础的融合方法在原理上不够直观且算法复杂,但是其实现效果较好。图像融合的步骤一般为:①将源图像分别变换至一定变换域上;②在变换域上设计一定特征选择规则;③根据选取的规则在变换域上创建融合图像;④逆变换重建融合图像。(2)融合图像的显示:融合图像的显示方法可分成2种:空间维显示和时间维显示。
目前,医学图像融合技术中还存在较多困难与不足。首先,基本的理论框架和有效的广义融合模型尚未形成。以致现有的技术方法还只是针对具体病症、具体问题发挥作用,通用性相对较弱。研究的图像以CT、MRI、核医学图像为主,超声等成本较低的图像研究较少且研究主要集中于大脑、肿瘤成像等;其次,由于成像系统的成像原理的差异,其图像采集方式、格式以及图像的大小、质量、空间与时间特性等差异大,因此研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;最后,缺乏能够客观评价不同融合方法融合效果优劣的标准,通常用目测的方法比较融合效果,有时还需要利用到医生的经验。
在图像融合技术研究中,不断有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。随着三维重建显示技术的发展,三维图像融合技术的研究也越来越受到重视,三维图像的融合和信息表达,也将是图像融合研究的一个重点。
5.医学图像纹理分析
一般认为图像的纹理特征描述物体表面灰度或颜色的变化,这种变化与物体自身属性有关,是某种纹理基元的重复。Sklansky早在1978年给出了一个较为适合于医学图像的纹理定义:“如果图像的一系列固有的统计特性或其它的特性是稳定的、缓慢变化的或者是近似周期的,那么则认为图像的区域具有不变的纹理”。纹理的不变性即指纹理图像的分析结果不会受到旋转、平移、以及其它几何处理的影响。目前从图像像素之间的关系角度,纹理分析方法主要包括以下几种。
5.1统计法
统计分析方法主要是基于图像像素的灰度值的分布与相互关系,找出反映这些关系的特征。基本原理是选择不同的统计量对纹理图像的统计特征进行提取。这类方法一般原理简单,较易实现,但适用范围受到限制。该方法主要适合医学图像中那些没有明显规则性的结构图像,特别适合于具有随机的、非均匀性的结构。统计分析方法中,最常用的是共生矩阵法,其中有灰度共生矩阵(graylevelco-occurrencematrix,GLCM)和灰度—梯度共生矩阵。杜克大学的R.Voracek等使用GLCM对肋间周边区提取的兴趣区(regionofinterest,ROI)进行计算,测出了有意义的纹理参数。另外,还有长游程法(runlengthmatrix,RLM),其纹理特征包括短游程优势、长游程优势、灰度非均匀化、游程非均匀化、游程百分比等,长游程法是对图像灰度关系的高阶统计,对于给定的灰度游程,粗的纹理具有较大的游程长度,而细的纹理具有较小的游程长度。
5.2结构法
结构分析方法是分析纹理图像的结构,从中获取结构特征。结构分析法首先将纹理看成是有许多纹理基元按照一定的位置规则组成的,然后分两个步骤处理(1)提取纹理基元;(2)推论纹理基元位置规律。目前主要用数学形态学方法处理纹理图像,该方法适合于规则和周期性纹理,但由于医学图像纹理通常不是很规则,因此该方法的应用也受到限制,实际中较少采用。
5.3模型法
模型分析方法认为一个像素与其邻域像素存在某种相互关系,这种关系可以是线性的,也可以是符合某种概率关系的。模型法通常有自回归模型、马尔科夫随机场模型、Gibbs随机场模型、分形模型,这些方法都是用模型系数来表征纹理图像,其关键在于首先要对纹理图像的结构进行分析以选择到最适合的模型,其次为如何估计这些模型系数。如何通过求模型参数来提取纹理特征,进行纹理分析,这类方法存在着计算量大,自然纹理很难用单一模型表达的缺点。
5.4频谱法
频谱分析方法主要基于滤波器理论,包括傅立叶变换法、Gabor变换法和小波变换法。
1973年Bajcsy使用傅立叶滤波器方法分析纹理。Indhal等利用2-D快速傅立叶变换对纹理图像进行频谱分析,从而获得纹理特征。该方法只能完成图像的频率分解,因而获得的信息不是很充分。1980年Laws对图像进行傅氏变换,得出图像的功率谱,从而提取纹理特征进行分析。
Gabor函数可以捕捉到相当多的纹理信息,且具有极佳的空间/频域联合分辨率,因此在实际中获得了较广泛的应用。小波变换法大体分金子塔形小波变换法和树形小波变换法(小波包法)。
小波变换在纹理分析中的应用是Mallat在1989年首先提出的,主要用二值小波变换(DiscreteWaveletTransform,DWT),之后各种小波变换被用于抽取纹理特征。传统的金字塔小波变换在各分解级仅对低频部分进行分解,所以利用金字塔小波变换进行纹理特征提取是仅利用了纹理图像低频子带的信息,但对某些纹理,其中高频子带仍含有有关纹理的重要特征信息(如对具有明显的不规则纹理的图像,即其高频子带仍含有有关纹理的重要特征)得不到利用。使用在每个分解级对所有的频率通道均进行分解的完全树结构小波变换提取特征,能够较全面地提取有关纹理特征。
由于医学图像及其纹理的复杂性,目前还不存在通用的适合各类医学图像进行纹理分析的方法,因而对于各类不同特点的医学图像就必须采取有针对性地最适合的纹理分析技术。另外,在应用某一种纹理分析方法对图像进行分析时,寻求最优的纹理特征与纹理参数也是目前医学图像纹理分析中的重点和难点。
6.总结
随着远程医疗技术的蓬勃发展,对医学图像处理提出的要求也越来越高。医学图像处理技术发展至今,各个学科的交叉渗透已是发展的必然趋势,其中还有很多亟待解决的问题。有效地提高医学图像处理技术的水平,与多学科理论的交叉融合、医务人员和理论技术人员之间的交流就显得越来越重要。多维、多参数以及多模式图像在临床诊断(包括病灶检测、定性,脏器功能评估,血流估计等)与治疗(包括三维定位、体积计算、外科手术规划等)中将发挥更大的作用。
参考文献
[1]P.Suetens.FundamentalsofMedicalImaging[M].CambridgeUniversityPress,2002.
[2]刘俊敏,黄忠全,王世耕,张颖.医学图像处理技术的现状及发展方向[J].医疗卫生设备,2005,Vol26
(12):25-26.
[3]田娅,饶妮妮,蒲立新.国内医学图像处理技术的最新动态[J].电子科技大学学报,2002,Vol31(5):
485-489.
[4]周刚慧,施鹏飞.磁共振图像的随机场分割方法[J].上海交通大学学报,2001,Vol35(11):1655.
[5]ZhangHM,YuanZJ,CaiZM.SegmentationofMRIusinghierarchicalmarkovrandomfield[J].Journalof
Software,2002,Vol13(9):1779.
[6]林亚忠,陈武凡,杨丰.基于混合金字塔吉布斯随机场模型的图像分割[J].中国生物医学工程学报,
2004,Vol23(1):79.
[7]聂生东,陈瑛,顾顺德.磁共振颅脑图像快速模糊聚类分割算法研究[J].中国生物医学工程学报,2001,
Vol20(2):104.
[8]江宝钏,张钧良.基于BP神经网络的MRI分割[J].微机发展,2000,Vol1:67.
[9]AhmedMN,FaragA.Two-stageneuralnetworkforvolumesegmentationofmedicalimages[J].Proceedings
ofIEEEInternationalConferenceonNeuralNetworks,1997,Vol28(3):1373.
[10]黄永峰,岑康,司京玉等.模糊神经网络在颅脑磁共振图像分割中的应用研究[J].中国生物医学工程
学报,2003,Vol22(6):508.
[11]CostinH,RotariuCR.Knowledge-basedcontourdetectioninmedicalimagingusingfuzzylogic[J].
InternationalSymposiumonSCS’03,2003,1:273.
[12]谢逢,罗立民,田雪琴.基于知识的人脑三维医学图像分割显示方法[J].生物医学工程学杂志,1997,
Vol14(2):124.
[13]王蓓,张立明.利用图像先验知识与Snake结合对心脏序列图像的分割[J].复旦大学学报(自然科学
版),2003,Vol42(1):81.
[14]RaquelVC,VeronicaMB,OscarYS.Couplingofradial-basisnetworkandactivecontourmodelformulti
spectralbrainMRIsegmentation[J].IEEETransactionsonBiomedicalEngineering,2004,Vol51(3):459.
[15]LuoXP,TianJ,LinY.Analgorithmforsegmentationofmedicalimageseriesbasedonactivecontour
model[J].JournalofSoftware,2002,Vol13(6):1050.
[16]HallpikeL,HawkesDJ.Medicalimageregistration:Anoverview[J].BrInstituteRadiol,2004,Vol14(6):
455-463.
[17]PetraA,ElsenV.MedicalImagemaching:Areviewwithclassification[J].IEEETransMedImage,1993,
Vol12(3):26-39.
[18]LuoShuo-qian,LiXiang.Implementationofmutualinformationbasedmulti-modalitymedicalimage
registration[A].EngMedBillSocProc22ndAnnIntConfIEEE[C].NavyPierConventionCenterChicago,
Illinois,USA:TheInstituteofElectricalandElectricalandElectronicsEngineers,Ind,2000,2:1447-1450.
[19]SharmanR,TylerJM,PianykhOL,etal.Afastandaccuratetomethodtoregistermedicalimagesusing
waveletmodulusmaxima[J].PattRecogLett,2000,21:447-462.
[20]LesterH,ArridgeSR.ASurveyofhierarchiclnon-linearmedicalimageregistration[J].PatternRecognition,
1999,32:129-149.
[21]卢健,胡志忠,杨如乃.医学图像融合技术的研究[J].上海生物医学工程,2006,Vol27(3):163-167.
[22]王新成.高级图像处理技术[M].北京:中国科学技术出版社,2001.
[23]RVoracek,HPMcAdams,puterAidedDiagnosisofInterstitialLungDisease:aTexture
FeatureExtractionandClassificationApproach[J].ProcofSPIE,1998,3338:1502-1509.
基于图像采集卡的视频图像处理系统
计算机图像处理系统从系统层次上可分为高、中、低档三个层次,目前一般比较普及的是低档次的系统,该系统由CCD(摄像头)、图像采集卡、计算机三个部分组成,其结构简单,应用方便,效果也比较不错,得到的图像较清晰。目前网上基于VC开发经验的文章不少,可是关于如何在VC开发平台上使用图像采集卡的文章确没发现,笔者针对在科研开发中积累的使用图像采集卡经验,介绍如何自己是如何将采集卡集成到图像开发系统中,希望能够给目前正需要利用图像采集卡开发自己的图像处理系统的朋友有所帮助。
使用的摄像机采用台湾BENTECHINDUSTRIAL有限公司生产的CV-155L黑白摄像机。该摄像机分辨率为752x582。图象采集卡我们采用北京中科院科技嘉公司开发的基于PCI总线的CA-MPE1000黑白图象采集卡。使用图像采集卡分三步,首先安装采集卡的驱动程序,并将虚拟驱动文件VxD.vxd拷贝到Windows的SYSTEM目录下;这时候就可以进入开发状态了,进入VC开发平台,生成新的项目,由于生产厂家为图像采集卡提供了以mpew32.dll、mpew32.lib命名的库文件,库中提供了初始硬件、采集图像等函数,为使用这些函数,在新项目上连接该动态库;最后一步就是采集图像并显示处理了,这一步要设置系统调色板,因为采集卡提供的是裸图形式,既纯图像数据,没有图像的规格和调色板信息,这些需要开发者自己规定实现,下面是实现的部分代码:
CTestView::CTestView()
{
W32_Init_MPE1000();//初始化采集卡
W32_Modify_Contrast(50);//下面的函数是为了对采集卡进行预设置
W32_Modify_Brightness(45);//设置亮度
W32_Set_HP_Value(945);//设置水平采集点数
wCurrent_Frame=1;//当前帧为1,获取的图像就是从这帧取得的
//设置采集信号源,仅对MPE1000有效
W32_Set_Input_Source(1);
W32_CACardParam(AD_SETHPFREQ,hpGrabFreq);
W32_Set_PAL_Range(1250,1024);//设置水平采集范围
W32_Set_VGA_Mode(1);
wGrabWinX1=0;//采集窗口的左上角的坐标
wGrabWinY1=0;
firstTime=TRUE;
bGrabMode=FRAME;
bZipMode=ZIPPLE;
/
lpDib=NULL;//存放获取的图像数据
}
CTestView::~CTestView()
{
W32_Close_MPE1000();//关闭采集卡
}
////显示采集的图象,双击鼠标采集停止
voidCTestView::OnGraboneframe()
{
//TODO:Addyourcommandhandlercodehere
wCurrent_Frame=1;
//设置采集目标为内存
W32_CACardParam(AD_SETGRABDEST,CA_GRABMEM);
//启动采集
if(lpDib!=NULL)
{
GlobalUnlock(hglbDIB);
GlobalFree(hglbDIB);
}
//分配内存
hglbDIB=GlobalAlloc(GHND,(DWORD)wImgWidth*(DWORD)wImgHeight);
lpDib=(BYTE*)GlobalLock(hglbDIB);
hdc=GetDC()->GetSafeHdc();
if(lpDib!=NULL)
{
cxDib=wImgWidth;
cyDib=wImgHeight;
SetLogicPal(hdc,cxDib,cyDib,8);
SetStretchBltMode(hdc,COLORONCOLOR);
bGrabMark=TRUE;
while(bGrabMark==TRUE)
{
if(msg.message==WM_LBUTTONDBLCLK)
bGrabMark=FALSE;
W32_ReadXMS2Buf(wCurrent_Frame,lpDib);
SetDIBitsToDevice(hdc,0,0,cxDib,cyDib,0,0,
0,cyDib,(LPSTR)lpDib,
bmi,
DIB_RGB_COLORS);
}
//停止采集
W32_CAStopCapture();
::ReleaseDC(GetSafeHwnd(),hdc);
return;
}
////将下面这个函数添加在视图类的CTestView::OnSize()函数中,就可以对系统的调色板进行设置。
voidWINAPIInitLogicPal(HDChdc,shortwidth,shortheight,WORDbitCount)
{
intj,i;
shortcxDib,cyDib;
LOGPALETTE*pLogPal;
j=256;
if((pLogPal=(LOGPALETTE*)malloc(sizeof(LOGPALETTE)+(j*sizeof(PALETTEENTRY))))==NULL)
return;
pLogPal->palVersion=0x300;
pLogPal->palNumEntries=j;
for(i=0;ipLogPal->palPalEntry[i].peRed=i;
pLogPal->palPalEntry[i].peGreen=i;
pLogPal->palPalEntry[i].peBlue=i;
pLogPal->palPalEntry[i].peFlags=0;
}
hPal=::CreatePalette(pLogPal);
deletepLogPal;
::SelectPalette(hdc,hPal,0);
::RealizePalette(hdc);
cxDib=width;cyDib=height;
if((bmi=(BITMAPINFO*)malloc(sizeof(BITMAPINFOHEADER)+j*sizeof(RGBQUAD)))==NULL)
return;
//bmi为全局变量,用于显示图像时用
bmi->bmiHeader.biSize=40;
bmi->bmiHeader.biWidth=cxDib;
bmi->bmiHeader.biHeight=cyDib;
bmi->bmiHeader.biPlanes=1;
bmi->bmiHeader.biBitCount=bitCount;
bmi->bmiHeader.biCompression=0;
bmi->bmiHeader.biSizeImage=0;
bmi->bmiHeader.biXPelsPerMeter=0;
bmi->bmiHeader.biYPelsPerMeter=0;
bmi->bmiHeader.biClrUsed=0;
bmi->bmiHeader.biClrImportant=0;
for(i=0;ibmi->bmiColors[i].rgbBlue=i;
bmi->bmiColors[i].rgbGreen=i;
bmi->bmiColors[i].rgbRed=i;
bmi->bmiColors[i].rgbReserved=0;
}
}
视频"画中画"技术
"画中画"这个概念类似与彩色电视机"画中画",就是在一幅大的图像内显示另外一幅内容不同的小的图像,小图像的尺寸大小一般地说为大图像尺寸的1/4或1/9,显示位置在大图像的右上角。这种技术不仅在电视技术中,在可视电话系统也可以发现这种技术的身影,它们都是依靠硬件来实现的,但是如何在VC开发平台上用编程语言来将该功能添加到自己开发的视频监控软件,为使用者提供更大的信息量呢?也许读者最容易想到的是首先显示大图像,然后再在一个固定位置画第二幅小图像,这种技术技术如果对于静止图像当然没有问题,但是对于视频流,由于每一秒钟需要画25幀,即25幅图像,这样一来计算机需要不停的画不停的擦除,会给用户以闪烁的感觉,如何解决这个问题呢?有的参考书上将大小图像分快显示,这种方法要将待显示的图像数据与显示位置的关系对应起来,容易出错不说,而且麻烦,且速度慢,为此,我对该方法进行了改进,得到了满意的效果。实现的代码如下:
voidpictureinpicture()
{
………………………..
CBitmapbitmap,*oldmap;
pData1=(BYTE*)newchar[biWidth*biHeight*3];//biWidth和biHeight为视频采集卡获取//的图像尺寸。
Read(pData1,bih.biWidth*bih.biHeight*3);//该函数从采集卡中获取数据
CClientDCdc(this);
m_pBMI1=newBITMAPINFO;//自定义的BMP文件信息结构,用于后面的图像显示
m_pBMI1->bmiHeader.biBitCount=24;
m_pBMI1->bmiHeader.biClrImportant=0;
m_pBMI1->bmiHeader.biClrUsed=0;
m_pBMI1->bmiHeader.biCompression=0;
m_pBMI1->bmiHeader.biHeight=biHeight;
m_pBMI1->bmiHeader.biPlanes=1;
m_pBMI1->bmiHeader.biSize=40;
m_pBMI1->bmiHeader.biSizeImage=WIDTHBYTES(biWidth*8)*biHeight*3;
m_pBMI1->bmiHeader.biWidth=biWidth;
m_pBMI1->bmiHeader.biXPelsPerMeter=0;
m_pBMI1->bmiHeader.biYPelsPerMeter=0;
////////////////////////////////////////////////////////////////////////
pData2=(BYTE*)newchar[biWidth1*biHeight1*3];//申请存放小图像的缓冲区
Read(pData2,biWidth1*biHeight1*3);////向该缓冲区读数据
m_pBMI2=newBITMAPINFO;
m_pBMI2->bmiHeader.biBitCount=24;
m_pBMI2->bmiHeader.biClrImportant=0;
m_pBMI2->bmiHeader.biClrUsed=0;
m_pBMI2->bmiHeader.biCompression=0;
m_pBMI2->bmiHeader.biHeight=biHeight1;
m_pBMI2->bmiHeader.biPlanes=1;
m_pBMI2->bmiHeader.biSize=40;
m_pBMI2->bmiHeader.biSizeImage=WIDTHBYTES(biWidth1*8)*biHeight1*3;
m_pBMI2->bmiHeader.biWidth=biWidth1;
m_pBMI2->bmiHeader.biXPelsPerMeter=0;
m_pBMI2->bmiHeader.biYPelsPerMeter=0;
//下面实现画中画的显示
CDCMemDc;
MemDc.CreateCompatibleDC(&dc);
bitmap.CreateCompatibleBitmap(&dc,biWidth,biHeight);
oldmap=MemDc.SelectObject(&bitmap);
::StretchDIBits(MemDc.m_hDC,0,0,biWidth,biHeight,0,0,—biWidth,biHeight,pData1,m_pBMI1,DIB_RGB_COLORS,SRCCOPY);//首先将大图像画在内寸上下文中
::StretchDIBits(MemDc.m_hDC,20,20,biWidth1,biHeight1,_
0,0,biWidth1,biHeight1,pData2,m_pBMI2,DIB_RGB_COLORS,SRCCOPY);//再将小图像画在内寸上下文中
::StretchBlt(dc.m_hDC,0,0,bih.biWidth,bih.biHeight,_
MemDc.m_hDC,0,0,bih.biWidth,bih.biHeight,SRCCOPY);//将结果显示在屏幕上。
MemDc.SelectObject(oldmap);
deletepData1;
deletem_pBMI1;
deletepData2;
基于图像采集卡的视频图像处理系统
计算机图像处理系统从系统层次上可分为高、中、低档三个层次,目前一般比较普及的是低档次的系统,该系统由CCD(摄像头)、图像采集卡、计算机三个部分组成,其结构简单,应用方便,效果也比较不错,得到的图像较清晰。目前网上基于VC开发经验的文章不少,可是关于如何在VC开发平台上使用图像采集卡的文章确没发现,笔者针对在科研开发中积累的使用图像采集卡经验,介绍如何自己是如何将采集卡集成到图像开发系统中,希望能够给目前正需要利用图像采集卡开发自己的图像处理系统的朋友有所帮助。
使用的摄像机采用台湾BENTECHINDUSTRIAL有限公司生产的CV-155L黑白摄像机。该摄像机分辨率为752x582。图象采集卡我们采用北京中科院科技嘉公司开发的基于PCI总线的CA-MPE1000黑白图象采集卡。使用图像采集卡分三步,首先安装采集卡的驱动程序,并将虚拟驱动文件VxD.vxd拷贝到Windows的SYSTEM目录下;这时候就可以进入开发状态了,进入VC开发平台,生成新的项目,由于生产厂家为图像采集卡提供了以mpew32.dll、mpew32.lib命名的库文件,库中提供了初始硬件、采集图像等函数,为使用这些函数,在新项目上连接该动态库;最后一步就是采集图像并显示处理了,这一步要设置系统调色板,因为采集卡提供的是裸图形式,既纯图像数据,没有图像的规格和调色板信息,这些需要开发者自己规定实现,下面是实现的部分代码:
CTestView::CTestView()
{
W32_Init_MPE1000();//初始化采集卡
W32_Modify_Contrast(50);//下面的函数是为了对采集卡进行预设置
W32_Modify_Brightness(45);//设置亮度
W32_Set_HP_Value(945);//设置水平采集点数
wCurrent_Frame=1;//当前帧为1,获取的图像就是从这帧取得的
//设置采集信号源,仅对MPE1000有效
W32_Set_Input_Source(1);
W32_CACardParam(AD_SETHPFREQ,hpGrabFreq);
W32_Set_PAL_Range(1250,1024);//设置水平采集范围
W32_Set_VGA_Mode(1);
wGrabWinX1=0;//采集窗口的左上角的坐标
wGrabWinY1=0;
firstTime=TRUE;
bGrabMode=FRAME;
bZipMode=ZIPPLE;
/
lpDib=NULL;//存放获取的图像数据
}
CTestView::~CTestView()
{
W32_Close_MPE1000();//关闭采集卡
}
////显示采集的图象,双击鼠标采集停止
voidCTestView::OnGraboneframe()
{
//TODO:Addyourcommandhandlercodehere
wCurrent_Frame=1;
//设置采集目标为内存
W32_CACardParam(AD_SETGRABDEST,CA_GRABMEM);
//启动采集
if(lpDib!=NULL)
{
GlobalUnlock(hglbDIB);
GlobalFree(hglbDIB);
}
//分配内存
hglbDIB=GlobalAlloc(GHND,(DWORD)wImgWidth*(DWORD)wImgHeight);
lpDib=(BYTE*)GlobalLock(hglbDIB);
hdc=GetDC()->GetSafeHdc();
if(lpDib!=NULL)
{
cxDib=wImgWidth;
cyDib=wImgHeight;
SetLogicPal(hdc,cxDib,cyDib,8);
SetStretchBltMode(hdc,COLORONCOLOR);
bGrabMark=TRUE;
while(bGrabMark==TRUE)
{
if(msg.message==WM_LBUTTONDBLCLK)
bGrabMark=FALSE;
W32_ReadXMS2Buf(wCurrent_Frame,lpDib);
SetDIBitsToDevice(hdc,0,0,cxDib,cyDib,0,0,
0,cyDib,(LPSTR)lpDib,
bmi,
DIB_RGB_COLORS);
}
//停止采集
W32_CAStopCapture();
::ReleaseDC(GetSafeHwnd(),hdc);
return;
}
////将下面这个函数添加在视图类的CTestView::OnSize()函数中,就可以对系统的调色板进行设置。
voidWINAPIInitLogicPal(HDChdc,shortwidth,shortheight,WORDbitCount)
{
intj,i;
shortcxDib,cyDib;
LOGPALETTE*pLogPal;
j=256
if((pLogPal=(LOGPALETTE*)malloc(sizeof(LOGPALETTE)+(j*sizeof(PALETTEENTRY))))==NULL)
return;
pLogPal->palVersion=0x300;
pLogPal->palNumEntries=j;
for(i=0;ipLogPal->palPalEntry[i].peRed=i;
pLogPal->palPalEntry[i].peGreen=i;
pLogPal->palPalEntry[i].peBlue=i;
pLogPal->palPalEntry[i].peFlags=0;
}
hPal=::CreatePalette(pLogPal);
deletepLogPal;
::SelectPalette(hdc,hPal,0);
::RealizePalette(hdc);
cxDib=width;cyDib=height;
if((bmi=(BITMAPINFO*)malloc(sizeof(BITMAPINFOHEADER)+j*sizeof(RGBQUAD)))==NULL)
return;
//bmi为全局变量,用于显示图像时用
bmi->bmiHeader.biSize=40;
bmi->bmiHeader.biWidth=cxDib;
bmi->bmiHeader.biHeight=cyDib;
bmi->bmiHeader.biPlanes=1;
bmi->bmiHeader.biBitCount=bitCount;
bmi->bmiHeader.biCompression=0;
bmi->bmiHeader.biSizeImage=0;
bmi->bmiHeader.biXPelsPerMeter=0;
bmi->bmiHeader.biYPelsPerMeter=0;
bmi->bmiHeader.biClrUsed=0;
bmi->bmiHeader.biClrImportant=0;
for(i=0;ibmi->bmiColors[i].rgbBlue=i;
bmi->bmiColors[i].rgbGreen=i;
bmi->bmiColors[i].rgbRed=i;
bmi->bmiColors[i].rgbReserved=0;
}
}
视频"画中画"技术
"画中画"这个概念类似与彩色电视机"画中画",就是在一幅大的图像内显示另外一幅内容不同的小的图像,小图像的尺寸大小一般地说为大图像尺寸的1/4或1/9,显示位置在大图像的右上角。这种技术不仅在电视技术中,在可视电话系统也可以发现这种技术的身影,它们都是依靠硬件来实现的,但是如何在VC开发平台上用编程语言来将该功能添加到自己开发的视频监控软件,为使用者提供更大的信息量呢?也许读者最容易想到的是首先显示大图像,然后再在一个固定位置画第二幅小图像,这种技术技术如果对于静止图像当然没有问题,但是对于视频流,由于每一秒钟需要画25幀,即25幅图像,这样一来计算机需要不停的画不停的擦除,会给用户以闪烁的感觉,如何解决这个问题呢?有的参考书上将大小图像分快显示,这种方法要将待显示的图像数据与显示位置的关系对应起来,容易出错不说,而且麻烦,且速度慢,为此,我对该方法进行了改进,得到了满意的效果。实现的代码如下:
voidpictureinpicture()
{
………………………..
CBitmapbitmap,*oldmap;
pData1=(BYTE*)newchar[biWidth*biHeight*3];//biWidth和biHeight为视频采集卡获取//的图像尺寸。
Read(pData1,bih.biWidth*bih.biHeight*3);//该函数从采集卡中获取数据
CClientDCdc(this);
m_pBMI1=newBITMAPINFO;//自定义的BMP文件信息结构,用于后面的图像显示
m_pBMI1->bmiHeader.biBitCount=24;
m_pBMI1->bmiHeader.biClrImportant=0;
m_pBMI1->bmiHeader.biClrUsed=0;
m_pBMI1->bmiHeader.biCompression=0;
m_pBMI1->bmiHeader.biHeight=biHeight;
m_pBMI1->bmiHeader.biPlanes=1;
m_pBMI1->bmiHeader.biSize=40;
m_pBMI1->bmiHeader.biSizeImage=WIDTHBYTES(biWidth*8)*biHeight*3;
m_pBMI1->bmiHeader.biWidth=biWidth;
m_pBMI1->bmiHeader.biXPelsPerMeter=0;
m_pBMI1->bmiHeader.biYPelsPerMeter=0;
////////////////////////////////////////////////////////////////////////
pData2=(BYTE*)newchar[biWidth1*biHeight1*3];//申请存放小图像的缓冲区
Read(pData2,biWidth1*biHeight1*3);////向该缓冲区读数据
m_pBMI2=newBITMAPINFO;
m_pBMI2->bmiHeader.biBitCount=24;
m_pBMI2->bmiHeader.biClrImportant=0;
m_pBMI2->bmiHeader.biClrUsed=0;
m_pBMI2->bmiHeader.biCompression=0;
m_pBMI2->bmiHeader.biHeight=biHeight1;
m_pBMI2->bmiHeader.biPlanes=1;
m_pBMI2->bmiHeader.biSize=40;
m_pBMI2->bmiHeader.biSizeImage=WIDTHBYTES(biWidth1*8)*biHeight1*3;
m_pBMI2->bmiHeader.biWidth=biWidth1;
m_pBMI2->bmiHeader.biXPelsPerMeter=0;
m_pBMI2->bmiHeader.biYPelsPerMeter=0;
//下面实现画中画的显示
CDCMemDc;
MemDc.CreateCompatibleDC(&dc);
bitmap.CreateCompatibleBitmap(&dc,biWidth,biHeight);
oldmap=MemDc.SelectObject(&bitmap);
::StretchDIBits(MemDc.m_hDC,0,0,biWidth,biHeight,0,0,—biWidth,biHeight,pData1,m_pBMI1,DIB_RGB_COLORS,SRCCOPY);//首先将大图像画在内寸上下文中
::StretchDIBits(MemDc.m_hDC,20,20,biWidth1,biHeight1,_
0,0,biWidth1,biHeight1,pData2,m_pBMI2,DIB_RGB_COLORS,SRCCOPY);//再将小图像画在内寸上下文中
::StretchBlt(dc.m_hDC,0,0,bih.biWidth,bih.biHeight,_
MemDc.m_hDC,0,0,bih.biWidth,bih.biHeight,SRCCOPY);//将结果显示在屏幕上。
MemDc.SelectObject(oldmap);
deletepData1;
deletem_pBMI1;
随着社会发展,计算机图像处理技术的重要性逐渐被人们发现,将主要朝以下几个方面发展:(1)未来的计算机图像处理技术将会向自动化、智能化、高清晰度、高速传输、三维立体成像等方向发展。(2)计算机图像处理技术将会朝两个方面发展:一是注重实际操作,二是注重运用便捷。向图像处理功能的集中化发展。(3)注重研究先进的算法和理论作为指导。理论是实践的基础,先进的理论可以使未来计算机图像处理技术在实际运用中得到更广泛的发展,所以,必须注重及时对先进理论和方法的研究与开发,这样才能保证计算机图像处理技术的更好应用。先进理论和方法主要包括小波分析、遗传算法、分形几何等方面。
2计算机图像处理技术的组成
计算机图像处理技术是通过计算机对图像分析处理达到需要的结果的一项技术。一般被称作数字图像处理,通过扫描、摄像机等设备经过数字化之后得到二维数组,就是像素。计算机图像处理技术主要包括以下三个部分:(1)图像增强与复原:由于需要改进图片的质量,这就需要对图片进行图像增强,通过低通滤波可以将图片中的噪音去掉;通过高通滤波可以将边缘等高频信号进行增强,使图片清晰。复原则是在已知模型的特定模糊和噪音程度情况下估计出原来图像的技术。(2)图像压缩:由于图像的数据比较巨大,对图片储存和传输都比较困难,因此,需要对图像进行压缩,以节省存储空间和减少传输时间。图像压缩分为对静态图像的不失真压缩方法和用于动态图像的近似压缩方法。(3)图像匹配、描述与识别:这是图像处理的主要目的,得到不再是具有随机分布性质的文件,而是具有明确意义的符号、数值构成的图形。
3计算机图像处理技术的主要应用领域
3.1计算机辅助设计与制造技术
这项技术学科交叉、知识比较密集、应用范围比较广泛,是综合性应用技术,由计算机与制造工程两个技术相互渗透,相互结合。是先进技术的重要组成部分,计算机辅助设计与制造技术是一个国家工业现代化与科技水平的主要衡量标准之一。这项技术在工业领域中最主要的代表就是CAD与CAM这两项实用工具。同时,在建筑设计、装潢设计等领域也应用广泛,也可以用来进行对飞机、汽车等工具的外形设计。当然,在其他方面也应用广泛,而且得到的效果非常好,比如:电路板的印刷、网络分析等等方面。
3.2遥感图像处理系统
遥感技术的发展推动了高质量的不同波段遥感数字图像被广泛运用于农林牧副渔等行业的科技现代化之中。图像处理在遥感技术领域有着十分重要的地位,将来会形成快速成像与信息自动化提取系统,而这个系统也是以图像处理为主。遥感图像处理技术功能将会不断完善,得到更大的发展。
4计算机图像处理技术的发展前景
现代科技的进步使计算机技术得到快速的发展,也就使计算机技术运用在图像处理中有了可能,并且在图像处理中产生了很重要的影响。现在人们对图像的要求越来越高,想要满足人们越来越高的要求,就必须不断进步、不断创新。计算机技术将会越来越广泛的运用于社会中,图像处理技术也会越来越依赖计算机。随着大量的成熟软件的不断被研发,既有专业软件,也有普通软件,可以满足所有人的要求。技术人员应该开发新技术来满足更多、更复杂的图像处理要求,使图像更加的丰富多彩。
5结语
关键词:计算机图像处理技术;数字全息
0引言
全息技术是物理学中一重要发现,越来越多的应用于各个行业。伴随着CCD技术和计算机技术的发展,全息技术也得到一次质的飞跃,从传统光学全息到数字全息。传统光学全息将物光和参考光干涉得到全息照片来记录光的振幅和相位信息,而数字全息则用CCD记录物光和参考光的干涉,形成数字全息图,再通过计算机图像处理技术处理全息图。因此,影响数字全息技术发展有两个重要方面:CCD技术和计算机图像处理技术。本文将从计算机应用方面阐述图像处理技术在全息中的应用。
1图像处理技术
图像是现代社会人们获取信息的一个主要手段。人们用各种观测系统以不同的形式和手段获得图像,以拓展其认识的范围。图像以各种形式出现,可视的、不可视的,抽象的、实际的,计算机可以处理的和不适合计算机处理的。但究其本质来说,图像主要分为两大类:一类是模拟图像,包括光学图像、照相图像、电视图像等。它的处理速度快,但精度和灵活性差。另一类是数字图像。它是将连续的模拟图像离散化后处理变成为计算机能够辨识的点阵图像。从数字上看,数字图像就是被量化的二维采样数组。它是计算机技术发展的产物,具有精度高、处理方便和重复性好等特点。
图像处理就是将图像转化为一个数字矩阵存放在计算机中,并采用一定的算法对其进行处理。图像处理的基础是数学,最主要任务就是各种算法的设计和实现。目前,图像处理技术已经在很多方面有着广泛的应用。如通讯技术、遥感技术、生物医学、工业生产、计算机科学等等。根据应用领域的不同要求,可以将图像处理技术划分为许多分支,其中比较重要的分支有:①图像数字化:通过采样和量化将模拟图像变成便于计算机处理的数字形式。③图像的增强和复原:主要目的是增强图像中的有用信息,削弱干扰和噪声,使图像清晰或将转化为更适合分析的形式。③图像编码:在满足一定的保真条件下,对图像进行编码处理,达到压缩图像信息量,简化图像的目的。以便于存储和传输。④图像重建:主要是利用采集的数据来重建出图像。图像重建的主要算法有代数法、傅立叶反投影法和使用广泛的卷积反投影法等。⑤模式识别:识别是图像处理的主要目的。如:指纹鉴别、人脸识别等是模式识别的内容。当今的模式识别方法通常有三种:统计识别法、句法结构模式识别法和模糊识别法。⑥计算机图形学:用计算机将实际上不存在的,只是概念上所表示的物体进行图像处理和显现出来。
2计算机图像处理技术在全息学中的应用
图像处理技术在全息中的应用主要表现在:一是计算全息,基于计算机图形学将计算机技术与光全息技术结合起来,通过计算机模拟、计算、处理,制作出全息图。因此它可以记录物理上不存在的实物。二是利用图像的增强和复原,图像编码技术等对数字全息图像质进行提高以及实现的各种算法。它的应用大致可以分为两大类,即空域法和频域法:①空域法:这种方法是把图像看作是平面中各个像素组成的集合,然后直接对这一二维函数进行相应的处理。空域处理法主要有下面两大类:一是领域处理法。其中包括梯度运算(GradientAlgorithm),拉普拉斯算子运算(LaplacianOperator),平滑算子运算(SmoothingOperator)和卷积运算(ConvolutionAlgorithm)。二是点处理法。包括灰度处理(greyprocessing),面积、周长、体积、重心运算等等。②频域法:数字图像处理的频域处理方法是首先对图像进行正交变换,得到变换频域系列阵列,然后再施行各种处理,处理后再反变换到空间域,得到处理结果。这类处包括:滤波、数据压缩、特征提取等处理。
3模拟实验
本文运用matlab软件,利用图像处理技术,编写了程序,以模拟计算全息和实现全息图像的滤波。图1是计算全息实现流程图。
本文将运用matlab程序设计语言实现计算全息的制作、再现过程。标有“涉”一字,图像尺寸为1024像素×1024像素;。模拟实验中用到的参数为:激光模拟了氦氖激光器,波长为638.2nm;再现距离为40cm;因为原始物图的尺寸用像素为单位表示,所以像素分辨率为1。
从模拟实验中可以看出,数字全息的处理过程其实就是计算机图像处理在全息技术的应用过程。利用计算机图像处理技术对全息图进行了记录,将物光和参考光干涉得到了全息图。并利用图像的增强和复原对图像进行了处理,以消除噪声,得到更好的全息再现象。
本文仅模拟了计算全息的实现和再现过程,其实,计算机图像处理在全息技术中的应用是全方位的,用实验方法得到的全息图中包含了更多的其他无用信息(噪声),图像处理技术在这里就显得尤为重要。随着计算机图像处理技术的进一步发展,全息技术必然会迎来新的一轮发展和飞跃。超级秘书网:
参考文献:
[1]周灿林,亢一澜.数字全息干涉法用于变形测量.光子学报,2004,13(2):171-173.
[2]刘诚,李银柱,李良钰等.数字全息测量技术中消除零级衍射像的方法[J].中国激光,2001,A28(11):1024-1026.
网页中的图像,按照存储格式不同可以分为矢量图和位图,按照使用用途的不同,大致可以分为地址栏图像,网站Logo,网页内容图像等。地址栏图像类似一个图标,显示在地址栏网址前边,一般经过精心设计,能够传递公司专业与精细的形象。内容图像是指嵌在网页中或者作为网页背景的图像。伴随网络技术和软件技术的进步,用于图像处理设计的软件有了很大的发展。网页三剑客中的Dreamweaver在进行网页设计的同时,可以对一些图片进行简单的变化处理,fireworks能满足对网页图片处理的大部分功能要求。对于一些有特殊要求的图像,可以使用Adobe公司的Photoshop软件进行处理;在进行Logo等设计时,一般使用CorelDraw或Illustrator等软件来完成。在进行图像的设计、选择和处理中,掌握专业软件的基本使用技巧是必需的,图像在网页设计中的功能主要可以分为视觉吸引、信息引导两方面。要达到这样的目的,需要对图像进行合理的处理。使用动画图片,以及适当的色彩对比,形成版式的变化,吸引浏览者的注意,引导其对网站内容的阅读。根据公司对网站的功能定位,其所承载的任务与指向有所不同,对浏览者所作设定亦有差异。比如腾讯公司的腾讯网()和腾讯(),一个作为门户内容网站,一个作为公司形象网站是两个独立的网站,设计风格,内容和要求差异很大。
2新技术
网络作为第四媒体,其显示终端可能是计算机,平板,电视或智能手机,为了页面兼容等原因,前端设计出现了很多新技术,如div+css技术,Javascript技术等,为了方便管理,一般采用对象的结构、表现和行为分开。结构是对象的内容,表现是其外观,而行为是与浏览者的交互,或者说是浏览者进行鼠标点击或输入内容等操作时,页面的反应。在进行网页设计过程中,图像对象也是如此,利用代码可以对图像进行一些效果的处理,起到资源占用少,页面维护容易等目的,还可以达到一些用基本图像处理技术不易实现的效果。用div+css结合Javascript技术可以实现在网页前端一些设计效果和逻辑处理功能,比如图像轮播和验证码校验功能。在一个存在后台管理的网站中,网页的很多内容来自于后台数据库,一些图片也不例外,内容需要和后台交互,根据数据库的内容和页面的特定逻辑,决定图像的外观。这是基本图像处理技术无法实现的,需要设计者了解动态页面设计技术,常见的技术有,php和jsp技术等。
3结论
过去的文献整理工作十分复杂,需要耗费大量的时间。通常是由整理人员对需要整理的文献先进行清点,编写一个清单,然后摄影人员按照清单的内容对资料进行缩微拍摄,最终归档。但是,随着计算机技术的不断改革创新,在目前的文献整理工作中融入了很多高科技的元素,计算机发挥着其重要作用。在20世纪计算机技术刚刚兴起的时候,人们运用计算机整理文献的大致流程是:第一步先通过数据库软件对需要整理的文件中的数据进行整合,记录在数据库当中;第二步将需要拍摄的内容录入到Word文档当中,形成一个拍摄清单,里面表明刊头等要素;第三步将文档通过计算机打印出来。这三个步骤的完成都离不开计算机,同时因为人工智能代替的人力,减少了传统方法中出现差错的机会,使得整理工作更加精确和严密。在这一过程中,数据库发挥着主导作用。到了21世纪,计算机软件技术又出现了新的突破,人们需求的不断变化,工作难度的增加,使最传统的办公软件已经无法应付,需要开发一些有针对性的软件来完成一些特殊的流程,减少人们的工作量,提高工作的效率。在微缩工程中,文献整理占据了重要的地位,因此人们针对这一工程开发了专门的软件技术。上个世纪文献整理工作主要运用的是丹诚数据库,但是面对复杂庞大的数据,如果仅仅是需要进行一个胶片盒的盒标打印工作,都需要将该数据库当中每一条用的到的数据依次打开,然后再逐个进行复制粘贴到规定的文档当中,规范一个格式,最后再进行打印。如此一个小的任务,就需要进行很多次的复制粘贴,程序很复杂,同时稍不留神就会出现错误。针对这一问题,一种新的计算机软件便由此出现--marc-pro.exe。该应用程序是为了辅助数据库的工作而设计的,它能够使数据库充分地发挥其自身的功能,在文献整理工作中发挥了重要的作用,提高了文献整理工作的效率。
2对图像处理工作的帮助
目前无论是任何地点,都能够看到监控摄像头,视频监控已经成为了社会的一种现象。视频监控强调视频的清晰度,才能够更好地为大众服务。随着出现的各种图像处理方法,图像的清晰度在不断地提高。而针对图像处理这一任务,出现了各种处理软件,并且随着人们对图像清晰度提出的新要求,这些软件也在不断的完善。
2.1常用的图像处理功能
下面为大家分析一下在图像处理时候,对软件要求的几项功能。模糊图像清晰化功能。实际拍摄中,焦距、运动等对图像进行的影响,出现图像模糊化,运用处理软件使原本模糊的图像清晰。该项功能在实际生活中得到了广泛的运用;消除噪声。很多视频拍摄完毕后,都会有很多干扰的声音,覆盖了我们需要的声音。利用自动增强的功能,能够使该图像所要反映的内容更加突出;同时还能够对图像进行锐化处理、将其锯齿消除。同时,由于很多监控设备像素不是很高,拍摄出来的画面在放大之后会出现一片马赛克的现象,可以运用软件将马赛克弱化。在拍摄物体的时候,如果该物体是背朝光源,就会出现拍摄出来的画面很暗,无法看清楚物体的原貌,这是就可以用明暗校正的功能来处理该图像;图像的重建功能。可以将拍摄的画面分为多个帧,将帧进行融合,然后将模糊的部分进行清晰化处理;如果图像中出现的人物面部不是很清晰,可以通过帧平均的方法,使人的五官变得更加清楚;对动态视频处理的功能。可以将拍摄中画面的亮度、明暗对比、噪声等问题进行处理;因为光线、监控机自身的原因,造成了拍摄的画面出现了失真的问题,可以通过还原图像的功能,使原本图像的颜色真实展现在人们眼中。
2.2具体实例