时间:2023-03-25 11:24:39
序论:在您撰写数学学年论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
一年级新生进入学校学习,是儿童生活中的一个重大转折,他们正脱离幼儿学习的主要活动方式——“游戏”,逐步转向以”学习”为主的主导活动,这种转变不是随着学生跨进小学大门而自然发生的,而是从以游戏为主逐渐过度到以学习为主,这一时期儿童的主要心理特征是:①无意注意占优势;②以具体形象思维为主;③观察随意性;④意志自觉性较差;⑤学习习惯未形成;⑥思维非逻辑性,操作能力很差。针对学生的这一年龄特点,我们在教学中应充分发挥教学的直观性原则,注重唤醒学生的生活和知识经验,激发学生的学习兴趣,构建学生的数学知识体系。帮助他们顺利地完成从游戏活动向学习活动的转变。
(一)注重直观操作,促进学生形象思维和抽象思维的发展。
小学生的思维由具体形象思维为主向抽象逻辑思维为主发展,小学生的数学思维同时具有形象思维和抽象思维的形式,一年级儿童更多的是具体的形象思维,这时期的学生,不能依靠抽象的数学概念进行思考,往往还需要具体行动和直观形象的支撑。例如教学9加几的加法时,可以先让学生观察两个可以装满十瓶牛奶的盒子,一盒里装了9盒牛奶,另一盒里装了5盒牛奶,想一想,怎样装牛奶更容易看出牛奶的总瓶数?唤醒学生“凑十”的经验,在此基础上让学生摆小棒,左边摆9根,右边摆5根,想一想,我们怎样操作,能使我们一眼看出这些小棒的总数?由于有了放牛奶的经验,学生很快想到从右边的5根小棒中拿出一根和左边的9根凑成10根。然后和剩下的4根合起来就是14根。老师这时将学生的想法用算式写在黑板上,把操作活动和数学符号联系起来,从而使操作活动和抽象的算理紧密结合,一步步引导学生理解了算理,掌握了抽象的计算方法。再如在教学“长方体,正方体,圆柱和球的初步认识”时,可以提供给学生大量的感性材料,开展丰富的活动,让学生通过看一看,摸一摸,玩一玩等操作活动,来认识体会这些立体图形的主要特征。边操作边提出问题让学生思考:长方体摸上去有什么感觉?轻轻推一下,你发现了什么?为什么长方体能在桌面上滑动?(因为它有平平的面),摸一摸球,有什么感觉?轻轻推一下,你发现了什么?为什么球能在桌面上滚动?(因为它鼓鼓的,没有平平的面。)把圆柱拿出来玩一玩,你发现了什么?(有时会滑动,有时会滚动?)为什么会这样?(因为圆柱上既有平平的面,也有鼓鼓的面。)圆柱可以在桌面上滚,球也可以在桌面上滚,它们的滚动是一样的吗?(不一样,圆柱只能朝一个方向滚,而球可以到处滚。)为什么不一样?(因为圆柱上有平平的面,而球上没有平平的面。而且圆柱的粗细是一样的,也就是说圆柱的上下两个平平的面是一样大的。)这样学生一边操作一边思考,对这几种立体图形的特征有了更深刻的体验和领悟。
(二)注重经验唤醒,促进学生以已有经验为基础建构数学知识。
荷兰著名数学家和数学教育家弗兰登塔尔曾经提出“普通常识的数学”的观点,他认为数学的根源在于普通常识,对小学生来说,小学数学知识并不是新知识,在一定程度上是一种旧知识,在他们的生活中已经有许多数学知识的体验,学校数学学习是他们生活中有关数学现象经验的总结与升华,每一个学生都从他们的现实数学世界出发,与教材内容发生交互作用,建构他们自己的数学知识。小学生学习数学离不开现实生活经验。
一年级一册教材中,“求一个数比另一个数多(少)几”是一个难点,主要表现在学生能根据已知条件判断出多(少)几,但不能正确列算式,表示比较的过程,也就是不能将比较过程和算式建立联系。他们有的是用数数的方法,想3再数2个数就是5,所以5比3多2,有的想3再加几等于5,所以列式3+2=5,还有的是记住公式大数减小数,然后套用公式得出结论。出现这些现象的原因,一方面是学生的逆向思维能力较差,另一方面是对算理的不理解,而这个算理是很抽象的,对于一年级学生来说,学习掌握它的确有很大难度。在教学中,我首先创设了一个现实的情境,我们教室里有一些男生,还有一些女生,怎样才知道是男生多还是女生多?你有什么好办法?同学们通过思考,得到一个方法,让男生和女生站队,一个对着一个,对齐之后看看是男生有多的,还是女生有多的,就知道谁多谁少了。这样的比较方法来自学生的生活实际,在比较多少时,他们通常就是这样操作。他们在以往的生活中积累了这样的比较经验,只是在课堂上提出问题让学生重温这个经验,学生通过重温进一步明白比多少时一个重要的方法,就是一一对应,在明确这样的方法之后,出示主题图让学生比较学生和老师的人数:学生有8人,老师有2人,学生比老师多几人?学生用圆形和三角形分别代表学生和老师,用一一对应的方法摆出来,这时再让学生指出哪几个学生是多出来的?这部分学生包括与老师对齐的那2个吗?如果果把这2个去掉,剩下的是哪一部分?(剩下的就是学生中比老师多的)怎样求这一部分?然后再让学生列出算式。这时学生体会到从较多的事物中去掉与较少事物一一对应的部分(也就是同样多的部分),就能得出较多事物比较少事物多的部分。我们知道,学生总是对发生在自己身边的熟悉的事物感兴趣,对自己生活中体验过的事情有热情,为了降低学习的难度,可以从学生经历过的熟悉的事件入手,创设合适的情境,充分唤醒知识经验。在此基础建构属于他自己的数学知识。
(三)注重习惯养成,促进学生数学学习的有效进行。
初入学的儿童,往往还没有建立学习的雏型,因此小学一年级是培养儿童学习习惯的重要时期。要努力培养学生良好的听说读写小组合作等习惯。以保障数学学习的顺利有效的进行。首先,要教学生学会倾听,听老师和同学的发言,懂得听清他人的想法;可以要求学生复述老师或同学的话,以提醒开小差的学生集中注意力听讲。其次要教学生学会表达,要学会在倾听的基础上大胆提出自己的意见和想法。用完整通顺的语言说出自己对数学知识的理解。最后还要教儿童学会操作,学会轻拿轻放,有理有序操作学具。要在每次操作活动前给学生提出明确要求,并在操作过程中检查学生有否按老师的要求去做。此外还要培养学生按时完成作业,认真学习,有错题及时改正等习惯。
由于学生的无意注意占主要优势,一年级学生还不能很好控制自己的行为,我们在课堂组织教学中要加强调控,多多开展小组竞赛,定期评价小组表现,宣布比赛结果。可以将老师的要求物化量化,设倾听星,操作星,守纪星,智慧星,作业星等多个奖项。开展小组与小组之间,个人与个人这间的竞赛。以激励学生养成良好习惯。
1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。
2、论文摘要和关键词。
论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以500字左右为宜。有时还需附上英文的论文摘要。
关键词是能反映论文主旨最关键的词句,一般3-5个。
3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。
4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。
5、正文。是毕业论文的主体。
6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。
7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。
而参考文献是人们长忽略的一部分:
参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。
参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。
8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。
毕业论文标准格式:格式及排版
1、论文份数:一式三份。一律要求打印。论文的封面由学校统一提供。纸张型号:A4纸。A4210×297毫米。页边距:天头(上)20mm,地角(下)15mm,订口(左)25mm,翻口(右)20mm。统一使用汉语:小五号宋体。分割线为3磅双线。
2、论文格式的字体:各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用TimesNewRoman字体。
3、字体要求:
(1)论文标题2号黑体加粗、居中。
(2)论文副标题小2号字,紧挨正标题下居中,文字前加破折号。
(3)填写姓名、专业、学号等项目时用3号楷体。
(4)内容提要3号黑体,居中上下各空一行,内容为小4号楷体。
(5)关键词4号黑体,内容为小4号黑体。
(6)目录另起页,3号黑体,内容为小4号仿宋,并列出页码。
(7)正文文字另起页,论文标题用3号黑体,正文文字一般用小4号宋体,每段首起空两个格,单倍行距。
(8)正文文中标题
一级标题:标题序号为“一、”,4号黑体,独占行,末尾不加标点符号。
二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。
三级标题:标题序号为“1.”与正文字号、字体相同。
四级标题:标题序号为“(1)”与正文字号、字体相同。
五级标题:标题序号为“①”与正文字号、字体相同。
(9)注释:4号黑体,内容为5号宋体。
(10)附录:4号黑体,内容为5号宋体。
兴趣是最好的老师,是学生认识事物、探索新知的动力。兴趣带有情感色彩,它是推动人去认识事物、探求真理的一种重要动机,是学生学习中不可或缺的主要因素。小学生具有好奇的天性,对新事物总是充满遐想,总是乐于接受感兴趣的新知识。数学这门学科本身较抽象、单调,不如其他学科那样富有故事性、趣味性。在课堂教学中,如果教师一味地采用传统“满堂灌、注入式”的教学方式,对学生的学习兴趣不管不问,久而久之,学生就会渐渐地厌倦数学。因此,课堂教学中想要让学生学得更好,作为教师的我们应把学生的学习兴趣激发放在第一位,抓住小学生“好奇”的特性,设法使学生对所学内容产生兴趣,用学生的学习兴趣去带动学生的学习积极性和主动性,引导学生变“苦学”为“乐学”,变“要我学”为“我要学”。激发学生学习兴趣的方式有很多,教学中,教师可以根据学生的特点,结合所学内容,积极搞好课堂引入,在课程开始时就用学生感兴趣的事物把学生引进课堂,激发学生的学习兴趣,使学生在有兴趣保障的环境下积极学习数学知识,提高课堂教学的有效性。
二、创设有效的课堂教学情境
教师在课堂教学中要尽量设计各种各样生动有趣的教学情境,如问题情境、故事情境、竞争情境等。如在学习“分数的认识”时,当学生已认识了1/2、1/3这两个分数后,教师可以问学生:“你觉得还可能有哪些分数呢?谁来大胆地猜一猜。”学生稍加思考后,就会立即回答:“1/4、1/5、3/4、2/5……”此时,教师可以问:“同学们,的确有这些分数,你能借助课前准备好的材料把1/4表示出来吗?我们来比一比,看谁表示的方法多?”问题一经提出,学生就积极思考并操作起来。之后,大家积极展示、争先恐后地发表着自己的意见。有的学生说:“我把一个长方形对折再对折,打开后平均分成了四份,每份就是它的1/4。”有的学生说:“我把一个圆形对折两次,打开后也平均分成了四份,每份也是它的1/4。”教师通过情境的创设,不仅使学生兴趣浓厚,而且也使学生感受了数学与生活的密切关系,借助旧知迁移使学生很好地掌握了知识。
三、注重练习,促使学生的学习能力快速提高
(一)多方面练习
小学生好奇心比较重,在课堂上好动,在思维方面以具体形象思维为主,而抽象逻辑思维能力比较弱,持续注意力较差。他们对具体形象的事物比较感兴趣,因此,在教学中教师应引导学生动手、动口、动眼、动脑,让他们在学习过程中多方面进行练习。教师要引导学生利用旧概念去认识新概念,应用曾经学习过的公式、定律去解决新的问题,通过温故知新促进学生学习能力的发展。
(二)练习要有针对性,使学生掌握计算规律
多练虽然是提高学生计算能力的重要方法,但如果教师只是注重练习数量,有时会损伤学生的积极性,因此,练习也要有针对性。教师要让学生针对那些易错、易混的题目进行练习,以此提高学生的计算能力。教师可以选择教材中的重点和难点题型,也可以选择大多数学生共同出现的错误题型,还可以用不同题型设计计算题,让学生进行针对性练习。通过不同题型的练习,学生既能提高计算能力,也能灵活掌握所学知识。学生掌握了一些计算题的规律,既能够提高计算准确率、节省计算时间,又能培养逻辑思维能力。
四、重视动手操作,提高实践能力传统的数学课堂教学
主要是以教师上面讲解、学生下面记背的方式为主,纯粹是通过教师的讲授使学生学习有关的概念、公式、法则与定律,形式比较单一,课堂比较枯燥。学生通过动手实践活动获得数学知识,不仅可以对知识的形成有一个清醒的认识,也有助于良好学习方法、思维方法以及学习态度的形成。通过这一类的活动,学生既能体验到独立获取知识的乐趣,又能从中学到解决问题的方法,有效地培养实践意识和实践能力。如在教学“分数的意义”时,教师可以利用分一分、画一画等动手操作活动激发学生的兴趣,使学生发现长方形纸的4分之1有大有小,促进学生进一步主动思考,体会什么是单位“1”,理解分数的意义。学生学会使用分数解决生活中的问题后,就会增强自信心、提高探究能力。
二、新课程背景下小学数学体验教学中存在的问题
新课程改革就是要将课程从“文本课程”转变为“体验课程”,因此,“体验”自然也就成为新的学习方式的一个重要特征。但是当前小学数学课堂上教师把学生当作盛装知识的容器,而不是具有鲜活个性的人,教师只注重知识的“灌输”而忽视学生对知识的主动获取,学生被动学习、缺乏独立学习、思考、主动探究的能力。教师过多强调学生对所学知识的记忆,习惯于传授现成的结论而不是向学生暴露解题思路、解题方法,学生体验不到知识的形成、发展过程,从而对数学的学习感到枯燥无味缺乏兴趣。另外,学生自学能力不够,缺少主动提出问题、主动探究问题和综合运用知识能力。学生主动参与意识不强烈,往往造成教师唱独角戏,课堂气氛不够活跃,没有吸引力,较枯燥呆板。
三、创设小学数学体验教学情境策略的体会与思考
(一)创设活动体验情境。新的数学《课程标准》提出,应加强数学与学生生活经验的联系。从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,促进学生的主动参与,焕发出数学课堂的活力。
(二)创设问题体验情境。在教学中教师用简单浅显的提问将学生的思维引入预先设置的圈内是一种较为普遍的现象。学生不知道为什么要提这个问题及问题的重要性,缺少探究的方向和动力,严重抑制了学生的探究热情。只有在适宜的情景中,才能体验到问题的必要性,主动地投入到探究之中。如教学“厘米的认识”一课时,老师可以给学生创设了一个感性的探索情境:让学生用牙签、火柴、硬纸条等量一量数学书的一条边。经过实践操作,学生在测量数学书同一条边长时,有的学生量出是5根半火柴的长(有的量出是3根牙签的长,有的量出是2张硬纸条的长。教师提问:“为什么同样的数学书的同一条边量得的结果所表示的数却不同呢?”学生根据测量的经验和通过讨论与观察发现:原来测量数学书边长的材料长短是不一样的。要注意引入时提出的问题应处于多数学生智力水平的“最近发展区”,才能激起学生主动参与的热情,取得好的教学效果。
(三)创设反思体验情境。有反思意识的学生,一旦意识到问题,内心便产生认知冲突,于是会自觉进入反思环节。但,使学生明确意识到自己学习中的不足往往不是很容易的。因为,这是对他个人的能力、自信心的一种“威胁”。所以,作为学生反思活动的促进者———教师,在此时要创设轻松、信任、合作的气氛,帮助学生看到学习中的问题所在,使反思活动得以开展。教师可以从学生的实际出发,通过提供适当的问题或实例以促进学生的反思。教学中多问几个为什么,善于设疑,并善于从学生的思维角度出发,从学生容易忽视的一些重要环节中提炼问题,然后通过环环相扣逐层深入的问题序列来引导学生反思。
(四)创设交流体验情境。由于每个学生的经验以及对经验的观念不同,因此不同的学生对事物理解也不可能完全相同,他们站在不同思维角度所看到的是事物的不同反映面,可利用这些反映面来引发学生交流,使学生互相促进。让学生在小组交流、合作探索的情境中体验,所体验到的不仅仅是对知识的感知和更新的认识,更是同学之间情感的交流,思维火花的碰撞。
一、联系生活实际,促进知识迁移,引发兴趣
《数学课程标准(实验稿)》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”小学生的思维以形象思维为主,教学中要充分考虑学生的身心发展特点,结合他们的生活经验和已有知识设计富有情趣和意义的活动,引发学习兴趣,为学生的认知搭建桥梁。
如教学《比例尺》一课时,我出示了学生的照片和校园平面图,让学生同实际事物进行对比。熟悉的生活现象,激起了学生强烈的探究欲望。通过分析、对比、讨论,学生认识到实际事物与图片的形状是相同的,而大小不同,并且它们大小存在一定的比例关系,照片和平面图是按照一定比例缩小而制成的,从而理解了比例尺的内涵。在《圆的认识》一课教学中,我从自行车、汽车的车轮为什么不做成三角形、正方形、五边形而偏要做成圆形的来导入,学生被熟悉的现象所吸引,为找寻答案,他们动手进行了实验,自学了课本,很快找到了理论依据,掌握了圆的特征。此时,我没有就此罢休,继续让他们想一想生活中还有哪些物体的面做成了圆形,联系所学的知识,解释为什么要做成圆形的,把数学知识和生活再次联系起来。又如在《按比例分配》的应用题教学中,我设计这样两个问题:把100公顷土地平均分给东风村1至5组村民耕种公不公平?把土地等分成5份,分别种上葱、姜、蒜、青菜、稻谷等合不合理?这些问题与学生生活息息相关,他们熟知土地要根据人数多少来分,农作物要根据需求来播种,从而懂得了等分有时是不合理的,必须根据实际情况来确定新的分配方法,这样,自然就引出了“按比例分配”,“按比例分配”的内涵也不言而喻了。
实践表明:脱离实际的教学,把数学知识的学习与学生身边的事物割裂开来,不利于学生理解抽象的数学知识。相反,结合身边的事物引出数学知识,学生会感到亲切、生动、真实、易于接受。同时,能使他们体会到生活中处处有数学,数学就在我们身边,我们就生活在充满数学信息的现实世界中。这样教学,符合儿童认知规律,能促使学生学会用数学的眼光去观察和认识周围的事物,有效的促进知识的迁移。
二、加强自身体验,突破教学难点,内化知识
以传授知识为主要目标的教学模式对学生禁锢实在太多。新的《数学课程标准(实验稿)》倡导“动手实践、自主探索与合作交流”的学习模式,强调学生在学习过程中,通过“经历”、“体验”、“探索”认识数学,解决数学,形成经验,从而使各种能力得到发展。新课标所倡导的理念旨在把学习的主动权还给学生,让学生真正成为学习的主人。一节课,无论教科书写得多么清晰,教师讲得多么明白、透彻,要理解教学内容,最终还得靠学生在实践中不断感悟、体验才能完成。
在学习《相遇问题》时,为帮助学生理解“同时”、“两地”、“相向而行”、“相遇”等概念,我带领学生到操场上站成两排,要求他们按照教师指令实际走一走,学生在走走停停中很快理解了这些概念,再回到课堂上讲解“相遇问题”时,就迎刃而解了。“体积”是一个难以理解的概念,教学这一课时,我让学生准备两只同样大小的玻璃杯,在杯里倒入相等体积的水,一只杯子里放入一把铁锁,另一杯里放入一个螺丝帽,让他们观察水平面的变化,思考为什么会有这样的变化?通过观察学生领悟到水平面升高是因为物体挤占了一部分空间,铁锁占据空间大,水平面就上升得高,螺丝帽占据空间小,水面就上升得少,从而懂得物体所占空间大小叫物体体积。这种实验的方法比教师简单叙述和学生机械背诵效果要好得多。又如在《圆锥体积》的教学中,因为学生容易忽视圆柱和圆锥等底、等高这一条件,为排除障碍,我有意准备了几组不完全等底,不完全等高的空圆柱和圆锥让学生实验,学生因为忽视等底等高这一条件,结果得不到V=1/3sh。书上的结论错了吗?学生陷入深深的思索。通过分析、讨论、查找原因,学生恍然大悟,原来忽视了等底、等高这一条件,教学难点在学生的亲身体验中不攻自破。
此外,还可根据教学内容,让学生计算家里的水电费、存款利息、装修所需地板砖的块数等等。总之,凡有适宜的内容,都应让学生亲身体验。这样,学起来轻松、实在、有趣。如此的教学,可建立起学生的大众数学观,符合儿童的认知规律,益于学生内化知识。
三、坚持语言表达,促进思维发展,锻炼智力
新课标要求学生能清晰、有条理地表达自己的思考过程,做到言之有理,在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。语言是思维的载体,语言和思维是紧密相联不可分割的,语言掌握的过程,也就是思维发展的过程。因而,教学中,我们不仅要关注学生是否“会做”,还要关注学生是否“会说”。
在体验的基础上,要求学生把研究的定义、性质、法则、概念等有层次地用简练的数学语言确切地表达出来。这样,通过语言的锤炼可达到思维的严密。如,教学《小数的基本性质》时,通过观察等式0.1=0.10=0.100,让学生讨论:“从左往右看,小数末尾有什么变化”,“再从右往左看,小数又有什么变化”,“你发现什么规律”,“怎样概括这一规律”等等。这样,给学生提供表达思想的机会,也只有让其去表达,才能暴露思维过程中的缺陷。此时,教师根据学生的表达情况,因势利导,给予点拨,能有效促进学生思维的发展。在教学《商不变的性质》时,学生通过观察几组算式,概括出“被除数和除数同时扩大或同时缩小相同倍数,商不变”这一规律,这时可出示6÷2=(6×0)÷(2×0)=3这一式子让学生判断对错。学生很快发现2×0=0,而除数不能为零,原来总结的规律不严密,应补充条件“零除外”才完善。当语言描述准确时,思维也就严密了。
实际教学中对于学生的发言,教师要多鼓励、多诱导、切忌剥夺不善表达学生发言的权利,要给足够的时间让学生动口。实践表明:坚持要求学生清晰地表达自己的思想,有利于应用语言进行思维活动,有利于正确理解科学的概念与原理,使学生智力得到锻炼。
四、进行多元评价,树立学生自信,激感
传统教学崇尚终结性评价,形式和内容都比较单一,常用的评价语是“答得好”,“真不错”,“有进步”,“学得不错”等等。这种千人一面只重结果,不重过程,不重个性的评价,把教育的复杂性和学生状况的丰富性泯灭于其中。新课标强调建立评价目标多元、评价方法多样化的评价体系,其终极目的在于促进每位学生的发展。
多一把衡量的尺子就多一批好学生,好学生不是打骂出来的,而是夸出来的,正如颜元所说:数子十过、不如奖子一长。如教学《圆柱的认识》时,我放手让学生通过观察、实验等方法探究圆柱的特征。生1说:“圆柱是由三个面组成的图形。”我当即赞扬他观察能力强。生2通过与同桌比较圆柱的高矮,发现了圆柱的高,我拍着他的肩膀说:“你的发现真伟大。”生3想出了一个与众不同的验证上下底面相等的方法,我称赞他思维灵活,想象独特。当生4用手比划着提出“上下是两个相等的圆,四周一样粗的倾斜图形(指的是斜圆柱)是不是圆柱”的疑问时,我激动得握住他的手说:“你提的这个问题我都没有想到呢!你真是一个爱动脑筋的孩子。”生5概括圆柱的高的定义时,出现了错误,脸休得通红,我当即说:“虽然你答错了,但你敢于发言,敢于表达自己思想的这种精神是值得大家学习的。”
加入收藏
联系我们
|首页|最新|语文|数学|英语|政治|物理|化学|历史|地理|生物|音乐|体育|美术|科学|计算机|公文|
论文搜索:[热门]素质教育写作总结说课计划心得体会教案操行评语
首页>>数学论文>>新课程理念下初中数学教学
-
【加入收藏夹】【搜索相关的文章】【关闭窗口】
(甘肃省镇原县平泉中学刘永强744517)
摘要:数学新课改要求教学中讲背景来源,讲思想方法,注重过程,联系实际,突出应用,体现数学的文化价值;
关键词:数学新课改、更新观念、关注过程,应用、提高创新能力。
随着数学课程改革的不断深入,数学教学中对教师的教和学生的学的评价及要求也在不断地发展。数学新课程所倡导的教学理念:讲背景来源,讲思想方法,注重过程,联系实际,突出应用,体现数学的文化价值;在教材编排上也从封面设计,导引,章头图及正文的“想一想,做一做,议一议,读一读”等都体现了数学的美学价值和人文精神。通过两年多的试改,感受颇深:
1、教师观念更新,提高认识
在课堂教学中,教师一改以往的角色,成为教学活动中的参与者、合作者、组织者,而宽松、和谐、民主、生动活泼的数学课堂使学生在没有任何压力下产生强烈的求知兴趣,同时也能发现数学的文化价值。
首先,过去对于教师的“主导”地位问题,是课堂评价的一个论据,而在数学新课程改革中对我们理解更会有不同侧面和深刻程度上的差异,所以,当教师把自己变为课堂活动的一名合作者、参与者时,也将自己和学生放在了同一水平上,才能从数学学科的特点出发,考虑到每个学生的不同背景,每个学生的现实基础,认知水平等进行教学,从而发挥每个学生的最大潜能。
其次,在新课改理念下,教师对学生的地位也有了新的认识;教师与学生在教学中的关系是动态的,不再起什么“主导”与“主体”性作用,这一定位,拉近了师生的距离。过去我们评价一节课只看表象,评课者只关注教师在这节课中“戏”演得是否令观众满意,再看观众反应如何,来评这节课的成功与否,注重了数学教学的系统结构和形式化,而较少关注从“感知数学情景、体验数学本质、概括数学抽象、反思数学应用。”的完整数学学习过程,这种形式化教学搞得教师手忙脚乱,学生也无所适从,且看美国中学数学教学的一个案例:
在美国西雅图一节高二数学课上,老师讲的就是一个测量塔高度的问题,一上课,老师就把这个任务交给学生,说塔是高不可及的朵想办法测量这个塔的高度。学生听完以后就每个人拿了一个图形计算器,分成四、五个人一个小组就开始做了。看到这道题我觉得好笑,这不正是前几天才给学生上的一节课吗?是初三数学中的一道应用问题,稍微差不多的学生都很快得出答案。可问题是人家高二学生却做得津津有味,全班同学分完工以后,老师没有做任何提示,学生就开始做这件事情,且没有几个学生去努力找一个公式,绝大多数都在按分工试算:这塔多高呢?有的学生就先设它为100米,找测量点,发现凑不出准确答案,就开始分工,甲把塔放高一点,已把塔变矮点儿,丙把第一个测量点往前点,丁把测量点往后变,四个人分工做,到下课全班还不到10个学生得出结果,老师说:“我们继续去做”。
而这节课在我们教育界的评价会是怎么样呢?没效率,没结果。对比我们的评价方式,我不明白碰撞点在什么地方,如何看待这节课,曾有专家这样认为:在没有任何提示的情况下,大家分工用不同的方法来探索的过程,根据别人的信息来改进自己探索方向的过程,在他们看来比知识更重要。这就使我想到为什么美籍华人杨振宁能获得诺贝尔物理学奖;2006年相当于数学诺贝尔奖的“菲尔茨奖”获得者又是澳籍华人,年仅31岁的陶哲轩,而我们土生土长的中国人却没有,这一切不就说明教育改革,观念更新的可行性吗?
让我们思考我们的数学教育尤其是农村中学数学教育现状,从评价体系的导向上就决定了我们的数学教育是为“应试”而备的,从小学到中学,全部是模块化的:考什么,教什么。而对数学的发展,她的文化价值大概问起来没几个人会知道,对现行新课程知道的又有多少呢?教师为了完成上级下达的任务,在拼时间,讲题型,抓训练,学生为了一个“愿望”,在这个“愿望”的奴化下,麻木的、机械的、毫无生机的学习,我曾经做过一个调查,我所在地方的农村初三学生每周周内学习数学的时间至少在800分钟以上,而其他国家和地区平均是217分钟,我们的代价是多么的大啊,可效果怎么样,我只能用少得可怜来说。
在学习了“中美高层教育交流”研讨后,我对自己八年的数学教学作了回顾,深感自己只不过是个知识的“二道贩子”不停地学习,再将我知道最多,自认为最好的、最得意的东西传授给学生,并告诉他们“量积累到一定程度才能引起质变”并举了数学家苏步青当年为了考取国际上有名的日本帝国大学,对解析几何、微分两门课做了近万道题,结果以双百的优异成绩被录取;传说中王羲之练干了三缸水,若非如此若练,他岂能丰为书圣。可是我们学生苦了,力也出了,成绩怎么样,全县5000多学生参加高考,几年才培养出一个清华学生,而有关部门就认为质量可观,大力宣扬。
2005年新课程改革在全国轰轰烈烈开展,农村中学数学教育也受到影响,但波动不大,广大农村教师只是从课本上的变化中感觉到了课改的气息,因为受各种因素制约,我们绝大多数都没有外出学习和培训的机会,这就使的我们的课改还要加大力度。
2、关注数学过程,培养创新能力
这是数学课程改革中的“重中之重”,中国教育学会副会长,东北师范大学校长史宁中反复强调“归纳与创新”,学生思维的过程远比简单的数学结果重要。2006年9月6日和7日,“中美数学教育的高层交流”在北京举行,美国学者介绍了他们的数学课上教师讲得很少,主要是学生进行合作交流探索,在我国偏远的农村学校,数学课堂上仍是教师讲为主,学生的自主性很难发挥,他们自小就养成被动接受的习惯,而新课标下的教材在情境创设、培养学生创新意识和实践能力方面为农村数学教育提供了方便,给学生给了更多的思维空间。
在课程改革中,教育理念的更新,必然带来教学行为的变化,只要我们时时做个教学有心人,了解数学发展方向,数学价值,不失时机地反思自己的教学,就可积极稳妥地解决好新与旧的关系。
参与文献:
一、在引入概念时训练学生的形象思维
形象思维以表象和想象为基本形式,以观察、实验、联想、类比、猜想等为基本方法。在数学概念引入时,教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,训练学生的形象思维。
例如“面积”的概念,可通过引导学生观察黑板、桌子、课本等实物的面引入,还可以引导学生用小刀剖开萝卜观察它的截面,让学生亲眼看一看,亲手摸一摸引入。通过多种感官的协同活动,使面积的具体形象在学生头脑中得到全面的反映。
又如教学“除法的初步认识”,一位教师先让学生分小棒:每人拿出8根小棒,把它们分成两排,看有几种分法。教师适时把他们的不同分法展示出来:
附图{图}
然后启发学生观察比较:这四种分法有什么相同?有什么不同?从而引出“平均分”。
这样引入概念,符合小学生掌握概念的认知规律:即从外部的感知开始,通过一系列外部操作活动和内部智力活动,把感性材料和生活经验化为概念。
二、在概念的形成中训练学生的抽象思维
抽象思维是用抽象的方式对事物进行概括,并凭借抽象材料进行的思维活动。它以概念、判断、推理为基本形式,以分析与综合,比较与分类,抽象与概括、归纳与演绎为基本方法。数学抽象思维能力指的是理解、掌握和运用数学概念与原理的能力。
在小学数学概念形成过程中,要及时把概念从具体引向抽象,抓住实质,排除个别实例对全面理解和运用概念的干扰,使学生充分了解概念的内涵和外延。
例如,一位教师教学“长方体和正方体的认识”时,在指导学生给不同形体的实物分类引入“长方体”和“正方体”的概念后,及时引导学生先把“长方体”或“正方体”的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫“棱”?什么叫“顶点”,然后,指导学生分组填好领料单,根据领料单领取“顶点”和“棱”,制作“长方体”或“正方体”的模型,边观察边讨论,长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出“长方体”和“正方体”的特征。从而使学生充分了解“长方体”和“正方体”这两个概念的内涵和外延。这样,既使学生掌握了“长方体”、“正方体”概念的本质属性,又训练了抽象思维。
三、在深化概念中训练学生思维的深刻性
学生数学思维的深刻性集中表现在善于全面地、深入地思考问题,能运用逻辑思维方法,思考与问题有关的所有条件,抓住问题的实质,正确、简捷地解决问题。在深化概念的教学中,可从以下两方面训练学生思维的深刻性。
一是在学生理解和形成概念之后,要引导他们对学过的有关概念进行比较、归类。既要注意概念间的相同点和内在联系,把有关概念沟通起来,使其系统化,又要注意概念之间的不同点,把有关概念区分开来。从而使学生逐步加深对概念内涵和外延的认识,深入理解概念。例如学习了“比”的概念后,可设计下表引导学生弄清“比”、“除法”、“分数”这三个概念之间的联系与区别。名称举例相互关系区别
比2:3前项:(比号)后项比值两个数的关系除法2÷3被除数÷(除号)除数商一种运算分数2/3分子──(分数线)分母分数值一个数
二是在运用数学概念解决问题的过程中,要引导学生识别数学概念的各种变式,从变化中抓概念的本质。例如,学生认识了“直角”后,教师,出示不同位置的直角(如下图),让学生判断:
附图{图}
一、授准
讲授准确、严密,是对教师最基本的要求。但数学概念是抽象概括而成的,本身非常严密。在概念教学时必须吃透教材,否则,就可能偏离编者的意图,而作出不恰当或错误的讲述。
例如“圆柱侧面积公式”的推导,教材是这样阐述的,“把圆柱体的侧面展开,得到一个长方形(如下图)。这个长方形的长等于圆柱底面的周长……”进而推导出侧面积公式。显然,教材是出于“推导”的方便,并紧扣“展开图”来阐述的。其实,圆柱的侧面展开图并非唯一性,即还可得到平行四边形或其它图形。但有的教师却忽视了这点,说成:“圆柱的侧面展开图,就是一个长方形。”这样一来,当学生遇到以此“说法”的判断题时,便不加思索地打上“√”了。
又如六年制第九册第3页,教材以“12×0.5=6”和“12×0.1=1.2”这两个例子引出:“乘数比1小的时候乘得的积比被乘数小。”教材这一说明是在被乘数不为0的场合而言的,当被乘数为0时,它就站不住脚了。然而,有些教师为了强化学生“估算”意识,往往丢开“被乘数不为0”的前提条件,而反复去强调(复述)“原话”,结果遇到以“原话”作为判断题时,大多数学生作出了相反的判断。
因此,作为教师,必须深入钻研教材,力求领会编者意图,才能准确无误地进行讲授。这是提高概念教学质量的重要前提。
二、教实
小学生认知特点是以具体形象思维为主,他们形成概念,必须要有一定的、典型的感性认识作支柱。因此,在教学过程中,应根据实际的需要,充实一些材料和体例,以丰富学生的感知;其次要讲透概念中的词义,使学生对概念有较全面的认识和理解。
例如“互质数的定义”,教材通过求18和12公有的约数是哪几个,进而介绍什么叫公约数和最大公约数。然后直接阐述:“公约数只有1的两个数,叫做互质数。”最后举了两个例子:3和5是互质数,8和9也是互质数。由于教材中的例子均未涉及到1,这就容易使学生产生“互质的两个数不包括1”的错觉。从不少学生以“1不是质数,也不是合数”为由,来否定“1和2是互质数”的做法,就说明了这一点。因此,概念教学应重视提供感性材料,以促进学生自我内化。如下面的设计:
1.找出下面各组数的公约数
①3和10的公约数有();②1和4的公约数有();③3和15的公约数有()。
2.教学互质数的定义:从上面的三组数中发现,第①②组的公约数只有1,我们把“公约数只有1的两个数,叫做互质数。”其中:公约数——指两数公有的约数;只有1——指不含公约数2、3、4…;两个数——指相同或不相同的两个自然数。
3.强化和反馈性练习:在下面各组数中,哪几组数是互质数?为什么?
①1和1②1和2③2和6④4和9⑤11和11⑥1和任意一个自然数
这样教学,就显得内容充实、具体,学生对概念也就有较全面的认识。尤其是通过各种题组的判断,不但强化了互质数的概念,而且有利于得到准确的信息反馈,以便调整教程和把好质量关。
三、练活
学习的目的在于运用,在运用中把知识转化为能力。但机械、呆板的练习却难以提高学生的技能。因此,平时练习要有一定的灵活性,才能使学生在千变万化的问题中应付自如。下面就概念教学中,如何训练学生思维的灵活性,谈两点做法和体会。
1.改变“概念”的叙述方式(以活化概念),培养学生分析判断能力。如下面的判断题:
①因为“分数除以整数(0除外),等于分数乘以这个整数的倒数。”所以,“分数除以自然数,等于分数乘以这个自然数的倒数。”()
②因为“圆锥的体积等于和它等底等高的圆柱体积的1/3。”所以“圆柱的体积等于和它等底等高的圆锥体积的3倍。”()
③因为“公约数只有1的两个数,叫做互质数。”所以“最大公约数是1的两个数,它们一定是互质数。”()
通过改述后的判断,既深化了概念的内涵,又训练了学生分析、判断的能力。
2.发挥习题的“弹性”优势,训练学生应变能力。
例1(六年制第十册第71页第6题):“把2/3和4/5化成分母是15而大小不变的分数。”练习后,可抓住有利之机,引出下面的问题:
①在“2/3<()/15<4/5”的括号里,可填上什么自然数?
②在“2/3<()/30<4/5”的括号里,又可填几个自然数?它们分别是____、____、____。
例2(六年制十二册总复习第82页第7题)当学生求出“36和48”的最大公约数是12和最小公倍数是144后,引出:甲乙两数的最大公约数是12,最小公倍数是144。若甲数是36,乙数是____。(若学生觉得困难,可给出上面的分析图)