时间:2023-03-27 16:45:55
序论:在您撰写自动检测论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
针对垛储机采棉温湿度采集点多,数据传输距离远的特点,提出了以电子技术和微控制技术为核心技术的机采棉温湿度自动检测系统方案。该系统由温度传感器、湿度传感器、变送器、主从单片机、RS485总线、显示及键盘等部分组成。图1为垛储机采棉温湿度检测系统框图。工作时,安装在探头上传感器采集该处机采棉的温湿度值,通过变送器和转换器将该处的各点温湿度数据信号送至该处的从机;从机将采集来的信号进行归一化处理,取加权平均值,再将加权平均值通过RS485总线送至主机,通过键盘输入机采棉霉变预警的温湿度阈值;主机将传输来的数据和预警阈值相比较,判断是否达到预警条件,如果达到预警条件,发出命令,控制预警装置发出警报,并且显示出霉变或有霉变趋势的机采棉位置。
2系统设计
2.1硬件部分
本设计的主机所要实现汇总从机发来的信息和预先设定的霉变阈值相比较,判断每个从机位置的机采棉情况。如果出现异常,主机控制警报系统工作,显示屏可以利用键盘控制其翻页功能,实时显示出每个从机位置的机采棉情况。从机主要负责将采集来的温湿度信息,经处理后,送入主机。鉴于以上因素,主、从机都选用单片机STC89C516RD+。该款单片机具有加密性强、低功耗、速度快和精度高等特点,其核内有64kB的flash,1280B的RAM,16kB的ROM,可以满足控制的需要。每个从机位置的温湿度信息检测,采用探头检测,在每个探头的不同位置,均匀分布4个温度传感器和4个湿度传感器,分别构成该从机的温度传感器组和湿度传感器组。湿度传感器选用HM1500,模拟量输出,在5V供电条件下,输出0~4V范围的电压对应相对湿度值0~100%;因为是线性输出,所以可以直接和单片机相连,为了检测信号的稳定性,可以将湿度传感器的输出量经过同相跟随器将信号稳定后送入单片机。温度传感器选用AD590为模拟信号输出需要驱动电路驱动后才能使温度信号经A/D转换送入单片机;可测量范围-55~150℃,供电范围宽,4~30V;图2为温度传感器AD590的驱动电路图。显示模块要求实时显示各个从机控制的检测探头位置的温湿度以及每个探头所在位置的坐标值,通过键盘的上下键控制显示屏的翻页和刷新。所以,采用液晶显示器LCD1602两行显示,就可以达到系统设计要求。键盘模块是向主机输入预设的参考值以及控制显示屏的翻页与刷新,基于以上功能采用4×4的行列式键盘。
2.2软件部分
首先,根据设计目标,细化软件每一部分的功能,统筹设计各部分功能之间的逻辑关系。垛储机采棉温湿度检测系统的软件设计采用keiluvision2编程环境,编程实现主从机的功能。keilC51是一个比较主流的单片机研发设计的开发工具,主从机的程序编写采用模块化编程。其调试程序、完成各部分编程后,将程序的.hex工程文件烧录至Proteus软件下的仿真电路图,仿真效果达到最佳时,记录电路设计的优化参数;根据此优化参数,设计垛储机采棉温湿度自动检测系统的实物硬件。垛储机采棉温湿度自动检测系统的主机程序流程图,如图3所示。
3试验结果分析
系统的软硬件调试完成后,在南口农场进行测试试验。系统测试了垛储机采棉的温湿度值。表1为垛储机采棉温湿度检测系统测试的温湿度数据。从表1中可以看出,本文设计的检测系统检测出的机采棉温湿度值和人工测量的实际值近似相符。试验结果表明:该系统能够精确、实时地检测垛储机采棉的温湿度,达到了垛储机采棉储存情况的安全控制。
4结论
目前我国已经建立的100多个水质自动监测站,大多分布在边远地区,由于制度和管理不完善,其应急能力存在很大缺陷,甚至部分水站未制定应急预案,即使制定应急预案,由于缺乏必要措施,在发生事故时也很难发挥应急预案与应急制度的作用。2013年黑龙江流域发生特大洪水,水质自动监测站普遍遭受了损失,如果制定了应急预案和进行应急演练,其损失程度会降至最低。同时,由于水质自动站建在边远地区,距离市区较远,当水质自动站出现事故时,监测人员无法及时达到现场进行处理,此时应急预案的制定与应急制度的实施则显得尤为重要。
2水质自动监测站应急制度建设的基本要求
一套健全、完善的应急制度建设,能够使水质自动监测站的仪器设备处于良好的管理状态,能保证水质自动监测站管理的有序、连续和稳定,否则容易造成对监测站管理的忽视。水质自动监测站应急制度的建设,应符合以下基本要求:
2.1建立一套能引起领导足够重视的水质自动监测应急管理机制
在当前我国的体制中,领导重视是管理工作中最为基础和关键的一个环节,领导的重视使管理工作在人力资源配置等方面更具优势。因此,水质自动监测应急管理机制应建立由国家或省部级环境保护部门牵头,地级市环境保护部门分管,县级市环境监测站实行全面管理的机制。国家或省部级环境保护部门负责统一监管,对下一级的环境保护部门进行监督。另外,水质自动监测应急工作的顺利进行,需要足够的资金投入作为后盾,将应急制度建设工作交给地级市环境保护部门,能够确保监测站应急工作拥有充裕的经济条件和较雄厚的技术实力。如果将应急管理权力交给县级环境保护部门,则难以确保资金和技术,从而也难以发挥水质自动监测站的应急作用。
2.2建立管理人员介入水质自动监测站工作机制
与空气自动监测站建成投入使用情况相似,水质自动监测站也是在建成后才由相关单位指派管理人员驻站接管。由于管理人员的知识水平和能力有限,加上接管时间较短,对需要学习的监测相关知识掌握有限,管理人员较难在第一时间迅速对监测站进行有效的管理和维护,致使监测站应急功能无法得到有效发挥。根据产品故障率曲线,监测站仪器设备在早期投入使用时的故障率要大于产品正常使用期和产品维修后发生的故障率,因此管理人员应及早介入水质自动监测站,确保监测站的应急功能得到及时发挥。
2.3编制水质自动监测站应急管理规范
最新出版的2002年《地表水和污水监测技术规范》(HJ/T91-2002)并没有对水质自动监测站应急管理规范相关方面作出规定,水质自动监测站应急工作仍处于空白状态。因此,国家相关环境主管部门应结合水质自动监测站的具体情况,尽快编制相关水质自动监测站应急管理规范,以促进水质自动监测应急工作的顺利开展。
3水质自动监测站应急制度建设的基本内容
受到气象状况、灯光照明、场所不同、监测人员业务水平等因素的影响,并且水质自动应急监测呈现出流动性、不确定性、阶段性、偶发性、紧迫性和公共性等特征,这就决定了应急监测不是表面功夫,应急制度更不是黑字文件。应急监测,实际上是实验室管理水平的实际化演示过程,针对应急条件特殊和人员流动性大等问题,仍需要回归到制度建设上来。纵观目前应急工作开展情况,水质自动监测站应急制度的基本内容有以下几个方面:
3.1应急制度的文件架构
水质自动监测站的应急制度文件架构应包括以下几个要素:
(1)应急监测系统基本情况介绍;
(2)监测工作安排;
(3)应急监测清单;
(4)应急设备操作规程;
(5)应急监测结果记录表;
(6)应急监测培训及应急演练。只有将上述要素逐一逐步落实到位,方能确保水质自动监测站应急功能的有效发挥。
3.2应急监测系统基本情况介绍
应急监测系统基本情况介绍是水质监测站进行水质监测的纲领性文件,内容包括应急监测系统建设的目标、各类设施基本简介和应急监测设备或能力的介绍等内容,以便于监测人员快速了解和认识应急监测系统。
3.3监测工作安排
监测工作安排包括应急值班表排列、应急值班车辆管理及行车路线指引。
3.3.1排列出应急值班表对应急工作人员的值班进行分组安排,其目的主要体现在如下三个方面:第一,值班制度的规定和实施有利于保证随时随地都有人在岗值班,做好应急预备的日常工作,时刻处于应急预备状态,确保应急事故发生时能够迅速、及时地赶到事故现场。第二,轮班制度的实施有利于确保应急人员有充足的休息时间,能够为应急事故处理提供源源不断的长时间的持续能力,从而确保并提高应急人员持续作战的能力。第三,对于同时出现的应急事故能够做到互不干扰的正常处理和应对,分组后的工作人员要有明确的分工,安排和划分好每个人员应负责的工作和任务,从而有利于人员各司其职,在处理应急事故的时候能够做到有序配合。
3.3.2车辆管理及行车路线指引应急监测车辆可以提供便携的移动实验平台,建立临时性小范围的电力、照明、用水、操作安全防护的条件。在平时应对司机进行专职培训,使其熟练掌握各个功能区块的操作规程,确保满足随时外出应急监测的工作需要。
3.4建立应急监测清单
负责水质自动监测的监测站和其他单位应建立应急监测清单。应急监测清单包括车载应急设备清单与应急监测项目一览表。车载应急设备清单包括应急仪器设备和物资存放地点、存放条件,仪器使用条件等情况,指引性清单能提高存、取物资的准确性,避免装车时出现遗漏现象,发生应急响应时便于携带外出;应急监测项目一览表应列示应急设备对应检测项目,能帮助应急人员快速选择使用。
3.5修订应急设备操作规程
进口应急设备的说明书多为英文版本,中文版本也是较为繁琐、累赘且与实际操作不符。因此需制订简化的操作规程,简化的操作规程便于人员提高工作效率,降低出错风险。另外还规定了应急仪器的保管人及维护要求,能保证设备得到妥善的日常维护。
3.6确保应急监测结果记录表的真实准确
应急监测结果记录表的记录应当确保与监测结果相一致,收集有关监测的各种重要因素,从而保证监测结果的真实性、准确性和有效性,这样有助于事后分析以及总结经验。
3.7进行应急监测培训及应急演练
在平时工作中,需要加强对工作人员的应急监测培训和设备操作培训,工作人员要定期学习应急文件,并对工作人员进行必要的考核,从而提高其应急处理事故的能力和水平;此外还应当重视应急演练,模拟应急事故现场能够提高人员的现场作战能力,对于演练中的经验要注意分享,从而能够帮助应急人员改进工作方法,有利于提高实际作战能力。
4结语
一、引入国有资本流动安全性的预警机制
制定国有资本流动安全预警机制可以将国有资本流失防患于未然。预警机制通过自身信息网络,不仅对于企业运营状态进行监测、诊断和预控,还可以有效地配合监事会做好风险的事先预警和过程控制。预警机制在经济领域中的应用包含宏观经济预警和微观经济预警两个方面,而微观经济的预警就是企业预警。在市场经济竞争角逐下,企业所处环境的复杂性和不确定性不断增加,国有资本流动安全性预警系统的建设应受到充分重视。国有资本流动安全预警能够对企业资本流动活动涉及的风险进行分析、评价、推断、预测,根据风险程度事先发出警报信息。按照传统划分方法,国有资本流动风险管理分为三个阶段,即风险分析(风险识别、风险评估)、风险控制和风险处理。相应的建立一个包含定价风险系统、融资风险系统、支付风险系统、整合风险系统的预警机制。通过数量模型来预测未来状况,度量未来风险强弱程度,并通知决策机构及时采取相对措施,以规避风险,减少国有资本的流失。
二、进行企业重组可行性论证
企业在进行资本流动之前,应该进行重组的可行性论证。论证时要注意的问题有:第一,判断企业需要进行重组的类型,是纵向重组还是横向重组,是存量重组还是增量重组,是收缩式重组还是扩张式重组。为此,需要对企业自身进行诊断,找出企业存在的问题,并确定企业未来的发展目标,企业据此进行资产重组类型的选择。
第二,论证扩张性重组资产扩张的最佳规模。论证这一问题需要从行业性质、重组者的综合实力(包括技术水平、管理水平、市场地位等)和行业发展前景等方面去分析,从行业性质来看,不同性质的行业,社会按国民经济客观比例分配给他们的应该投入的能够实现的第二种含义的社会必要劳动时间的大小不一样,从而该行业的企业的最佳规模的大小不一样,企业应该按照自身的最佳规模来进行重组。从行业发展前景来说如果企业所处的行业属于夕阳产业,其发展前景有限,企业不宜进行扩张式资产重组,或扩张式的规模不宜太大。如果重组企业所处的行业属于朝阳产业,其发展前景广阔,在其他条件不变的情况下,企业可以进行扩张式资产重组,而且扩张的规模可以大一些。
第三,论证重组后能否在资产、管理、组织、人才和企业文化方面进行很好的整合。为此事前应进行充分的调查、分析与计划,保证重组后企业有健全的制度、合理的组织结构、共同的价值观、共同的信念,这才能提高运作效率,使有重组企业和被重组企业能够全方位地合二为一,在企业竞争能力和盈利能力上实现1+1>2的目的。
三、加强资本流动后整合
从重组的实践看,重组失败率很高,在众多失败的案例中,有70%左右是因为重组整合不力造成的,对重组后的整合没有系统的考虑,收购后企业没有及时管理,紧缩后对收回的资源也没有很好地加以利用。
扩张性重组与紧缩性重组的整合要求是不同的。对于扩张性重组,重组后整合主要是如何顺利地将重组对象纳入重组统一决策控制系统之下进行运作,以实现整合价值。重组交易完成后,假如原有的管理制度良好,则无须加以改变,可坐享其成,假如制度不符合重组方的期望,为了达到改善营运绩效的目的,或者为了便于内部沟通,重组方则想将本身实施良好的制度,转移到目标公司,当然,目标公司好的制度也可转移到重组方。经营政策也需要调整,目的是通过调整来提高经营效率和业绩。经营政策的改变可以先从产品策略着手,也可以先从调整生产重心、改变供应和销售体系、改变经营导向等方面着手。实行扩张性重组后,对目标企业存在的一些与重组目的不相干的资产如何处理也是整合过程中非常重要的问题,资产处置收入常常是整合价值的重要组成部分,所以,资产处置不仅关系到整合效率,而且关系到整合价值的实现。在部分杠杆收购中,资产处置是否顺利对收购方的现金能否保持平衡起重要作用。
紧缩性重组的整合常常不被重视,很多人认为,整合只有在扩张性重组中才会遇到,其实不然。紧缩性重组交易完成后,如果没有专门进行整合工作,或者紧缩整合不利,不但会造成资源的浪费,还会影响保留下来的主要业务的发展,影响企业员工的士气和情绪,对企业发展失去信心,紧缩可能会成为企业走向衰败的导火索。因此,紧缩后的整合必须引起管理者的充分重视。企业紧缩后,原来效率低、竞争力差、非企业主要发展方向一些业务可能被剥离出去了,企业主业会更加清晰,这时需要对企业各类资源的配置随业务重点的变化做出调整,将紧缩出来的资源向主业集中。企业紧缩后整个管理架构也要进行相应的调整,重点从减少管理层次、调整部门设施、改善管理流程等方面着手。最大的整合是将企业高层管理者因紧缩而腾出的精力和时间利用好,加大对主业的关心和支持力度,进一步密切与客户的联系和沟通。紧缩后外界对企业会产生各种想法,处理不好会影响企业的发展。企业管理者应加强与外界各方的沟通,说明紧缩的意图和将会产生的效果。
四、完善产权交易市场
首先,尽快实现全国产权交易市场的统一化和规范化,将区域性、无组织的交易变成全国性、有序的交易市场。不仅有利于切断地方保护主义的尾巴,而且有助于形成一个实力强大的国有资本产权交易买方队伍,从而充分发挥产权交易价格的竞争性机制,达到区域自然资源和社会资源的优化配置。同时也有利于国有资产管理部门规范企业产权交易行为,对国有资本经营活动进行监控从而实现国有资本交易公开、公平、公正的运行。
其次,建立并完善国有资本产权转让的强制性公开交易制度,推动国有产权的有序流转。长期以来,我国国有资产处置的基本手段是依靠行政权力。这种做法易于诱发权钱交易,人为低估国有资本价值,从而窃取国有资本。因此,杜绝国有资本转让中“暗箱操作”的最有效的方法就是建立和完善国有资本转让的竞争性规则。强制性的公开交易规则有利于制止场外交易和私自交易,保证国有资产的买卖购并一律进入产权交易市场公开进行。凡是国有资本的购买方都能有机会参与国有资本产权交易过程,通过买者竞价机制为国有资本转让价格创造一个公平的、竞争性的环境,从而真正减少由于人为低估国有资本价格而造成的资本流失。
最后,加强资产评估机构自身建设,建立、健全资产评估机构的退出机制。目前,评估机构竞争日益激烈,有些评估机构采取各种不正当竞争手段招揽业务,如有的采取非正常压价,有的承诺满足客户的不正当要求等等,影响了资产评估结果的公平性。长期以来,我国政府“偏爱”于使用行政手段予以监管,如对违反法律规定、行业准则的资产评估机构,简单采用吊销营业执照、限期整顿等方法。而实践中,资产评估机构与评估单位相互勾结,人为低估国有资本现象屡禁不止的现状,已经充分证明了上述行政监管方式不仅效率低下,而且具有发现成本高、迟缓性及违法行为的易反复性等多种弊端。因此建议引入“市场禁入制度”,即对于实施违法行为的资产评估人员,限制其在一定期间内(如2年至5年)不得从事相关资产评估业务,情节严重的,终身不得介入资产评估业务。
【摘要】国有资本流动是资本运营的重要组成部分,但是由于多种复杂因素致使国有资本在其流动过程中发生流失,如何解决这一问题是国有经济良性发展的关键。本文提出引入国有资本流动安全性预警机制、进行企业重组可行性论证、加强资本流动后整合和加快市场体系的建立等对策,以保证国有资本安全有效的流动。
【关键词】国有资本流动;安全性;整合
【参考文献】
随着现代科技进步,自动化得到了越来越广泛的应用,自动化水平已成为衡量各行各业现代化水平的一个重要标志。为了保证生产过程安全、可靠的运行,要随时对生产过程中使用的仪表进行维护和校准。传统的将生产过程中使用的仪表拿回实验室进行校准的方法已不能满足生产的要求,取而代之的是在现场直接对仪表进行校准。
影响设备精度的一大重要因素就是工作温度,因此,系统的冷却和散热就显得尤为的重要,良好的冷却效果不仅能够保证机箱和其中模块的稳定工作,更能提升相应板卡和电源的平均故障时间间隔(MTBF)参数。一些专业的测量总线标准,如PXI总线,在冷却和散热方面进行了严格的规范,包括对机箱中散热气流方向的定义、以槽为单位进行散热等确保系统在正常的工作温度下完成测量任务。
自动化检测仪表是自控系统中关键的子系统之一。一般的自动化检测仪表主要由三个部分组成:①传感器,利用各种信号检测被测模拟量;②变送器,将传感器所测量的模拟信号转变为4~20mA的电流信号,并送到可编程序控制器(PLC)中;③显示器,将测量结果直观地显示出来,提供结果。这三个部分有机地结合在一起,缺少其中的任何一部分,则不能称为完整的仪表。自动化检测仪表以其测量精确、显示清晰、操作简单等特点,在工业生产中得到了广泛的应用,而且自动化检测仪表内部具有与微机的接口,更是自动化控制系统中重要的部分,被称为自动化控制系统的眼睛。
校准的一般步骤是:预热仪器(包括被校仪器以及标准源);设置仪器的状态,进行测量记录数据;数据结果判定并给出结论;自动形成校准证书和原始记录。
自动化校准系统的具体实现过程首先,标准源和数字多用表按照要求开机预热,连接硬件设备(GPIB卡、488电缆等),硬件连接完成后,启动计算机,搜寻整个测试系统的物理地址分配情况,根据搜索到的各个仪器地址,在校准软件运行时,设置正确的地址配置。①初始化设置模块。双击相应的自动化校准程序图标,系统启动,进入测试系统主界面,主界面的风格以简捷实用为主,左侧是各功能按钮。首先进入的是初始化设置模块。初始化模块要设置被测试设备的校准项目,设置被校仪器和标准源的GPIB地址,选择是否是首次测试,此功能的目的是为了保存测量的数据,防止意外发生使测量数据丢失,需要重新进行测试。选择中英文语言,选择校准、检定,选择被测试设备的名称。初始化设置就完成了。②数据采集动态显示模块。该模块的主要功能包括:初始化仪器、设置仪器的状态、测量数值、数据位数控制、动态显示数据、数据结果判定、数据保存等。自动化数据采集过程是完全模拟人工测量过程进行测量的。仪器的初始化配置以及量程、显示位数、精度、采样数率、采样时间、测量值、功能选择等模块从NI网站上下载,程序员也可以根据仪器编程说明书提供的SCPI语言命令编写相应的模块。本模块中的数据显示位数、数据量程、上下限等都是根据测试计量对仪器的要求而自动生成的,数据结果判定也是自动完成的。程序把那些不合格的数据用红色的字体显示,使计量员在测量结束后容易发现这些数据不合格。数据采集动态显示模块的前面板。③证书和原始记录生成模块。自动生成证书和原始记录,给计量员的工作带来极大的便利,而且消除了人为操作易产生的出错,解放了劳动力。计量员只需在证书生成模块的前面板输入相关的仪器信息和校准信息,校准项目,选择相应的证书摸板,程序即可自动生成相应的校准证书和原始记录。证书模块的前面板。
1自动化检测仪表在污水处理中的应用
随着科学技术的发展,自动化检测技术也得到了很大的发展,自动化检测仪表在污水处理中也得到广泛的应用,使污水处理厂不仅节约了大量的人力、物力,更重要的是可以及时对工艺进行调整。
南宁市琅东污水处理厂工程1993年底立项,1997年11月27日正式开工建设;1999年9月28日通水试运行,2000年2月满负荷正常运转。南宁市琅东污水处理厂,一期工程设计一级污水处理能力24万m3/d,二级污水处理能力10万m3/d。设计服务范围30.5km2,规划服务人口34.3万人。经过琅东污水处理厂净化后的清洁水,一部分直接排入竹排冲,一部分用于南湖回灌水,以改善南湖的水污染问题。南宁市琅东污水处理厂全套引进国外最先进的水处理工艺设备,采用二级生物处理工艺的传统活性污泥法,并针对南宁市污水水质污染物浓度低的特点,在其核心部分--曝气的工艺中采用OOC工艺。该工艺具有能耗低、运行费用少、出水水质好、管理简便、运行稳定等优点。从厂外污水干管收集到琅东污水处理厂的污水,首先进行预处理。在进水泵房经过粗格栅,去除污水中较大的垃圾、漂浮物;通过5台大型污水泵将污水提升到细格栅,将较小的漂浮物去除;在曝气沉砂池去除污水中的砂粒和油类;然后进入计量槽,计量污水处理量。预处理后的污水在初沉池进行一级处理,去除约30%的有机物;初沉池出水进入二级处理,先在生物处理工艺的核心部分--曝气池,进行生物降解有机物;曝气池的混合液输送到二沉池进行沉淀,泥水分离。上层澄清液作为净化后的清洁排放水;沉淀下来的污泥一部分回流曝气池后再生利用,一部分作为剩余污泥回流到初沉池。初沉池的污泥用泵输送到污泥浓缩池,通过污泥处理系统进一步浓缩,把泥浆态的污泥脱水、压滤,形成干污泥饼。
1.1超声波液位计、液位差计、流量计
1.1.1格栅运行控制。粗格栅、细格栅各安装了1台超声波液位差计,通过格栅前后的液位差来反映格栅阻塞程度,并传输到PLC控制器,进行分析计算。当液位差超过预设的数值,控制格栅运行,清除垃圾,保障正常过水,且合理的减少了设备磨损。
1.1.2提升泵运行控制。为实现进水提升泵的自动控制,在进水泵井处安装了2台超声波液位计,用以测量泵井的水位,实时传输到PLC控制器及上位机,进行系统分析。根据测量值对应控制程序,自动控制提升泵的运行组合。这样可以根据厂外来水量准确及时地调整泵运行状态,减少设备疲劳;同时可以取消传统泵站三班倒的人力资源耗费。
1.1.3流量及处理量实时监测。对于污水处理厂的运行管理,水量是一个重要的控制参数。准确及时地掌握进水量,对工艺控制及提高污水厂抵抗水力负荷冲击能力有重要作用。传统的水量测量采用堰板或文丘里流量槽等,都存在着不能实时监测、实时显示的缺点。琅东污水处理厂计量槽采用超声波流量计结合文丘里槽,能在现场和上位机实时显示流量及累计处理量,达到了准确计量处理水量,以及为运行管理提供实时流量的目的。
1.2溶解氧计、氧化还原电位计、污泥浓度计
1.2.1曝气池溶解氧控制。南宁市琅东污水处理厂采用的是传统活性污泥法的OOC改良工艺在4个圆型曝气池内圈好氧区,分别安装了测量范围是0.05~10mg/L的溶解氧计,实时监控溶解氧浓度,传输到PLC及上位机。当实测浓度小于设定浓度时,自动控制系统启动鼓风机,给曝气池充氧;相反地,当氧气充足时,就会停止运行鼓风机。通过溶解氧计控制鼓风机可以精确地根据好氧菌群对溶解氧的需求控制鼓风机的启动和停止,在保证了菌群良好生化能力的同时节约了能耗,保护了设备,增强了好氧菌群的分解能力。
1.2.2曝气池好氧段与缺氧段的控制。在每个曝气池的外圈的好氧区与缺氧区的临界面都安装了测量范围是-500~500mV的氧化还原电位计,通过测量的氧化还原电位可以控制鼓风机的高速运行,给外圈供氧,形成强好氧曝气阶段和缺氧阶段的交替,进而提高处理工艺中除磷脱氮的能力。如果没有安装氧化还原电位计。那么鼓风机的运行只能通过时间控制,这样一来就会明显降低除磷脱氮的效果。
1.2.3曝气池污泥浓度控制。曝气池的污泥浓度是一个重要工艺参数。在传统的污水处理厂,污泥浓度依靠实验室使用旧的试验方法进行监测,在数据提供的及时性和精确性上,存在很大的缺陷。难以及时进行回流污泥和剩余污泥量的工艺调整,就造成时间上和准确度上的误差。南宁市琅东污水处理厂在每个曝气池上都安装了一个测量范围是为0.5~10g/L在线污泥浓度测量计,很好地解决了这个问题。安装污泥浓度计可以随时根据精确测量的污泥浓度,适时地调整曝气池的工艺,同时减轻了实验室工作人员的劳动强度。
1.3电磁流量计、气体流量计:
在回流污泥管道和剩余污泥管道中南宁市琅东污水处理厂安装了5台测量范围是0~1200m3/h的电磁流量计测量回流污泥和剩余污泥的流量。安装流量计后,值班人员可以根据显示的流量是否正确,从而判断回流污泥泵和剩余污泥泵工作是否正常,解决了潜水泵无法简单判断工作是否正常的难题,而且电磁流量计还具有安装方便,维护简单的特点。
鼓风机与曝气池间的空气管道上直接安装的4台测量范围0~4000m3/h(标准状况)的气体流量计。气体流量计的安装可以使值班人员随时了解鼓风机向曝气池提供气体的量。
1.4经验
1.4.1保持自动化检测仪表传感器的清洁。定期专人清洗探头,保证数据采集准确性。因为仪表在污水环境中工作,所以仪表的清洁工作就显得尤为重要,特别是直接与污水接触的溶解氧计、氧化还原电位计及污泥浓度测量计等分析仪表,为了保证仪表的正常工作,我们定期由专人清洗,每7天就全面清洗1次仪表,清洗时要求使用柔软的材料,以免损坏仪表。
1.4.2定期校正各种仪表。仪表在长期运行过程中难免会产生测量误差,这就需要定期校正,以保证仪表测量的准确性,对分析仪表我们制订了每两月定期校正1次;而且要求实验室工作人员利用分析方法分析对应的检测项目,并与现场仪表监测结果比较,如果偏差太大,那么应适时对仪表进行校正,确保准确。
1.4.3保证仪表供电电压的稳定性,延长仪表的使用寿命。瞬间的高电压冲击往往使仪表很容易烧坏。南宁市琅东污水处理厂运行过程中,就发生了多次因供电电压不稳定,而使超声波液位差计和超声波液位计的变送器损坏,从而影响了自控系统的正常工作的情况。南宁市琅东污水处理厂正进行技术改造避免供电电压不稳定对仪表造成的损坏,降低运行成本,提高经济效益。
2自动化检测仪表在压力表校准方面的应用
特大型冶金制造企业各工序都是连续性衔接作业,往往造成许多现场压力仪表虽到检定周期,却由于不能停产也就不能从作业。压力仪表的工作原理是弹簧管在压力或真空作用下产生弹性变形引起管端位移,其位移通过机械传动机构进行放大后再传递给指示装置,可在刻有法定计量单位的分度盘上读出指针所指示的被测压力值或真空量值。
2.1在线校准预期
(1)目的:实施在线校准适应生产流程计量需求,降低外送检费用。
(2)校准仪表范围:本企业现场在用压力仪表。
(3)校准范围:0~100MPa
(4)校准对比准确度:1.5%~1.6%
(5)预期目标:实现在线压力仪表的受控、有效。
(6)校准方案种类:a.理想型校准比对;b.实用型校准比对。
2.2材料准备
(1)专用管道打孔器
(2)符合现场压力仪表准确度及量程的数块相应受控有效标准表。
(3)校准比对记录。
2.3在线校准比对方案
A.实用型对压力仪表的校准比对
(1)在同一管道上:在距拟被校准的现场压力仪表的适当范围内,用专用管道打孔器引出导压管路,在导压管路中间安置一截止阀(截止阀处于关闭状态),截止阀后的接口处安装压力变送器与拟被校准仪表同规格的受控有效标准压力表。
(2)缓慢开启截止阀至全开,待管道内流体介质充分进入标准表内数分钟后,分别读取两块表的指示值。
(3)填写校准比对记录。
B.理想型对压力仪表的校准比对
自制一台流动简易“压力校验台”。
(1)在流体介质管道上,关闭在用(即拟被校准)的现场压力仪表的“截止阀1”(该截止阀处于关闭状态)。
(2)在截止阀后适当延长导压管路。
(3)在延长导压管路上安装一只三通。
(4)三通的直管口的接口处安装在用的指示为零的压力仪表。
(5)三通的丁字管口的接口处新安装“截止阀2”(该截止阀也处于关闭状态)。
(6)在“截止阀2”后接压力“专用校验管”至简易流动“压力校验台”上预置的“专用校验管接口”。
(7)“压力校验台”上还预置有受控、有效的相应型号规格的标准压力表。
(8)检查无遗漏后,逐一缓慢开启截止阀1、截止阀2至全开;数分钟后,分别读取两块表的指示值。
(9)填写校准比对记录。
2.4经验:
认真做好巡回检查工作仪表工一般都有自己所辖仪表的巡检范围,根据所辖仪表分布情况,选定最佳巡检路线,每天至少巡检两次。巡回检查时,要关闭气源,并松开过滤器减压阀接头。拆卸环室孔板时,注意孔板方向,一是检查以前是否有装反,二是为了再安装时正确。由于直管段的要求,工艺管道支架可能少,要防止工艺管道一端下沉,给安装孔板环室带来困难。拆卸的仪表其位号要放在明显处,安装时对号入座,防止同类仪表由于量程不同安装混淆,造成仪表故障;带有联锁的仪表,切换置手动然后再拆卸;仪表一次开车成功或开车顺利,说明仪表检修质量高,开车准备工作做得好。反之,仪表工就会在工艺开车过程中手忙脚乱,有的难以应付,甚至直接影响工艺生产。
3建议
3.1发展趋势
(1)结构日趋简洁,从当前发展最快的3种流量仪表(电磁、超声、科氏)来看,机械结构都十分简洁,管道内既无转动件,又无节流件。
(2)功能力求完善,随着微电子、计算机、通信技术的飞速发展,流量仪表的功能日益完善、多样,不少机械部分难以解决的问题,依靠电子软件则迎刃而解,如Krohne的智能电磁流量计,不少超声流量计不仅可测流量,还可测流体密度、组分、热能等等。
(3)安装日益简便,工业自动化程度越高,用户越欢迎采用安装维护简便的产品,这也是插入式,外夹式仪表日益畅销的原因。
3.2国产化刻不容缓:
据了解,我国近年来进口仪器仪表约130亿美元,出口约30亿美元(多为低附加值的电工仪表、家用水表、气表),国内大型工程选用国外仪表占2/3,而其价格为国产5~10倍,我国大型流量仪表企业主要依靠国外技术,缺乏拥有自主知识产权意识,创新乏力;自动化仪表国产化刻不容缓!
3.3品种多,选用要实事求是:
流量仪表品种、类型较多,正确选用并非易事,建议:
(1)不要轻信厂商宣传,厂商为利所图,往往对仪表的技术指标夸大其词,选用时要理性分析这些参数的依据,有无检验证明。
(2)按需选取,勿追求高指标,如不是用于商务计量,贸易核算,准确度要求可以降低,如工控系统的某些场合,检测、监控仪表的重复性、可靠性好就可以了。
(3)全面考虑经济指标,仪表的经济性并非限于一次购买费用,还要考虑安装维修(停产损失),是否节能(长期运行费)等因素。
4自动化测试系统的设计挑战
测试管理人员和工程师们为了保证交付到客户手中的产品质量和可靠性,在各种应用领域(从设计验证,经终端产品测试,到设备维修诊断)都采用自动化测试系统。他们使用自动测试系统执行简单的“通过”或“失败”测试,或者通过它执行一整套的产品特性测试。由于设计周期后期产品瑕疵检测的成本呈上升趋势,自动化测试系统迅速地成为产品开发流程中一个重要的部分。这篇“设计下一代自动化测试”的文章描述了一些迫使工程团队减少测试成本和时间的挑战。这篇文章还深刻地洞察了测试管理人员和工程师们如何通过建立模块化软件定义型测试系统来克服这些挑战。这种测试系统在减少总体成本的同时,显著地增加了测试系统的吞吐量和灵活性。
如今的测试工程师们面临着一系列新的压力。他们所面临的产品设计比前几代更为复杂;为了保持竞争力并满足客户要求,开发周期要求越来越短;产品测试成本越来越高,而预算越来越少。
4.1不断提高的设计复杂性:如今,测试测量的最明显趋势是器件复杂性不断增加。例如,消费电子、通信和半导体工业持续要求将数字图象/视频、高保真音频、无线通信和因特网互联性集成到一个单独产品中。甚至在汽车中都集成了复杂的汽车娱乐和信息系统、安全和早期预警系统,以及车身和发动机上的控制电子装备。测试系统的设计不仅需要足够灵活地支持对不同产品模型进行广泛的测试,还需要能够进行升级以提供新测试功能所需的更多测试点。
4.2更短的产品开发周期:
【关键词】:隧道工程,盾构姿态,自动测量,系统开发
1引言
盾构机姿态实时正确测定,是隧道顺利推进和确保工程质量的前提,其重要性不言而喻。在盾构机自动化程度越来越高的今天,甚至日掘进量超过二十米,可想而知,测量工作的压力是相当大的。这不仅要求精度高,不出错;还必须速度快,对工作面交叉影响尽可能小。因此,为了能够在隧道施工过程中及时准确给出方向偏差,并予以指导纠偏,国内外均有研制的精密自动导向系统用于隧道工程中,对工程起到了很好的保证作用。
1.1国内使用简况
国内隧道施工中测量盾构机姿态所采用的自动监测系统有:德国VMT公司的SLS—T方向引导系统;英国的ZED系统;日本TOKIMEC的TMG—32B(陀螺仪)方向检测装置等等。所采用的设备都是由国外进口来的。据了解,目前有些地铁工程中(如广州、南京)在用SLS—T系统,应用效果尚好。
总的来看,工程中使用自动系统的较少。究其原因:一是设备费或租赁费较昂贵;二是对使用者要求高,普通技术人员不易掌握;三是有些系统的操作和维护较人工方法复杂,在精度可靠性上要辅助其它方法来保证。
1.2国外系统简况
国外现有系统其依据的测量原理,是把盾构机各个姿态量(包括:坐标量—X.Y.Z,方位偏角、坡度差、轴向转角)分别进行测定,准确性和时效性受系统构架原理和测量方法限制,其系统或者很复杂而降低了系统的运行稳定性,加大了投入的成本,或者精度偏低,或者功能不足,需配合其他手段才能完成。
国外生产的盾构设备一般备有可选各自成套的测量与控制系统,作业方式主要以单点测距定位、辅以激光方向指向接收靶来检测横向与垂向偏移量的形式为主。另外要有纵、横两个精密测倾仪辅助[7]。有些(日本)盾构机厂商提供的测控装置中包括陀螺定向仪,采用角度与距离积分的计算方法[1][2],对较长距离和较长时间推进后的盾构机方位进行校核,但精度偏低,对推进只起到有限的参考作用。
2系统开发思路与功能特点
2.1开发思路
基于对已有同类系统优缺点的分析,为达到更好的实用效果,我们就此从新进行整体设计,理论原理和方法同过去有所不同,主要体现在:其一,系统运行不采用直接激光指向接收靶的引导方式,而是根据测点精确坐标值来对盾构机刚体进行独立解算,计算盾构姿态元素的精确值,摈弃以往积分推算方法,防止误差积累;其二,选用具有自主开发功能的高精度全自动化的测量机器人,测量过程达到完全自动化和计算机智能控制;其三,在理论上将平面加高程的传统概念,按空间向量归算,在理论上以三维向量表达,简化测量设置方式和计算过程。
目前全站仪具备了过去所没有的自动搜索、自动瞄准、自动测量等多种高级功能,还具有再开发的能力,这为我们得以找到另外的测量盾构机姿态的方法,提供了思路上和技术上的新途径。
系统开发着眼于克服传统测控方式的缺点,提高观测可靠性和测量的及时性,减少时间占用,最大限度降低人工测量劳动强度,避免大的偏差出现,有利于盾构施工进度,提高施工质量,在总体上提高盾构法隧道施工水平。系统设计上改进其他方式的缺点,在盾构推进过程中无需人工干预,实现全自动盾构姿态测量。
2.2原理与功能特点
盾构机能够按照设计线路正确推进,其前提是及时测量、得到其准确的空间位置和姿态方向,并以此为依据来控制盾构机的推进,及时进行纠正。系统功能特点与以往方式不同,主要表现在:
(1)独特的同步跟进方式:本系统采用同步跟进测量方式,较好克服了随着掘进面推进测点越来越远造成的观测困难和不便。
(2)免除辅助传感器设备,六要素一次给出(六自由度)。
(3)三维向量导线计算:系统充分利用测量机器人(LeicaTCA全站仪)的已有功能,直接测量点的三维坐标(X,Y,Z),采用新算方法——“空间向量”进行严密的姿态要素求解。
(4)运行稳定精度高:能充分满足隧道工程施工对精度控制的要求以及对运行稳定性的要求。
(5)适用性强:能耐高低温,适于条件较差的施工环境中的正常运行(温度变化大,湿度高,有震动的施工环境)。
图1系统主信息界面示意
系统连续跟踪测定当前盾构机的三维空间位置、姿态,和设计轴线进行比较获得偏差信息。在计算机屏幕上显示的主要信息如图一所示。包括:盾构机两端(切口中心和盾尾中心)的水平偏差和垂直偏差及盾构机刚体三个姿态转角:1)盾购机水平方向偏转角(方位角偏差)、2)盾构机轴向旋转角、3)盾构机纵向坡度差(倾斜角差),以及测量时间和盾构机切口的当前里程,并显示盾构机切口所处位置的线路设计要素。
2.3运行流程
系统采用跟踪式全自动全站仪(测量机器人),在计算机的遥控下完成盾构实时姿态跟踪测量。测量方式如图二所示:由固定在吊篮(或隧道壁)上的一台自动全站仪[T2]和固定于隧道内的一个后视点Ba,组成支导线的基准点与基准线。按连续导线形式沿盾构推进方向,向前延伸传递给在同步跟进的车架顶上安置的另一台自动全站仪[T1]及棱镜,由测站[T1]测量安置于盾构机内的固定点{P1}、{P2}、{P3},得到三点的坐标。盾构机本体上只设定三个目标测点。该方式能较好地解决激光指向式测量系统的痼疾——对曲线段推进时基准站设置与变迁频繁的问题。
2.4刚体原理
盾构机体作为刚体,理论上不难理解,刚体上三个不共线的点唯一地确定其空间位置与姿态。由三测点的实时坐标值,按向量归算方法(另文),解算得出盾构机特征点坐标与姿态角度精确值。即通过三维向量归算直接求得盾构机切口和盾尾特征部位中心点O1和O2当前的三维坐标(X01、Y01、Z01和X02、Y02、Z02)。同时根据里程得到设计所对应的理论值,两者比较得出偏差量。
2.5系统初始化操作
系统初始化包括四项内容:
1)设置盾构机目标测点和后视基准点;
2)固定站和动态站上全站仪安置;
3)盾构控制室内计算机与全站仪通讯缆连接;
4)系统运行初态数据测定和输入。
在固定站[T2]换位时,相关的初态数据须重测重设,而其他几项只在首次安装时完成即可。
F1键启动系统。固定的[T2]全站仪后视隧道壁上的Ba后视点(棱镜)进行系统的测量定向。[T2]和安装于盾构机车架顶上的[T1]全站仪(随车架整体移动)以及固定于盾构机内的测量目标(反射镜)P1、P2、P3构成支导线进行导线自动测量。
2.6运行操作与控制
本系统在两个测站点[T1]、[T2]安装自动全站仪,由通信线与计算机连接,除计算机“开”与“关”外,运行中无须人员操作和干予,计算机启动后直接进入自动测量状态界面,当系统周而复始连续循环运行时,能够智能分析工作状态来调整循环周期(延迟时间),直到命令停止测量或退出。
3系统软件与设备构成
3.1软件开发依据的基础
测量要素获得是系统工作的基础,选用瑞士Leica公司TCA自动全站仪(测量机器人)及相应的配件,构成运行硬件基础框架。基于TCA自动全站仪系列的接口软件GeoCom和空间向量理论及定位计算方法,实现即时空间定位,这在设计原理上不同于现有同类系统。系统通过启动自动测量运行程序,让IPC机和通讯设备遥控全站仪自动进行测量,完成全部跟踪跟进测量任务。
3.2系统硬件组成的五个部分
■全自动全站仪
测量主机采用瑞士徕卡公司的TCA1800自动测量全站仪,它是目前同类仪器中性能最完善可靠的仪器之一。TCA1800的测角精度为±1”、测距精度为1mm+2ppm;仪器可以在同视场范围内安装二个棱镜并实现精密测量,使观测点设置自由灵活,大大提高了系统测量的精度。
■测量附属设备
包括棱镜和反射片等。
■自动整平基座
德国原装设备,纠平范围大(10o48’),反应快速灵敏(±32”)。
■工业计算机
系统控制采用日本的CONTECIPCRT/L600S计算机,它能在震动状态、5。~50。C及80%相对湿度环境中正常运行,工矿环境下能够防尘、防震、防潮。其配置如下:
——Pentiun(r)-MMX233HZ处理器
——32M内存
——10G硬盘或更高
——3.5英寸软驱
——SuperVGA1024*768液晶显示器
——PC/AT(101/102键)键盘接口
——标准PS/2鼠标接口
——8串口多功能卡(内置于计算机扩展槽)
■双向通讯(全站仪D计算机)设备
系统长距离双向数据通讯设备采用国内先进的元器件,性能优良,使得本系统通讯距离允许长达1000米(通常200米以内即满足系统使用要求),故障率较国外同类系统低得多,约减少90%以上。通讯原理如图三所示。
3.3系统硬件组成简单的优势
从设备构成可知,系统不使用陀螺仪,也不必配装激光发射接收装置,并舍去其他许多系统所依赖的传感设备或测倾仪设备,从而最大限度地简化了系统构成,系统简化提高了其健壮性,系统实现最简和最优。
带来上述优点的原因,在于机器人良好的性能和高精度以及定位原理上直接采用三维框架,通过在计算理论和方法上突破过去传统方式的框框,使之能够高精度直接给出盾构机上任意(特征)点的三维坐标(X,Y,Z)以及三个方向的(偏转)角度(α,β,γ),这样在盾构机定位定向中,即使是结构复杂的盾构机也能够简单地同时确定任意多个特征点。比如DOT式双圆盾构需解决双轴中心线位或其他盾构更多轴心、以及铰接式变角等问题,可通过向量和坐标转换计算解出而不必增加必要观测。
由此可知,本构架组成系统的硬件部件少,运行更加可靠,较其他形式的姿态测量方式优点明显。实际上本系统的最大特点就是由测量点的坐标直接解算来直接给定测量对象(刚体)的空间姿态。
另外特别说明一点:本系统由两台仪器联测时,每次测量都从隧道基准导线点开始,测量运行过程中每点和每条边在检验通过之后才进行下步。得到的姿态结果均相互独立,无累积计算,故系统求解计算中无累计性误差存在。因此,每次结果之间可以相互起到检核作用,从而避免产生人为的或系统数据的运行错误。这种每次直接给出独立盾构机姿态六要素(X,Y,Z,α,β,γ)的测算模式,在同类系统中是首次采用。
冗余观测能够避免差错,也是提高精度的有效方法。最短可设置每三分钟测定一次盾构机姿态,由此产生足量冗余,不仅确保了结果的准确,也保证了提供指导信息的及时性,同时替代了隧道不良环境中的人工作业,改善了盾构隧道施工信息化中的一个重要但较薄弱的环节。
4工程应用及结论
4.1工程应用
上海市共和新路高架工程中山北路站~延长路站区间盾构推进工程,本系统在该隧道的盾构掘进中成功应用,实现实时自动测量,通过了贯通检验。该工程包括上行线和下行线二条隧道,单线全长1267米。每条隧道包含15段平曲线(直线、缓和曲线、圆曲线)和17段竖曲线(坡度线、圆曲线),线型复杂。
盾构姿态自动监测系统于2001年12月11日至2002年3月7日在盾构推进施工中调试应用。首先在下行线(里程SK15+804~SK16+103)安装自动监测系统,调试获得成功,由于下行线推进前方遇到灌注桩障碍被迫停工,自动监测系统转移安装到上行线的盾构推进施工中使用,直到上行线于2002年3月7日准确贯通,取得满意结果。
4.2系统运行结果精度分析
盾构机非推进状态的实测数据精度估计分析
通过实验调试和施工运行引导推进表明,系统在盾构推进过程中连续跟踪测量盾构机姿态运行状况良好。测量一次大约2~3分钟。在“停止”状态测得数据中,里程是不变的,此时的偏差变化,直接反映出系统在低度干扰状态下的内符合稳定性,其数据——偏差量用来指导盾构机的掘进和纠偏。盾构不推进所测定盾构机偏差的较差<±1cm,盾构推进时测定盾构机偏差的误差<±2cm。表三中和人工测量的结果对比,考虑对盾构机特征点预置是独立操作的,从而存在的不共点误差,由此推估测量结果和人工测量是一致的,在盾构机贯通进洞时得到验证。
4.3开发与应用小结
经数据随机抽样统计计算得出中误差(表一、表二)表明:以两倍中误差为限值,盾构机停止和推进两种状态偏差结果的中误差均小于±20毫米,满足规范要求。
为了检核盾构姿态自动监测系统的实测精度,仍采用常规的人工测量方法,测定切口和盾尾的水平偏差和垂直偏差,并与同里程的自动测量记录相比较(表三),求得二者的较差()。由于二者各自确定的切口中心点O1和盾尾中心点O2不一致偏差约为2cm,所以各自测定的偏差不是相对于同一中心点的,即二者之间先期存在着系统性差值。
通过工程实用运行,对多种困难条件适应性检验,系统表现出良好的性能:
1)实时性——系统自动测量反映当前盾构机空间(六自由度)状态;
2)动态性——系统自动跟踪跟进,较好解决了弯道转向问题;
3)简易性——系统结构简单合理,操作和维护方便,易于推广使用;
4)快速性——系统测量一次仅需约两分钟;
5)准确性——结果准确精度高,满足规范要求,在各种工况状态都小于±20毫米;
6)稳定性——适应震动潮湿的地下隧道环境,系统可以长期连续运行。
本系统已成功用于上海市复兴东路越江隧道?11.22米大型泥水平衡盾构推进中。我们相信对于结构简单,运行稳定,精确度高,维护方便的盾构姿态自动监测系统,在盾构施工中将发挥其应有作用。
[参考文献]
[1]隧道工程,上海科学技术出版社,1999年7月,刘建航主编
[2]地铁一号线工程,上海科学技术出版社,1999年7月,刘建航主编
[3]TPS1000经纬仪定位系统使用手册,Leica仪器有限公司
[4]盾构姿态自动监测系统研究与开发报告,2002年4月,上海市政二公司
[5]杭州湾交通通道数据信息管理系统设计与开发,华东公路,1998.3,岳秀平
[6]GeoCOMReferenceManualVersion2.20,LeicaAG,CH-9435Heerbrugg(Switzerland)
1.1阶段划分
软件的生命周期主要由软件定义、软件开发和软件维护三部分组成。对于软件的各个不同阶段,尽可能地将软件的开发设计工作划分为具体的任务,并且使任务之间的关联性降低,尽可能地相互独立,从而可以有效地降低软件开发的复杂性,利于软件开发工作的组织管理,简化其工作流程。
1.2软件定义时期
对软件进行定义的主要目的是明确软件开发工作的总目标和该软件工程的可行性,分析软件系统需要实现的具体功能及采取何种手段实现该功能,并对整个系统所需要的成本和资源进行初步的估算,设计出工程的进度表。该阶段的工作主要由系统分析员完成,其主要工作有:
(1)问题描述和可行性分析。
进行此阶段分析时,主要由软件系统的需求方和软件开发方相互协商,明确软件系统的目标及可行性。问题描述主要是明确需要解决什么问题,对问题进行准确的定位,将问题的困难程度、性质、规模及目标等内容以书面的形式进行描述,并上报给上级主管部门。对软件需求方的使用者进行走访,对问题的理解进行扼要的描述,并将写好的报告反馈给用户,查看问题的描述是否准确,统一双方的意见,直至达到最终的协议。对于可行性的分析,当前对于该定义并没有给出明确的定义,其主要目的是描述该系统是否值得去做,是否有合适的技术能够解决此问题。在该阶段的可行性相对比较简短,只是从总体上进行分析,并不涉及具体的问题。
(2)分析需求。
明确软件系统可行之后,就需要对软件的功能进行详细的分析,即:为了达到使用者的要求,软件系统必须能够做什么和具备哪些具体的功能。另外,用户当进行软件操作时,必须有个清晰的认识,利用该软件系统要达到哪个具体的目标。开发人员和使用者必须进行详细的、准确的沟通,利用数据模型、数据字典、数据流图及算法设计出整个软件系统的逻辑模型。在该阶段,必须让用户参加,并给出具体的意见。
1.3软件开发时期
对于软件的开发,主要由计划、设计、编码和测试四部分组成,计划和设计是系统设计,编码和测试是系统实现。软件的开发由计划开始,完善的计划可以为软件的开发节省大量的时间和精力;设计是在计划的基础上,进一步的完善,给出问题的每一个步骤,是对整个系统功能的完整描述;系统设计完成后,开始进行编码操作,即对问题的具体实现,在编码中,要符合编写规范的要求,保证程序的易读易维护;没有一个软件是一次编写成功的,需要反复的测试才行,当前的测试从小到大,分别是单元测试、集成测试和验收测试,每次测试都要进行详细的记录,为以后软件的维护打好基础。
1.4软件维护时期
如果说前面的步骤是软件的实现过程,那么软件的维护时期就是软件的使用过程,软件的维护时期最长,由于软件随着使用环境的不断变化,软件的功能逐渐不能满足用户的需求和无法正常使用,为了延长软件的使用寿命,必须对软件进行维护处理。对于软件的维护活动主要分为4类,分别是:改正性维护、完善性维护、适应性维护和预防性维护。根据维护的情况不同,每个维护都要有详细的报告,通过报告来进行制定维护计划、修改软件设计、代码修改和测试等一系列的过程。
2测试自动化
开发人员设计好程序之后,无法直接投入使用,需要对代码进行测试,而软件测试是一个非常烦琐的过程。据统计,软件工程人员无法及时交付软件的主要原因是在规定的时间内没有对软件进行完整的测试和修订。21世纪,时间就是金钱,时间就是企业的生命,软件投入市场越早,就越有可能提前掌握先机,从而获得更高的利润。传统的软件测试方法无疑已经无法适应当前IT行业的发展,自动化测试软件可以使测试流水化,使得在较短的时间内充分对软件进行测试,现在,越来越多的软件企业选择测试自动化。
2.1测试自动化的定义
当前,对于测试自动化的定义比较多,但总结起来为:能够通过自动化的测试工具,针对软件测试,在预设条件下运行系统或应用程序,评估运行结果,预先条件应包括正常条件和异常条件。从而达到减轻手工测试的劳动量,节省测试时间的目的。测试自动化在很多情况下都具有非常大的使用价值,例如在进行脚本测试时,可以产生许多重复调用的代码,在进行压力测试时,可重用很多次该脚本。如果利用手工测试方式进行压力测试,那么可能要花费相当长的时间,而且有时有些软件的缺陷还不能及时地发现,测试自动化保证了软件的稳定性和准确性。
2.2测试自动化的生命周期
进行自动化测试的工具也是一种软件,有其自身的生命周期,主要分为需求分析、计划、设计、实现、集成、维护和终结等过程。对于需求分析阶段,主要是对测试的用例进行详细的分析,明确测试用例的可行性,考察用例是否可以重复利用,对测试有何价值;在计划阶段,设计测试的进度和生成相关的文档;设计主要是描述自动化测试的模块,而描述是对这些模块的实现;对写好的软件模块进行集成,生成相应的具有特定功能的测试包;最后对软件的测试自动化工具进行维护,随着时间的推移,结束自动化测试生命周期。
3测试自动化软件的实现
3.1需求分析阶段
在该阶段,测试工程师和手机终端使用者要一起参加需求分析的讨论,分析测试的环境和过程,测试不同的环境下手机的使用情况。在进行手机通信测试的需求分析里,假定使用300个测试用例,分析其自动化测试的流程,形成书面的需求规格说明文档,并进行专门的评审,对测试用例进行审查。
3.2计划阶段
主要完成计划进度表的建立。例如整个手机终端测试需要五周时间完成,计划和设计需要半周,开发和执行需要三周,测试需要一周半。在规划测试计划时,在对每一次进行操作进行相关文档的说明,其中文档的完成工作也需要在计划时间以内,建立和维护一个测试环境文档是非常重要的。
3.3设计阶段
对于手机通信系统来说,软件的升级不会带着新的错误,即功能是不变的,由于测试的脚本具有共用性,模块化的设计是非常有必要的。在设计的过程中,要注重命名规则,以免发生混淆,使得模块发生混乱。
3.4实现和集成阶段
实现主要是在设计的基础上,进行编码,最终完成软件,每次代码更改运行要记录初始状态和运行后状态,及时进行备份。对软件进行集成分块测试,将生成的测试包提交给组装集成测试人员,对其进行评审和验证,详细记录其结果。
3.5维护和终结阶段
软件自动化测试生成后,要根据使用环境和用户的不同进行维护处理,并不断对其进行改进,这个过程可以通过问题跟踪工具来完成。随着新技术的来临,软件会越来越不适应企业的要求,就要对其进行终结,重新研发新的测试软件。
4结语
作者:蒙萌 蒙大鹏 覃文更 单位:广西木论国家级自然保护区管理局
监测方法
在保护区域及监测限定距离的内耕地较少。因此,两区域所监测到的野生动物损害作物的次数和受损面积少。西面因交通闭塞,村屯分散,群众在区域内种植作物多、面积大,这些耕地更近保护区域,受损程度严重(表略)。损害作物的动物、受害作物种类和季节变化规律主要损害作物的动物种类有黑熊、野猪、猕猴、松鼠、鸟类等。本次监测时段未发现有黑熊、野猪危害,但访问得知,黑熊、野猪是危害(玉米)程度最大的动物种类之一,曾有一夜之间,黑熊就损坏近0•2hm2玉米地的记录。主要受损害的作物种类有玉米(包谷)、黄豆、火麻、猫豆、辣椒等。1—4月为农作物耕种期,鸟兽损害,呈零星现象,如农民对种子拌施农药,或者制作草稻人驱逐,受损程度较少。7—8月是玉米(包谷)成熟期,受损严重,较为集中成片,许多地块的玉米杆被踩踏得七零八乱,损失过半,收成大幅减少。11—12月份为红薯、火麻成熟期,但由于红薯是地下果实,火麻群众种植分散,为零星受损,成片受损相对玉米少,监测发现仅有6处。野生动物损害农作物的成因分析木论自然保护区始成立于1991年,1998年晋升为国家级自然保护区。保护区建立后,采取封山政策,聘请当地村民进行巡护管理,过去自由进山采药、捕猎受控制,特别是木论国家级自然保护区管理机构建立后,管护力度得到有效提高,巡护制度化,持续化,公安机关依法收缴猎枪,加大对偷猎案件的打击力度,减少了乱捕乱猎野生动物案件的发生。同时,木论自然保护区加强了法律法规和环境宣传教育,争取周边群众对保护区建设的理解和支持,提高他们的自然环境保护意识,野生动物栖息环境得到明显改善,野生动物种群数量讯速增长。由于环境质量的提高和野生动物数量的增长,野生动物损害农作物的次数和强度也不断增加,损失逐年加重,在有些区域群众种地已呈负收入现象,造成弃耕丢荒,社区群众收减少。野生动物损害农作物,社区群众情绪的影响野生动物损害农作物,是与民争食问题,影响了农民收成,有的地块甚至颗粒无收,导致群众生活水平下降。群众有怨言,产生不满,有的干脆丢弃耕地。长此以往,必然影响到对野生动物的保护工作。野生动物损害农作物的趋势分析保护区成立前,村民就在保护区域内的弄场开垦种植,封山禁猎后,野生动物种群增多、数量增多,活动越发频繁,野生动物对农作物肆意践踏,与人争食的矛盾不断加剧。结果是侵扰范围、种类、面积呈逐年增长,侵害程度加重,农民逐渐丢弃不种,区域内被丢弃地越来越多,野生物逐步向外览食,损害范围呈现向外扩展趋势。
对策与建议
制定补偿政策,建立补偿基金野生动物行政主管部门应推动制定补偿政策,建全补偿政策依据,设立补偿基金,建立制度化的补偿机制,解决农民因保护野生动物,农作物受害的损失。同时,认真思考实际操作中,自然保护区、或者说野生动物造成损害比较严重的地方基本上是老少边穷地区,交通欠发达,地方财政困难,很难安排资金或粮食进行补偿。所以,应着重考虑以国家财政安排补偿为主,执行地方配套的办法,彻底解决补偿难操作问题。加大保护区内扶贫开发项目支持力度,发展替代产业因保护要求,社区依赖资源受控制,应设置小额项目贷款,支持有利森林资源增长的替代项目,如合箱养蜂、中草药种植、野生动物驯养与繁殖、生态旅游、地方特色产品种植与开发等,转换种植作物品种,减少野生动物践踏对象,争取群众支持野生动物保护工作。稳妥推进生态移民工程,从根本上解决居民因保护野生动物与农作物被损害的矛盾木论自然保护区在2005年实施一期生态移民工程,搬迁核心区居民19户87人,实现当年外迁,当年脱贫,群众很支持。此后,保护区周边贫困村屯、农户要求外迁意愿强烈,生态移民有群众基础,但迁移资金没有着落,无法进行。所以,安排迁移资金,稳妥推进,对野生动物保护有重要作用。加强宣传,积极开展补偿工作,争取群众理解和支持要宣传保护野生动物法律法规,让广大群众明白,保护野生动物,人人有责;也要引导教育群众增强对危害农作物进行防护,减轻危害。同时,农作物受到损害,要主动察看灾情,做好损失评估,依法依规进行补偿,做到既要保护野生动物,也要维护村民利益,争取群众理解和支持,维护社会稳定。合理猎捕针对不同区域、不同物种的密集程度,采取相应的管理措施;或者在监管部门监督下,结合科学研究和驯养繁殖需要,适当猎捕,控制繁殖过快的物种,减少损害。在环境日趋恶化,全社会都认识到生物多样性保护的重要性,建设步伐得到了加快。但是,以人为本的时代,特别是保护区周边群众为保护野生动物已作出了很大的牺牲,有必要对群众损失加以思考,进行调查研究。通过监测,基本摸索野生动物损害农作物情况及基本规律,充分地认识到群众呼声,希望上级决策部门制定科学的补偿机制,减缓社区矛盾。这次监测时间仅1年,可能因为林木果实年份丰硕差异而对监测结果有一定的影响;其二,几年来,弃地丢荒已相当严重,很多弄场已经全部变成荒地,影响了损失评估结果。此外,木论自然保护区与贵州茂兰自然保护区核心区相连,本来就是一个整体,贵州境内没能同时进行监测,显得有些缺陷。如果条件许可,与贵州茂兰自然保护区联合,再进行一次监测,同时对野生动物践踏而弃地丢荒的情况进行调查,作为影响监测结果的因素加以分析,可能结果更准确、更全面、更客观。