时间:2023-03-27 16:46:32
序论:在您撰写桥梁结构论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
桥梁的结构设计的第一要务则是针对即将建造施工的地区选择一项经济合理的方案,第二就是根据方案选取规范的安全系数,从理论上保证设计结构的安全。桥梁的安全问题一般都出现在施工过程之中,耐久性不够强这类问题往往是由于管理人员的疏忽。在施工之前,桥梁的结构构造体系、结构材料的使用从开始动工到结束都需要技术人员的管理和核对,在这过程之中就有人员疏忽造成的材料结构数据不准确,结构整体性和延长性不足,冗余性较长;另外还有设计的图纸图示不明,在施工时的混凝土的等级的达标问题,所使用的钢筋直径的粗细程度,构件的截面的厚度等问题都需要人员的核实。一旦某一个管理环节被疏忽或者遗漏就会造成桥梁的使用持久性下降。另外,桥梁的安全性和持久性还和使用环境的不同有很大的关系,这是一个不可抗拒因素,无论是再科学合理的设计方案和巨细无遗的管理方案都无法弥补由环境的更新带来的问题。材料以及钢架需要一段时间的适应,这个问题的结构就需要施工人员和设计人员对材料特性的了解以及丰富的经验和准确的判断。
桥梁的结构性能的评比
桥梁的安全性和耐久性并不是被动的等到桥梁出现破损甚至倒塌才能够鉴定出桥梁的建设及使用情况,专业的数据评估制度是完善桥梁建设的标准。在国家建立的专业的桥梁检测标准中对使用年代较旧的桥进行检测。对于桥梁的负荷承载标准比较低和桥梁存在隐患的城市桥梁按标准进行技术评价。对于不能够达到建设时所设定的承载量的桥梁及时设置警示标志。桥梁的评比也只是集中在桥梁的几个重要方面,桥梁的变形观测、桥梁路面的线形弧度、剪力、轴力和基准线方向的偏离等等。国家还明确的规定了桥梁各个部件所使用的比例和限定额,在桥梁的施工后各项指标都不能够低于国家的标准。这也就有利于相关部门的审查与判断,数据的使用也预先知道桥梁的建设情况,保证其使用的安全性。
安全性是桥梁建设的根本出发点
质量桥梁建设的生命,桥梁作为沟通城市与城市之间的纽带,保证桥梁的畅通性。车辆行驶在桥梁上更加注重的是其安全性以及舒适型,因此有关部门必须高度重视桥梁的安全。一般的桥梁主桥部分为钢筋混凝土建成,钢索使用预应力混凝土的斜拉桥,建设过程中因地制宜的加筑排水孔,这些措施都是为了保证桥梁的安全性能。安全性是国家和人民都重视的问题,也是桥梁的基本特性,同时也是桥梁使用的意义所在。桥梁的施工、监理等工作也是相互合作关系,施工方需要接受工程师的监督、管理,这是创造监理工作的核心所在。安全性则满足设计的要求,施工工艺以及施工标准也均达标。只有坚持严格的检查,实行严格的责任问责制才能够换来桥梁的安全使用。
耐久性对桥梁建设的重要意义
钢筋的耐久性都是由材料的主要是由材料的使用以及设计的科学性,其中桥梁混凝土耐久性还受钢筋锈蚀的威胁,这个对桥梁的耐久性破坏主要分为几个表现,钢筋的表面由于空气自然因素出现了锈斑和锈片;随着时间的推移钢桥梁的筋的硬度发生了变化,进行膨胀,出现胀裂情况,桥梁的有效截面不断的减小,导致桥梁的有效截面逐渐变小,对汽车等承载力下降,最后混凝土丧失其承载能力。坚强桥梁的耐久性对桥梁具有重要的意义,只是对人民财产安全的保障,也能够为国家节省建设资本,同时又有于桥梁技术的发展。
桥梁结构应具有足够的强度,以承受作用于其上的重力和附加力;结构各部必须具有足够的刚度,以使其在荷载作用下不产生过大的挠曲和变形;结构各部尺寸必须具有适当大小,以使其承受轴向压力时的构件不发生屈曲,丧失稳定性。同时结构也要具有较高的耐久性。由于作用荷载的随机性、材料强度的离散性、制造与施工质量的分散性、计算假定的近似性,致使在长期使用过程中桥梁结构产生病害,其具体原因如下:
1.原设计荷载偏低,交通发展后车辆荷载增大,桥梁因承载能力不足而产生病害。
2.结构设计中存在缺陷,如采用桥型结构不当、设计假定不尽合理。
3.桥梁施工质量差,未按设计要求和施工规程实施。
4.不重视桥梁后期养护工作,没有及时消除己产生的病害。
5.洪水等自然灾害使桥梁产生损坏。
6.地质条件差,如滑坡、软基等导致桥梁产生病害。
二、桥梁加固的一般流程
在桥梁结构发生病害后,需要采取措施进行加固维修或者更换。桥梁加固工程一般应遵循以下工作程序:
结构可靠性鉴定—加固方案确定—加固设计—施丁组织设计—施工—验收。
结构可靠性鉴定,主要是对病害结构的病情诊断。加固方案好比处方,加固设计是现行规范及有关标准对加固方案的深化过程。加固施工是对被加固结构按加固设计进行加固的施工过程,对于大型结构加固,为确保质量和安全,施工前应编制施工组织设计。
三、桥梁加固增强技术
桥梁的增强改造可以分为裂缝修补和对桥梁结构的加固增强,下面介绍其特点及其适用的场合。
(一)裂缝修补技术
裂缝修补的目的在于恢复结构物的防水性和耐久性,主要技术有:
1.表面处理法,在微裂缝的表面涂抹填料及防水材料,以提高其防水性和耐久性。对于宽度发生变化的裂缝,要设法使用有伸缩性的材料。
2.注浆法,在裂缝中注入树脂或水泥类材料,以提高其防水性及耐久性。主要注浆材料是环氧树脂,多采用低压低速注入法。环氧树脂注入法与钢钉并用,可以增强裂缝部位的整体性,是一种防止裂缝继续发展的好办法。
3.充填法,这是一种适合于修补较宽裂缝的方法,具体做法是沿裂缝凿一条深槽,然后在槽内嵌补各种粘结材料,如水泥砂浆、环氧砂浆、膨胀水泥砂浆、环氧树脂硅、沥青及各种化学补强剂等。4.表面喷涂法,喷浆修补是一种在经凿毛处理的裂缝表面,喷射一层密实而且粘度高的水泥砂浆保护层,来封闭裂缝的修补方法。喷浆前,需要把结构表面的剥离部分除去,再用水冲洗清洁,并在开始喷浆之前把基层湿润,然后再开始喷浆。
5.粘结钢板封闭法,当钢筋硂构件产生主拉应力裂缝时,可对裂缝先进行处理之后,再在裂缝处粘结钢板,并用膨胀螺栓对钢板加压。钢板粘结方向应和裂缝方向垂直。
(二)桥梁加固增强技术
本文以最常见的桥梁结构形式的上部结构及其常见的加固方法进行说明。
梁式桥上部结构加固增强技术主要有加大截面加固法、外部粘贴加固法、外部预应力加固法、改变结构体系加固法、增设纵梁加固法。
加大截面加固法采用增大构件的截面面积,根据荷载大小和净空条件不同,可分为以加大截面面积为主和加配钢筋为主两种加固方案。
外部粘贴加固法系用型钢、玻璃钢等材料通过环氧树脂等粘合剂粘贴在结构外部,以提高结构承载能力的一种方法。适用于构件尺寸受限制但又必须大幅度提高结构承载能力的场合,必须保证粘和剂的质量
外部预应力加固法指运用预应力原理,在增设的构件或原有构件上施加一定初始应力的一种加固方法。采用对受拉区施加预加压力,可以抵消部分自重应力,起到卸载、减小跨中挠度、减小裂缝宽度或闭合裂缝的作用。
改变结构体系加固法通过增设支撑或桥墩,把简支变为连续、在梁下增设如钢架等加劲梁或叠合梁,以减小梁内控制截面峰值弯矩,提高承载能力的一种加固方法。
增设纵梁加固法在桥梁墩、台基础稳定,并具有足够承载能力的情况下,可采用增设承载能力高和刚度大的新纵梁,这些新梁与旧梁连接在一起共同受力。由于应运中的车辆荷载在新增主梁后的桥梁结构中重新分布,使原梁中所受荷载得以减少,加固后的桥梁承载能力和刚度得以提高。当增设的纵梁位于主梁的一侧或两侧时,兼有拓宽的作用。此法适用于梁体结构基础完好,而承载能力不能满足要求的场合。
(三)桥梁结构加固新技术——锚喷
关键词:系统桥梁分形
一、系统论
1945年贝塔郎菲提出了一般系统论的新思维,随后维纳、申农分别提出了控制论和信息论,从而使得人们对事物整体和部分的关系看法由机械整体性发展到系统整体性。60~70年代间,系统科学出现了耗散结构论(普里高津)、协同论(哈肯)、超循环论(艾根)和突变论(托姆),主要讨论系统的存在、发展和消亡,强调任何一个净化系统都能够自行组织,并且不同要素之间具有协调作用。70年代以来,对系统最核心的问题即系统机制的研究得到广泛关注,出现了对系统机制解释的混饨理论、分形理论、孤波理论等,构成了系统动力学理论,主要考察系统的非线性机制。
凡物皆系统,考察任何系统都要对其要素、结构、功能、环境等方面进行分析。系统具有以下主要特性:①加和性和非加和性;②整体不等于部分之和;③整体功能取决于要素、结构和环境;④结构决定了系统的功能。系统处于非平衡态,需要外加的能量(或信息)来维持,因此,能够产生新的结构的系统一定是开放的。系统远离平衡态失稳以至形成新的结构要依赖于非线性的反常涨落。涨落在远离平衡时起驱动作用,不可逆性会导致新的结构,产生新的质。
系统论已被应用于很多领域,本文旨在应用系统研究的思想来系统地理解桥梁结构的一些新领域,进而将系统机制理论引入桥梁系统的研究。
二、桥架结构系统
桥梁是由多种材料、不同结构组合而成的复杂系统。桥梁结构系统的要素、结构、功能及环境的简要示意图。桥梁结构系统是桥梁工程大系统的一个子系统,不同的桥梁结构体系又构成各个更低层次的子系统。要素中的各种基本构件也构成一个层面上的系统,有其自身的要素、结构、功能和环境。
桥梁结构系统整体不等于部分之和。单个基本构件,比如单个梁构件,是无法实现跨越峡谷甚至海峡的目的的,而多个构件按照一定的构造规则组成悬索桥或斜拉桥就可以实现。结构系统的整体功能取决于构件单元、结构体系和环境状况,其中起决定性的是系统的结构,通常只有大跨斜拉桥和悬索桥才能作为跨海大桥的候选桥型,对抗震性能要求较高的地区,应选用抗震性能较好的结构系统,如连续刚构、斜拉桥等,或对连续梁等桥型进行结构的改进,设计支座单元,达到减震目的。
耗散结构理论认为,在远离平衡状态的非平衡区内,在非线性的非平衡作用下系统演化方向是不确定的,系统的平衡可能失稳,发生突变或分又,系统呈现出新的结构稳定状态。这种结构是一种非平衡的结构,接受环境注入系统的负熵流才能稳定。桥梁的非线同样体现了这一思想,桥梁的失稳为系统突变所致,地震荷载作用下的桥梁系统的延性抗震性能也是结构非线性性能的体现。
三、桥架结构的系统研究思路
1.系统识别与健康监测
结构系统识别是通过试验和计算机来实现对结构的建模。桥梁结构可以看作一?quot;灰箱"系统,处于一定环境中的桥梁结构,一定的输入对应一定的输出,通过对系统输出和输入的分析,可以实现对结构系统的判断和识别。对这样一个灰箱的识别首先应确立一个由梁整体监测的许多困难,对桥梁在使用年限内工作特性的变化缺乏全面深入的研究,难以建立客观同一的桥梁状态评估标准。所以整个技术的成功开发乃至系统目标的最终实现有赖于更好地结合系统自身的要素、结构和系统工作环境。
具体实现桥梁结构系统的健康监测与状态评估,当前主要有以下几方面的工作【2】
(1)针对系统输出:开发和应用以无线通讯技术为手段的数据采集系统;开发能适用于交通荷载风荷载及定点测试荷载的传感器最优布设技术;
(2)针对系统输入和输出的反向分析:采用动态边界子结构原理,开发以结构模型修正法为基础的结构损伤识别技术;研究非线性结构模型的时域评估方法及系统识别技术;寻找更适合桥梁监测的新指纹;开发桥梁观察与监测收据管理系统及决策专家系统;综合良态建模技术,改善有限元模型修正方法;
(3)系统分析的终端应用:根据观察与监测的结果分析实桥的剩余承载能力;建立桥梁安全准则及能用于桥梁整个寿命过程经济评价的估价模型。
2.系统控制
古典控制理论起源于本世纪20年代,主要以单变量线性定常系统为研究对象,以频率法为主要方法研究控制系统的动态特性。50年代以来,逐渐出现了多变量系统、系统灵敏度分析、动态系统测试状态空间方法和Bellman动态规划等现代控制理论方法【5】。
在系统与控制理论中,主要研究动力学系统。桥梁结构在动力荷载作用下,表现为不确定性的随机系统,其非线受到越来越多的关注和研究。尤其在桥梁的抗震和抗风领域,近年来从传统的抗震抗风设计思路发展到结构控制思想。目前的结构控制方式主要有被动控制、主动控制和混合控制,被动控制是通过支座、阻尼器等装置来消耗输入系统的外部环境能量;主动控制的基本思想是通过主动施加外部能量来抵消和消耗环境输入能量,使偏高平衡状态的系统在新的注入能量流作用下找到平衡。
早在1890年,最早的隔震器就产生了,当前已应用的有叠层橡胶、旋转弹簧等多种支座和弹塑性、粘性、干摩擦等阻尼器用于对系统的被动控制。Constantinou在1991年提出了采用位移控制装置和滑动支座相结合的滑动隔震体系,最大限度地减少了输入能量向结构系统的传递[4].
有些主动控制技术(如AMD)已经进入实用阶段,在日本已经建成了一批主动控制的建筑。通过主动控制,一方面可以用最有效的方法抵抗外部激励,另一方面可以直接减小输入到结构上的激励水平。当前有主动连杆控制技术和主动调质阻尼器系统(AMD)技术实现对系统的主动控制。混合控制系统当前主要有对振动控制系统、混合基础隔震系统和可变阻尼系统。当前的这些技术还处于发展之中,不但在桥梁抗震抗风领域,而且在房屋等建筑领域甚至是整个土木工程都有广阔的应用前景。
3.系统非线性机理
传统自然科学趋向于强调稳定、有序、单一、均匀与平衡,带有线性的色彩,到本世纪70年代前后,自然科学的锋芒开始转向现实世界的失稳、无序、多重性、不均匀和非平衡等方面。非线性系统已成为自然科学的主要研究对象,因为非线性是一切复杂现象的本源[5]。
1973年,费根包姆提出的混饨理论大大推进了非线性理论在系统科学中的应用,混饨理论、分形论、孤波理论共同构成系统动力学理论,探讨系统的非线性机制。桥梁结构系统也是一个混饨系统,具有不可预测性、不可分解性和存在规律性,而且这一混饨系统具有分形性质,即自相似性。这里重点讨论桥梁系统动力学行为特别是桥梁抗震系统中的分形特征。
(1)分形与分维
1977年,Mandelbrot出版了专著《分形、机遇和维数》(Fractal:Form,ChanceandDimension,Freemen,SanFrancisco,1977),标志着分形理论的诞生。分形是其组成部分以某种方式与整体相似的形,即分形是指一类无规则、混乱而复杂但其局部与整体有相似性的体系。
数学家按一定的规则构造出具有严格自相似性的规则分形集合。如康托尔三分集、谢尔宾斯基垫片、柯曲折线等。柯曲折线的结构,具有严格的自相似性。自然界中被认为是分形系统的海岸线、云层边缘、地球表面、断口表面以及液体湍流等,没有一个严格意义上的分形,其自相似性是近似的或统计意义上的相似,分形自然体在局部和整体的某种相似性通常只是在某些特定的尺度范围内才成立,这些尺度范围被称为"无标度区",这种只在无标度区内具有自相似性的分形也称随机分形。形态(结构)、信息、功能或时间上具有自相似性的客体称为广义分形[6]。
在实际问题中,为了考察一个事物是否存在局部和整体的相似性,只要检验该事物是否存在"无标度区"即可。以尺度r把事物分成N个相似的部分,对变化的r画出igr-lgN曲线,然后检验曲线上是否存在明显的直线段,直线段对应的r的区域即是无标度区。此方法的理论依据是自相似集的相似维数(一lgN/lgr)是不依赖于尺度r的一个常数。分维是描述分形特征的定量参数,因为所描述的具体对象不同,分维计算的具体形式也有多种,如相似维数、容量维数、信息维数、关联维数、集团分维和质量分维等。
地震学界已开始对地震的时、空、强度分维及其多分维进行了大量研究。普遍认为地震是多重分形的。分维值在地震前后的变化为探讨地震前兆场的复杂性提供了有效的分析工具。在桥梁抗震中,结构破坏与地震输入和结构反应特征有关。从弹性反应谱的三联谱中,很容易发现无论是岩石场地弹性反应谱还是结构的弹性反应谱均具有明显的分形特征。P.S.Symonds对一个具有两个自由度的梁构件模型在瞬时冲击荷载作用下的弹塑性反应进行了分维研究,计算得自相似维数为0.78,表明位移反应图对冲击荷载标度具有独立性[7]。
(2)桥梁抗震及分形特征
如同分形广泛存在于自然科学和社会科学的诸多领域中一样,分形同样存在于桥梁抗震领域[10]
①作为输入荷载的地震动,其能量具有分形特征,而且能量分维Dfe有可能成为地震预报的新参数。
②地震动反应谱,作为地震动特性与结构动力反应相互联系的纽带,也是统计意义上的分形结构,它也决定了结构反应的分形特征,特别是以周期为标度,结构反应应该与反应谱具有一致的无标度区。
③对墩柱破坏准则的研究发现,变形一能量双重破坏准则的破坏指数是划分桥梁域往不同破坏程度的合理指标,以输入地震动的峰值或以墩柱体积配箍率为标度,破坏指数具有近似分维特征。建立连续梁桥等代分析模型,代替复杂的结构有限元模式来分析结构的地震反应。通过理论分析与桥例计算可见,以刚度比为标度,结构周期、墩底弯矩和墩顶位移反应存在无标度区;以周期为标度.墩底弯矩和墩顶位移反应同样具有明显的分形特征.与反应谱所体现的分形特征一致【8】。
结合南京长江二桥南汉桥和杨浦大桥两个桥例,建立有限元模型,考虑边跨主跨跨径比、梁墩刚度、局部构件、支座单元等对结构动力反应的影响。通过分析可以发现,对于不同的标度,无论是跨度比、梁墩刚度比还是支座的刚度等等。动力反应都表现出近似多重分形特征,分维值可以反映动力反应对于不同标度的敏感程度【9】。
研究桥梁结构动力特性是否具有分形特征,是分形和分维概念应用于桥梁结构动力分析领域中的关键点。通过对国内外大量已有实桥动力特性资料的统计和桥例分析可见[10]:
①斜拉桥的纵飘基频对于跨径尺度,主塔侧弯基频对于塔高,体系坚弯基频对于跨径,侧弯基频对于跨宽比以及扭转基频对于跨径都具有统计意义上的分形特征。
②悬索桥竖弯基频、侧弯基频及扭转基频对于跨径或主缆垂度,具有统计分形特征,利用分数维,可以得到比常用估算公式更为接近实桥值的基频简化计算公式。
③对于梁桥动力特性的大量实测结果表明,简支梁桥基频对于跨径标度是分维为0.923~0.933的统计分形结构。以桥长为标度,小跨径桥梁的基本侧向周期分维为1.20。桥梁结构系统涉及参数多,统一的规律多存在于定性阶段。分维的概念使得对于性质的认识可以定量描述,正如在许多领域,分维对非线性、无规则现象的描述那样。显然,这还需要大量的工作和艰辛的努力。以上分析表明,混饨系统存在规律性,分形就是描述这种规律的一种理论,事实上,分形规律不仅仅在桥梁抗震领域存在,在桥梁大系统中乃至整个土木工程领域中都广泛存在着。
四、结论
通过以上分析可见:
(1)桥梁结构是一个要素和结构复杂、具有生存环境和结构功能的动力学系统;
(2)系统最关键的部分--结构是桥梁结构系统识别和健康监测的重点,特别是结构的指纹分析;
关键词:工程结构可靠度综述
对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。
一、结构可靠性理论研究历史
长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。
结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。
从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:
1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。
2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。
3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。
除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:
(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。
(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。
因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。
二、国内外工程结构可靠性理论研究现状
二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ68-84)[6]也是以该方法作为可靠性校准的基础[7]。
三、桥梁结构可靠性理论研究现状
桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。
四、工程结构可靠性理论研究发展趋势
进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:
1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为FerryBorgesCastanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。
2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。
3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。
4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。
5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。
6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。
五、结语
桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。
参考文献
[1]王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.
[2]刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.
[3]拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.
[4]A.M.Freudenthal,Safetyofstructures,Trans.ASCE,112(1947).
[5]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.
[6]中华人民共和国国家标准.建筑结构设计统一标准(GBJ68-84).北京,1985.
[7]贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.
[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.
关键词:工程结构可靠度综述
对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。
一、结构可靠性理论研究历史
长期以来,人们就广泛采用“可靠性”这一概念来定性评价产品的质量。这种靠人们经验评定其产品可靠、比较可靠、不可靠,没有一个量的标准来衡量。1939年,英国航空委员会出版的《适航性统计学注释》一书中,首次提出飞机故障率不应超过10-5次3h,这可以认为是最早的飞机安全性和可靠性定量指标[1];二战后期,德国的火箭专家R.Lusser首次对产品的可靠性作出了定量表达。他提出用概率乘积法则,将系统的可靠度看成是各个子系统可靠度的乘积,从而算得V-Ⅱ型火箭诱导装置的可靠度为75%[2];1942年,美国麻省理工学院一个研究室开始对真空管的可靠性进行深入的调查研究工作。二战期间,军用电子设备的大量失效使美国付出了相当惨重的代价。于是引起了美国军方对可靠性问题的高度重视,同时率先对可靠性问题进行了系统地研究,并于1952年成立了“电子设备可靠性咨询组”,简称AGREE(AdvisoryGrouponReliabilityofElectronicEquipment)。该组织于1957年发表了著名的《电子设备可靠性报告》。报告中提出了一套完整的评估产品可靠性的理论和方法。该报告被公认为是可靠性研究的奠基性文献。1965年,国际电子技术委员会(IEC)设立了可靠性技术委员会TC-56,协调了各国间可靠性术语和定义、可靠性的数据测定方法、数据表示方法等。上世纪60年代以来,可靠性的研究已经从电子、航空、宇航、核能等尖端工业部门扩展到电机与电力系统、机械设备、动力、土木建筑、冶金、化工等部门[3]。
结构可靠性理论的产生,是以20世纪初期把概率论及数理统计学应用于结构安全度分析为标志,在结构可靠度理论发展初期,只有少数学者从事这方面的研究工作,如1911年匈牙利布达佩斯的卡钦奇就是提出用统计数学的方法研究荷载及材料强度问题;1926年德国的迈耶提出了基于随机变量均值和方差的设计方法,这是最早提出应用概率理论进行结构安全度分析的学者之一。1926~1929年,前苏联的哈奇诺夫和马耶罗夫制定了概率设计的方法,但当时方法不够严格,因此,未付诸实施。1935年斯特列律茨基,1947年尔然尼钦和苏拉等人相继发表了这方面的文章,结构安全度的研究逐渐开始进入了应用概率论和数理统计学的阶段。值得指出的是,弗罗伊登彻尔差不多和尔然尼钦等人同时开展了结构可靠性的研究工作。他提出的在随机荷载作用下结构安全度的基本问题首次得到工程界的赞同和接受。1947年他发表了“结构安全度”[4]一文,奠定了结构可靠性的理论基础。
从20世纪40年代初期到60年代末期,是结构可靠性理论发展的主要时期。现在所说的经典结构可靠性理论概念大致就是这一时期出现的。随着结构可靠性理论研究工作的深入,经典的结构可靠性理论得到了全面的发展。基于概率论的结构设计方法逐渐被工程界所接受。但在这一时期,结构可靠性理论还未能马上被工程界广泛应用,其原因如下[5]:
1.传统的确定性结构设计方法当时在人们头脑中根深蒂固,认为没必要改变已用的结构设计方法,而且,结构的失效很少发生,即使发生结构失效,绝大数是由于人为差错造成的,并非结构设计方法问题。
2.基于概率理论的结构设计方法似乎比传统的确定性结构设计方法麻烦,涉及到当时比较难处理的统计数学问题。
3.当时有用的统计数据极少,不足以定义重要的荷载、强度的尾部分布。
除上述妨碍结构可靠性理论应用的原因外,当时结构可靠性理论本身也面临两大难题:
(1)结构可靠性理论所采用的数学模型不足以完全准确地反映应用情况,即模型误差是未知的。
(2)即使是对一个简单的结构,其失效模式可能多到难以计数,更不用说进行可靠度分析。
因此,二十世纪60年代初期,许多学者致力于克服上述困难的研究。例如林德等人把规范化的结构设计问题定义为寻求一套荷载和抗力系数的最优值问题,他们建议采用一种迭代过程确定结构的安全度和造价,康奈尔(C.A.Cornell)等人提出了与尔然尼钦相同的一次二阶矩法,并建立了比较系统实用的一次二阶矩设计方法,利用结构的可靠指标β,而不是失效概率Pf,,作为结构可靠性的一种量度量,使结构的可靠性理论达到实用的目的。
二、国内外工程结构可靠性理论研究现状
二十世纪70年代至80年代,是结构可靠性理论完善并被各国规范、标准相继采用时期,自从康奈尔(C.A.Cornell)提出了一次二阶矩法之后,林德(N.C.Lind)根据康奈尔(C.A.Cornell)的可靠指标,推证出一整套荷载和抗力安全系数,这次研究使可靠度分析与实际可接受的设计方法联系起来。随后,德国的拉克维茨(R.Rackwitz)和菲斯勒(B.Fiessler),对基本变量为非正态分布情况提出了一种等价正态变量求法,这种方法经过系统改进之后,作为结构安全度联合委员会(JCSS)的文件附录推荐给土模工程界。该方法也被许多国家规范所采纳,我国的《建筑结构设计统一标准》(GBJ68-84)[6]也是以该方法作为可靠性校准的基础[7]。
三、桥梁结构可靠性理论研究现状
桥梁可靠性设计要解决的问题是[8]:在结构承受外荷载和结构抗力的统计特征已知的条件下,根据规定的目标可靠指标,选择结构(构件)截面几何参数,使结构在规定的时间内,在规定的条件下,保证其可靠度不低于预先给定的值。可靠性的数量描述一般用可靠度。我国对结构可靠度的研究只限于理论方面,且侧重于可靠度设计方面,对结构耐久性方面的研究,特别是对耐久性评估理论的研究还很落后。实际上对现有桥梁结构做出正确的可靠性评估,准确预测出其剩余寿命,才能保证结构在寿命延续期内的安全性,节省大量的维修加固资金。我国在桥梁设计过程中,存在着考虑强度多而考虑耐久性少;重视强度极限状态不重视使用极限状态;重视桥梁结构的建造而忽视其检测和维护,使结构安全性存在不同程度的隐患和缺陷。近几年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳损坏(如结构开裂、变形过大等)所导致,从而严重影响桥梁结构的承载能力和使用性能。为了保证桥梁安全运营、延长其使用寿命以及提高桥梁的安全性和耐久性,减少早期桥梁病害,从而节约后期桥梁的维修费用,因而对桥梁结构可靠性研究非常必要和迫切[9]。
四、工程结构可靠性理论研究发展趋势
进入二十世纪80年代后,结构系统的可靠性理论研究工作已经成为结构工程中的研究热点,并已出版了许多专著,对于复杂的结构系统可靠度分析和先进的计算方法蓬勃发展。概括而言,如下几方面是结构可靠度理论研究的热点:
1.结构系统的可靠度分析。对于结构系统可靠度分析的非常复杂的研究课题,许多学者对此从不同角度进行了研究,提出了一些概念和方法。如结构可靠度分析的一阶矩概念及荷载为FerryBorgesCastanheta组合情况下的计算方法问题;利用系统系数,针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛(Monte-Carlo)法采用重要抽样技术计算结构系统的可靠度等,同时,一些学者还研究了系统可靠度界限的问题。总之,系统可靠度分析研究内容丰富,难度较大。
2.对结构极限状态分析的改进,除考虑强度极限状态外,还应考虑结构的正常使用极状态、破坏安全极限状态,以及地震和其他特殊情况下考虑能量耗损极限状态等。
3.目标可靠度的量化问题。虽然校准法已经部分解决了这个问题,但与实际情况相比,这方面的问题还远远没有解决。
4.人为差错的分析。许多结构的失效并非由荷载、强度的不确定性造成,而往往是设计、施工、使用等环节中人为差错造成的,这方面事例很多,已成为目前研究热点之一。
5.在役结构的可靠性评估与维修决策问题。对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它不仅涉及结构力学、断裂力学、建筑材料科学、工程地质学等基础理论,而且,与施工技术、检验手段、建筑物的维修使用状况等有密切的关系。同时,经典的结构可靠性理论,在在役结构的可靠性评估中也必将得到相应的发展。
6.模糊随机可靠度的研究[10]。模糊随机可靠度理论研究是工程结构广义可靠度理论研究的重要内容,随着模糊数学理论与方法的完善,模糊随机可靠度理论也必将进一步完善和发展。
五、结语
桥梁工程问题的解决总是理论与工程经验的结合,掌握的知识越多,主观经验越少,桥梁结构的设计越合理,这也正是桥梁工程技术研究追求的目标。桥梁结构可靠度理论研究是内容极其丰富且复杂的重大研究课题,不仅仅在理论上有许多重大问题需要解决,而且,将其应用到桥梁结构设计、评估及维修决策之中尚有许多细致的工作要做。
参考文献
[1]王超,王金等.机械可靠性工程[M].北京:冶金工业出版社.1992.
[2]刘惟信.机械可靠性设计[M].第一版,北京:清华大学出版社.1995.
[3]拓耀飞,李少宏.论结构可靠性的发展[J].榆林学院学报.2006,16(4):32-35.
[4]A.M.Freudenthal,Safetyofstructures,Trans.ASCE,112(1947).
[5]刘玉彬.工程结构可靠度理论研究综述[J].吉林建筑工程学院学报,2002,19(2):41-43.
[6]中华人民共和国国家标准.建筑结构设计统一标准(GBJ68-84).北京,1985.
[7]贡金鑫,赵国藩.国外结构可靠度理论的应用与发展[J].土木工程学院.2005,38(2):1-7.
[8]张建仁,刘扬.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社.2003.
1工程概况
某桥梁工程6#墩基础采用钻孔灌注桩基础,基础之上为承台,每个承台上设一个墩柱,双墩柱之上为盖梁。6#墩桩基础、承台、墩柱和盖梁结构均处于铁路30m范围内,施工均列入临近营业线施工范围。所有施工都必须在铁路运行天窗进行,且必须严格按照临近运营线施工安全管理规定进行,施工环境非常复杂、施工条件差、施工难度大。
2主要施工方法
(1)基础施工
6#墩基础是由4根准1.2m长的钻孔灌注桩基础组成,,桩的长度为22m,可用C30混凝土灌注,灌注桩时注意让桩端嵌入岩层。桩基础持力层为中风化岩层,可用CZ-5型冲击钻机钻进成孔。在成孔前要先确定钻机的位置,注意使钻机钻锤的中心与桩孔的中心保持在同一垂线上,稳定好扒杆和揽风绳。在成孔钻进过程中,要先用小冲程慢慢的钻进,使钻头全部进入土层后,查看桩位复测是否合格,合格后再进行正常钻速钻进。同时要注意,地勘结果不同的地层,要采用不同的冲程和泥浆的比重,做好记录。在钻进中遇到数据突变等异常情况时要及时排查原因,排除隐患,再进行钻进。吊放钢筋笼时也要据计算确定吊装点,注意入孔时须对准孔位轻放、慢放,防止碰撞孔壁,混凝土浇筑要保证一次性连续浇筑完成,这样可保证整根桩混凝土均匀,密实。
(2)承台施工
根据本承台基坑支护的特点,可采用支护结构受力简单,明确的钢板桩支护方案,它不仅对基坑支护有很可靠的稳定性,其在插打工艺上机械设备也都狠成熟,工程造价低,可在钢板桩插打后拔除重复使用,施工速度也挺快。对于6#墩的承台,它的平面尺寸是4.8m×4.8m,厚度是2.4m的钢筋混凝土做的矩形承台。承台的开挖主要以机械为主,人工为铺的分层开挖,按基坑边坡1∶1的比例开挖。当基坑开挖超过基坑底标高的20cm时,改用人工开挖,破坏基底的原状土结构,便于之后的施工。在整平基底后,进行基底验槽,合格后才能开始用混凝土浇筑垫层,在桩基检测合格后,才能进行承台的施工。承台模板由于都是采用大块拼装的钢模板,在用吊机分块吊装时注意用法兰螺栓连接,并用混凝土一次连贯建筑成型,浇筑砂石泵采用6BS,并采用初凝时间大于6小时的C30标号混凝土,其塌落度在15-18cm间,注意浇筑中应充分振捣,使混凝土密实。
(3)墩柱施工
本工程6#墩墩柱为双柱墩,墩平面为1.7×1.85m(横桥向×纵桥向)的矩形,高6.641m,平面四角设半径15cm的倒圆,采用C40混凝土浇筑。为了能够保证墩柱的外观质量,墩柱模板可采用表面平整光滑,拼接严密的定型钢模板,连接时可采用连接螺栓来栓接,为保证接缝的平整,还可设定准确的定位孔并用销钉过渡配合使用。墩柱混凝土浇筑是分层浇筑的,但每层的浇筑都必须保证一次浇筑完成,每层的厚度也都要控制在30cm左右。可以用串筒下料,要注意串筒口与浇筑面间的距离尽量控制在2m内,边浇筑边用振动棒振捣,这样可保证浇筑的混凝土的密实性。
(4)盖梁施工
盖梁支架采用满堂式和碗扣式钢管脚手架,支架底落在承台顶高程处,承台间及两头需开挖并进行地基硬化处理,其中承台基坑范围用山皮石回填,基坑范围外用30cm厚山皮石回填,用10cm厚碎石垫层和20cm厚C20混凝土进行硬化,来达到满足支架地基的承载力。安装盖梁模板,先要沿着横桥方向在碗扣支架顶托上安放10槽钢,并在沿桥纵向槽钢上每隔20cm布置10×10方木,在方木上铺设15mm厚竹胶板,盖梁侧模板用15mm厚竹胶板,模板外侧在竖直方向每隔15cm安放5×10方木,方木外侧安放2道水平钢管围棱,另外还需沿水平方向和竖向每间距0.61m设置准20对拉螺杆,保证模板稳定。盖梁骨架钢筋采用闪光对焊或双面焊接成型,钢筋骨架在平地上制作焊接成型,吊装至盖梁上搭架子进行安装,局部需焊接时底部需垫木板,焊接时不能烧坏底模,双面焊缝长度不小于5d,焊缝要满足要求。本工程盖梁为变高盖梁,结构体积将近200m3,为大体积混凝土结构。盖梁混凝土浇筑拟分3次进行,第1次浇筑3.2m+0.55m高+挡块部分,第2次浇筑1.84m高+挡块部分,第3次浇筑支承垫石。盖梁混凝土用C40商品混凝土,混凝土分层浇筑,每层浇筑厚度控制在30cm左右,边浇筑边用插入式振捣器振捣充分使混凝土密实。为防止混凝土内部因水泥水化热反应导致温度过高产生不良温度裂纹,影响盖梁施工质量,在盖梁内每隔2m设置准=32mm的循环冷却水管,在高度和宽度方向各布置一道。在浇筑承台混凝土前应进行闭水试验,保证管道严密性,管道还应与钢筋绑扎牢固,确保管道在浇筑混凝土时不发生位移。
二桥梁下部结构施工中的质量控制关键点
1模板配置
桥墩的施工中,主要的就是模板的配置问题,它可以直接影响到整个桥墩工程施工的质量,所以,配置模板一般要注意以下几点:首先就是确保模板的材料,数量齐全,保证施工所需;其次,对模板本身来说,它的质量,尺寸要严格按照规范要求执行,质量偏差要控制在有效范围内;然后,用洗刷脱模剂的话,便于拆卸;最后,模板的刚度和强度上要保证,避免在施工中发生变形或者裂缝等现象,影响施工进度。
2钢筋质量控制钢筋
在桥梁施工中占据着重要的纽带作用,是很重要的施工材料,因此在钢筋入库时,都要进行严格的质量检测,检验等。钢筋材料一定要有齐全的相关证书,经技术主管审核后可进入开料的程序,把钢筋按编码分开堆放,做好防潮防雨等措施,避免在使用前生锈而影响后期使用,要严格控制钢筋的质量。
3混凝土质量控制
在混凝土质量控制上,主要就是控制各个实验室的配比单操作了,是把各类原料按照一定比例混合搅拌生成混凝土,这个过程要加强监督,管理,控制原料的用量,成分,以及质量上要合格,才能生成合格的混凝土材料。
4施工管理要加强施工中的管理
对施工队伍而言,要明确各个岗位的负责人,分工明确,落实到位,职责分明。指定完善的规章制度,和建立质量管理小组,健全质量管理体系。
三结语
首先根据剪力连接件对钢与混凝土结合面相对滑移约束程度的不同将组合梁分类,结合典型实例,对适用于不同形式钢-混组合梁的传统与新型剪力连接件的构造与受力特点进行比较分析,探讨了剪力连接件在组合结构桥梁上的应用与钢混结合面设计的新理念。
完全组合梁的剪力连接件设计
圆柱头焊钉连接件。圆柱头焊钉连接件是完全组合梁最常用的剪力连接件。其在剪切方向上的力学性能具有各向同性,密布时可有效限制钢与混凝土之间的相对滑移;圆柱头焊钉的头部埋入混凝土中,可起到抗拉拔的作用,防止混凝土板掀起[1]。上海浦东内环高架的一座跨线桥采用了钢板梁与混凝土板结合的组合梁桥形式,其剪力连接件采用了密布的焊钉,如图2所示,实桥施工阶段测试显示梁端钢混相对滑移量很小[2]。美国ArthurRavenelJr桥为钢与混凝土组合梁斜拉桥,索梁锚固区采用了锚拉板结构,剪力连接件也采用了密布的焊钉,索梁锚固区焊钉布置如图3所示。根据同类结构的有限元仿真计算分析结果[3]显示:由于索力会引起锚固区局部钢梁相对于混凝土板较强的滑移趋势,因此在该处设置密集、直径较大的焊钉连接件时,将导致锚固区结合部焊钉受到的剪力很不均匀,锚固区附近的焊钉剪力常常过大,不易满足规范要求,其他区域的焊钉剪力较小而不能充分发挥作用,锚固区附近的混凝土也因为焊钉剪力集中而引起局部较大的拉应力。
开孔钢板连接件。开孔钢板连接件主要通过钢板圆孔中混凝土的抗剪能力将钢与混凝土组合为整体,如图4所示。沿主梁纵向连续布置开孔钢板连接件,可提供较大的结合面抗剪刚度与抗剪承载力。日本北陆新干线铁路上的连续梁桥,采用钢管混凝土构件作为主梁,在负弯矩区设置开孔钢板连接件,在正弯矩区设置焊钉连接件,在不同位置的钢管中分别填充气泡混凝土及其轻骨料混凝土,并在桥面板负弯矩区使用钢纤维混凝土[1],如图5所示。开孔钢板连接件存在的一个问题是其设置将削弱混凝土板纵向截面积,对桥面板横向受力会产生一定影响,设计时宜加以考虑。
复合粘结层连接件。瑞士的Lebet教授等[4]通过试验研究了一种粘结作用很强的新型钢混结合方式,即在结合面上设置了带刻痕的钢板并涂装复合材料粘结层,以使钢混间形成很强的粘结作用,如图6所示。试验显示,这种结合形式受力前期钢混结合面抗滑移能力很大,一旦结合面进入塑性后,抗滑移能力下降很快,但后期仍能依靠残余的粘结摩擦等因素抵抗一定量的结合面剪力,具有较好的后期延性。
部分组合梁的剪力连接件设计
2.1部分组合梁的设计新理念。在满足钢-混凝土结合面抗剪承载力要求的前提下,适当减小结合面抗剪刚度,允许其发生适量的相对滑移,即将组合梁设计为部分组合梁,使各剪力连接件剪力分布更加均匀,是改善钢与混凝土组合梁受力性能的设计理念之一。通过合理改进剪力连接件的构造,设计开发一种抗剪承载力较大、抗剪刚度较小、施工简易的新型柔性连接件,是上述理念付诸实践的一个研究方向。
2.2刚度时变型连接件。日本学者北川幸二等人[5-7]曾研究了根部包裹树脂的刚度时变型焊钉并应用于多座组合梁桥,如图7所示。当混凝土板早期收缩发展迅速时,其树脂的硬度较低,此时该焊钉的抗剪刚度较小,混凝土板前期可以较自由地伸缩变形,约束应力相对较小,且预应力施加效率较高,一定程度上降低了混凝土板受拉开裂的风险。当后期荷载施加后,树脂已经变硬,此时该焊钉的抗剪刚度提升,滑移将会被控制在较小的范围内。对直径为19mm、高度为110mm、外包树脂高度为70mm、外包树脂厚度为8mm的树脂硬化前、硬化后以及普通焊钉的三组焊钉试件进行了推出试验,图8所示为试验所得的剪力-滑移曲线,可见:对于硬化前的试件,加载前期抗剪刚度较普通焊钉试件小,加载后期抗剪刚度明显较前期提升,且抗剪极限承载力与普通焊钉抗剪极限承载力接近;对于硬化后试件,加载全程中抗剪刚度的发展同普通焊钉类似,且抗剪极限承载力与普通焊钉抗剪极限承载力接近。
外包橡胶柔性焊钉连接件。实桥焊钉往往密布,对于刚度时变型焊钉连接件,逐一包裹塑性的树脂是较为繁琐的工作,钢筋的布置也易引起树脂的破坏,树脂在混凝土内的硬化时间会对工期产生影响。袁明等[8]提出了外包橡胶套管的柔性焊钉连接件的设计理念。外包橡胶柔性焊钉连接件是一种在根部安装了橡胶套管的结构工程用焊钉抗剪连接件,其焊钉采用标准的电弧螺柱焊用圆柱头焊钉,橡胶套管采用低硬度、耐久性好的天然橡胶制成,如图9所示。其施工较刚度时变型焊钉连接件方便,且同样能达到抗剪刚度较同规格焊钉小、抗剪抗剪极限承载力与普通焊钉抗剪极限承载力接近的效果[3]。
非组合梁的剪力连接件设计
设计中通常认为简单叠合起来的梁结构的极限承载力等于混凝土板与钢梁各自极限承载力的较小值,梁的强度不会因为叠合而得到提高。实际按照非组合梁设计的结构中,由于正常使用的需要,常常会在钢混交界面的钢板上布置一定数量的柔性连接件,例如图10所示的钢筋连接件。如果想进一步提升钢板与混凝土的粘结效果,还可以在钢板上铺洒环氧树脂和硅砂。
结语
第二次世界大战以后,组合结构以其整体受力的经济性,发挥钢与混凝土两种材料各自优势的合理性以及便于施工的突出优点,在欧美各国和日本桥梁建设中得到了广泛的应用。