时间:2023-03-25 11:24:23
序论:在您撰写工程热物理论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
英文名称:Journal of Engineering Thermophysics
主管单位:中国科学院
出版周期:月刊
出版地址:北京市
语
种:中文
开
本:大16开
国际刊号:0253-231X
国内刊号:11-2091/O4
邮发代号:2-185
发行范围:国内外统一发行
创刊时间:1980
期刊收录:
CA 化学文摘(美)(2009)
CBST 科学技术文献速报(日)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
中科双效期刊
联系方式
期刊简介
《工程热物理学报》(月刊)创刊于1980年,是由中国科学院主管、中国工程热物理学会 中国科学院工程热物理研究所主办的技术科学学术性刊物。由已故世界著名的工程热物理学家、叶轮机械三元流动通用理论的创始人、中国科学院院士、原中国工程热物理学会理事长、原中国科学院工程热物理研究所所长吴仲华教授创办。主要读者对象为工程热物理专业科技人员及相关高校师生。
【关键词】能源新形势 动力工程及工程热物理 研究生 课程教学
【基金项目】长沙理工大学2016年度校级研究生教研教改项目:新形势下动力工程及工程热物理研究生课程优化设置研究(JG2016YB05)。
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2016)04-0158-02
1.引言
能源是人类活动的物质基础,社会的发展离不开优质能源。对于目前的中国而言,实现经济增长与保护环境的平衡将是未来面临的一个严峻挑战。为此, 2014年国务院了《能源发展战略行动计划(2014-2020年)》,明确强调要深化能源体制改革,加快重点领域和关键环节改革步伐。2016年,国家发改委等联合《关于推进“互联网+”智慧能源发展的指导意见》,提出了未来十年中国能源互联网发展的路线图。改革与发展已经成为了能源行业的显著特征。随着产业结构调整与培育新兴战略产业步伐加速,节能减排与新型能源产业的战略地位将愈加突出,能源行业的机制体制改革以及能源互联网的兴起,对能源技术人才提出了更新和更高的要求。中国能源产业近几年发展迅速,社会各界都积极投入到先进能源技术的开发与产业的建设当中,但在这繁荣的表象背后,由于技术、管理、投资等原因,还存在诸多问题。这些问题究其本质仍然是人才的问题,要解决这个问题,就必须从教育入手,大力培养人才[1]。然而,目前我国新型能源技术人才普遍匮乏,高校的科技资源优势还未完全在能源领域释放出来,在人才培养方面急需跟上国家战略发展新常态。
研究生教育是一项系统工程,它包括了课程学习、实践研究和学位论文等诸多环节。其中,课程学习是整个研究生培养中的基础环节,其质量直接决定着研究生教育的质量和水平。因此,良好的课程教学是达到学习目标、提高研究生培养质量的前提。为此,2013年教育部等部门联合发出《关于深化研究生教育改革的意见》,明确要求加强课程建设,重视发挥课程教学在研究生培养中的作用。
动力工程及工程热物理一级学科以能源的开发、生产、转换和利用作为主要的学科应用背景,在整个能源领域起着支撑和促进作用。经过多年的探索和努力,国内研究生教育在动力工程及工程热物理领域取得了较好的成绩。但总体上看,我国研究生教育还未能完全适应经济社会快速发展的多样化需求。随着研究生教育的深入发展,现行的研究生课程体系出现了许多亟待解决的问题。因而,如何根据国家的战略需求及行业的人才需求, 改革和完善现行的研究生课程教学状况, 是一项十分紧迫的任务。
2.现状及存在的问题
2.1对研究生课程教学认识上存在偏差
就目前我国大部分高校研究生教育重点而言,以各省、直辖市相应的优秀研究生学位论文评选为契机(2013年之前还有全国百篇优秀博士论文),各高校每年也进行相应的优秀研究生学位论文评选,此外学校还制定了各种优秀研究生论文奖励办法等相关的质量激励措施,出台了研究生创新计划,研究生国家奖学金的评选也直接与学生的论文及参与的项目直接挂钩,研究生培养过程中“学术论文为重”的培养取向日益明显,这在一定程度上确实能保障研究生的培养质量,无疑具有积极意义[2]。但作为研究生培养过程中的另一个基本环节――课程教学,获得的相对关注较少,这直接导致了高校研究生课程教学工作相对滞后,其课程教学质量还有待进一步提升。
2.2研究生课程结构有待进一步优化
我国特色的研究生教育课程体系一般由学位课程和非学位课程组成。但是动力工程及工程热物理是一门综合性学科,涉及到工程热力学、燃烧学、传热传质、多相流等多方面知识,此外随着科学技术的飞速发展,人们在不同的学科基础上不断开拓新的研究热点,学科交叉的趋势越来越明显。然而课程内容是实现课程教学目标的有效载体,因此在科学知识更新速度的加快和人才培养课程结构的滞后性之间,矛盾日趋明显,课程结构的基础性、先进性和综合性承载着调和这一矛盾的重担[3]。尽管课程优化设置已经成为我国研究生教育改革的一项重要内容,但与国外一流研究生教育机构相比,差距仍很大。因此,如何建立科学的研究生课程体系,满足不断发展的行业和国家需求,是一项重要而紧迫的任务。
2.3 跨学科课程和有关科学研究方法的课程缺乏
在现有的课程教学体系中,一个比较薄弱的环节是只开设了传统的研究生理论课程,而忽视了一些重要的跨学科课程和有关科学研究方法的课程。目前我国研究生课程教学管理实行的是学分制,从课程内容上看,包括政治课、英语课、专业基础课以及本研究方向的专业课程。动力工程及工程热物理下辖若干个二级学科,其学科交叉性强,理论与技术发展迅速,许多问题仅靠某一学科的专业知识是难以解决的,需要多学科知识去协同应对,如若缺乏跨学科课程及科研能力培养方面的课程,那么对于学生在该领域的创新发展极为不利。
3.对策及建议
3.1 提高对研究生课程教学的认识
首先要真正重视课程设置在研究生培养中的作用,改变长期以来重学术论文、轻课程学习的现状。针对此问题,以长沙理工大学为例,2015年学校研究生院出台了《长沙理工大学研究生课程建设实施方案》,把研究生教学工作的重要性提到了一个新的高度,规范了课程设置审查,加强了教学质量评价,研究生院还成立了由教学经验丰富的老教师组成的课程教学督导小组,实时检查研究生课堂教学并反馈意见,教学效果将直接影响教师的个人考评。这些措施都极大地强化了研究生课程教学在培养过程中的作用。
3.2 对课程内容进行国际化和工程化
总体上,我国的能源科学与工程与发达国家相比还是有一定的差距,多年前美国、澳大利亚等国就投入巨额资金大力发展能源学科,大力培养能源人力资源。因此,可以通过与国外高校间研究生联合培养项目,设置国际化课程,增强课程内容的国际前沿性,也可以通过发达的网络技术充分利用国外丰富的网络课程资源,加强国际化课程设置。动力工程及工程热物理学科面向能源科学,具有极强的工程应用性,已经渗透到工业社会的各行业中,因此研究生课程也必须具有较强的工程适用性,可适当引入实践课程,在师资队伍中引入企业导师或者与企业联合培养学生。此外,针对该学科快速发展的特点,可以增加专业选修课的比例,拓宽学生的知识面,增强专业科学素质。
3.3 增设跨学科选修课及科学研究方法的课程
根据研究生研究方向与培养目标,适当增设跨学科选修课更有利于学生科学能力的培养。如对于太阳能研究方向的学生,可以跨学科选修物理学、材料类的课程;对于风力发电技术方向的学生,可以选修部分机械结构强度、结构完整性等方面的课程。研究生只有具备跨学科的知识,才能更好地从另一个角度了解本专业,才能够充分借鉴相近领域的理论和方法,在专业领域内做出新的成绩。学习一定的科学研究方法,对刚开始从事研究工作的研究生十分必要,提高研究效率,也能使得学生在不断发展的科学中始终具有学习与研究的能力,始终保持较强的创新能力。
4.结语
各高校必须根据自身发展特色和国家战略需要,紧跟能源行业发展新形势, 对动力工程及工程热物理研究生课程教学进行新的思考与研究, 深化课程教学理论、完善培养单位课程体系改进、优化机制;增强研究生课程内容的国际前沿性和工程实践性,通过高质量课程学习强化研究生的科学方法训练和学术素养培养,构建符合专业学位特点的课程教学体系。这些对进一步提高学科建设水平具有重要意义。
参考文献:
[1]张珏.新能源产业发展所需专业人才培养探讨[J]. 中国人才, 2010,(8): 29-30
他是一位桃李满天下的教授,也是一位硕果累累的学者,在生命的长河里,他的每一个侧面,都值得我们尊敬。他就是清华大学航天航空学院工程热物理研究所教授宋耀祖。
峥嵘岁月,风云流荡。自1970年毕业于清华大学精密仪器系以来,他始终拼搏在热科学与技术领域的科研前沿阵地,着重对工程技术的研究,已累计发表学术论文约180篇,与忠合编“热物理激光测试技术”等书籍。这些应用基础研究工作为解决工程科技方面的问题提供了宽广的理论基础。
多次承担国家自然科学基金,“国家重点基础研究发展规划项目”(973项目),863项目,国家教委博士点基金等资助的科研项目以及云南省、日本大金公司等企业的节能减排项目。特别是在工业过程的节能与余热利用领域,以他为技术负责人的学术团队在国内外首次发明了一种热法磷酸生产的新技术,发明专利技术已获8个奖项,其中重要的奖项有“国家技术发明奖二等奖”、“第十一届中国专利优秀奖”。“云南省技术发明一等奖”、“第四届发明创业奖”、“第二届全国杰出专利工程技术奖”等。该发明技术现已实现了产业化,取得了显著的经济效益与节能减排的社会效益。在航天器的热控制技术领域,他被总装备部任命为“载人航天工程(921工程)”出舱航天服专家组成员,为确保“神七”出舱航天服内生命保障系统的正常工作做出了贡献。荣获总装备部中国载人航天工程办公室表彰的“为神舟七号载人航天飞行任务的圆满成功做出了重要贡献”的荣誉证书。
岁月荏苒,当年风华正茂的栋梁之才虽已不复往日的英姿飒爽,但他沧桑的脸庞上却写满了智慧与亲切,他乐于将自己的科研经验与后辈分享,他说在他长期的工程技术研究中,最大的体会是,取得工程技术研究成功的三要素是:基础、实践、团队。其一,“基础”乃是指通过系统的理论学习掌握宽厚的基础理论,如数学,物理,化学等基础知识(这些基础知识往往通过自学去掌握是十分困难的),借助于这些基础知识能通过自学进一步理解与掌握有关领域的专业知识与专门的技能;其二,“实践”是取得工程技术研究成功的必经之路。亲临工程现场,参加实验与试验,向一切有实践经验的人请教等都是实践的重要环节。在实践的基础上进行理论分析,通过理论与实践的结合,确定研究目标,明确技术难点,寻求与探索解决问题的技术方案,技术途径;其三,“团队”乃是指,在明确解决问题的技术方案基础上,组织与带领好一支学术团队,在团队内既有分工,又有协作。既要发挥每一个团队成员的聪明才智,又要给每一位团队成员创造各自的发展空间。
从踌躇满志的懵懂学子,到崭露头角的青年才俊,从学识渊博的科研专家,到声望显赫的著名学者,一步步走来,“科研”二字是催促他前进的动力,“勤奋”二字是对他过往岁月最好的注解。近年来,由于年龄和身体原因,宋耀祖已从教学科研一线退了下来,他的角色在转变,不变的是,他仍在为社会贡献着自己的一份力量。利用退休后的时间,他还从事着“中国特色社会主义是中国发展的必由之路”的研究,先后为教师、学生讲授党课10多次,荣获清华大学“学习宣传贯彻党的十七大精神”征文一等奖,在“纪念改革开放三十年――中国专家学者科学与人文论坛”大会上获优秀论文一等奖。
英文名称:Journal of Shaanxi University of Technology(Natural Science Edition)
主管单位:陕西省教育厅
主办单位:陕西理工学院
出版周期:季刊
出版地址:陕西省汉中市
语
种:中文
开
本:大16开
国际刊号:1673-2944
国内刊号:61-1444/N
邮发代号:
发行范围:国内外统一发行
创刊时间:1985
期刊收录:
核心期刊:
期刊荣誉:
Caj-cd规范获奖期刊
联系方式
期刊简介
《陕西理工学院学报》(自然科学版)原名《陕西工学院学报》,是由陕西理工学院主办的自然科学类学术期刊,创刊于1985年,季刊。
摘要:工程热物理冰箱制冷剂理论循环分析CF3ICF3I/HC290
1引言
冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2,寻求新型环保节能的冰箱工质仍是人们探究的方向。
三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3,饱和蒸汽压曲线和CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4)。有关CF3I的热物性,只有文献[3进行了较为系统的探究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。
2理论循环分析的工具
2.1PT状态方程两参数F、ζc的求解
式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数摘要:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3给出其Pc=3.953MPa,Tc=396.44K[3。ζc、F的求解方法如下摘要:(1)选取n个饱和液相数据点(T、P、ρL)i(i=1,…,n;(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;
(4)由汽液平衡条件fL=fV,输入某数据点i的(T、P)i,由式(1)、(2)求出αi;(5)由n个数据点的(Ti,αi)用最小二乘法拟合式(3),求出F;(6)由ζc和已求出的Ωa,Ωb,Ωc,F,根据方程(1)~(2)和汽液平衡条件计算各点的和的相对误差,以及个数据点的平均相对误差;
(7)以一定的步长改变ζc,重复步骤(3)-(6)。选取最小EYL所对应的ζc、F作为PT方程的参数。
文献[3给出了CF3I在301K-Tc范围内的25个饱和液相密度点,其中3个数据点是为了确定临界点而测的;把这3个数据点当作一个临界点对待,选取其余22个数据点按照上面的步骤求解得到CF3I的F=0.6514、ζc=0.3105。
2.2PT状态方程精度的验证
为了检验如上确定的适用于CF3I的PT方程的计算精度,以该方程对CF3I的饱和液密度、饱和蒸汽压、气相区PVT性质进行了计算,并和文献[3的实验数据进行了对比。对比实验数据为T%26lt;0.9Tc(即T%26lt;356.80K)范围内的13个饱和液相点、22个饱和蒸汽压点和T%26lt;Tc内77组气相区数据。结果表明,饱和液密度、饱和蒸汽压、气相区密度的最大相对误差分别为2.94%、0.42%、5.87%,平均相对误差分别为1.54%、0.25%、2.17%。相对误差、平均相对误差计算式分别为
(9)
(10)
式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。
冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6,处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。
3CF3I蒸汽压曲线的分析
从热力学角度看,替代制冷剂最好具有和原制冷剂相似的蒸汽压曲线[7。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3
(11)
式中,
A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8。
由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线和CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a和CFC12之间,在冰箱名义工况下和CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290和CF3I组成混合物,灌注式替代CFC12的效果可能会更好。
4CF3I作为冰箱制冷剂的循环性能分析
4.1冰箱名义工况
采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度和压缩机的吸气温度相等,这一温度称为回热温度。
计算CF3I的循环性能所需的理想气体比热式[3为摘要:
(8)
式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。
在冰箱名义工况下,设压缩机的总效率为0.70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。
观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond和CFC12都很接近。CF3I的压力水平和CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比和CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但和MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出摘要:(1)CF3I的循环性能指标和CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290和CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。
4.2变工况
变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般在环境中[1,回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋向。
结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有稍微地上升。由图还可以发现,CF3I和HC290的循环性能指标分布在CFC12的两侧。
CF3I各项性能指标随回热温度的变化所表现的规律和CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。
5CF3I/HC290混合物作为冰箱制冷剂的循环性能分析
5.1冰箱名义工况
由以上分析可知,CF3I和HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。
计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。
由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋向,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。
对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标和CFC12吻合得很好。
5.2变工况
对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能和CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。
图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也和之相近。
5.3可燃性分析
以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9,以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是平安的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的平安性是可以得到保证的。
6结论
(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。
(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能和CFC12相近。
(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能和CFC12十分接近,可作为CFC12的灌注式替代物。
参考文献
1何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1)摘要:10~14
2梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1)摘要:57~60
3段远源.三氟碘甲烷和二氟甲烷的热物理性质探究摘要:[博士学位论文.北京摘要:清华大学,1998
4DoddD.E.etc.FundamentalandAppliedToxicology,1997,35摘要:64
5NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringScience,1982,37(3)摘要:463~473
6王建栓.碳氢化合物在家用小型制冷装置中的替代探究摘要:[硕士学位论文.天津摘要:天津大学,2000
7刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州摘要:浙江大学出版社,1992,73~76.
81993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993
摘要:通过对环保工质三氟碘甲烷(CF3I)的饱和蒸汽压曲线、冰箱名义工况和变工况下循环性能等三方面的理论分析,发现CF3I和CF3I的摩尔组成在50%-65%范围的CF3I/HC290混合工质,理论循环性能与CFC12接近,具有作为冰箱中CFC12灌注式替代物的潜力。
关键词:工程热物理 冰箱制冷剂 理论循环分析 CF3I CF3I/HC290
1 引言
冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2],寻求新型环保节能的冰箱工质仍是人们研究的方向。
三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3],饱和蒸汽压曲线与CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4])。关于CF3I的热物性,只有文献[3]进行了较为系统的研究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3]的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。
2 理论循环分析的工具
2.1 PT状态方程两参数F、ζc的求解
PT状态方程[5]的具体形式为:
而是方程(8) 的最小正根。
式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3]给出其Pc=3.953MPa,Tc=396.44K[3]。ζc、F的求解方法如下:(1)选取n个饱和液相数据点(T、P、ρL)i (i=1,…,n);(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;
式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。
冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6],处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。
3 CF3I蒸汽压曲线的分析
从热力学角度看,替代制冷剂最好具有与原制冷剂相似的蒸汽压曲线[7]。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3]
式中,
A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8]。
由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线与CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a与CFC12之间,在冰箱名义工况下与CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290与CF3I组成混合物,灌注式替代CFC12的效果可能会更好。
4 CF3I作为冰箱制冷剂的循环性能分析
4.1 冰箱名义工况
采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度与压缩机的吸气温度相等,这一温度称为回热温度。
计算CF3I的循环性能所需的理想气体比热式[3]为:
式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。
在冰箱名义工况下,设压缩机的总效率为0. 70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。
观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond与CFC12都很接近。CF3I的压力水平与CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比与CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但与MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出:(1)CF3I的循环性能指标与CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290与CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。转贴于
4.2 变工况
变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般裸露在环境中[1],回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋势。
结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有轻微地上升。由图还可以发现,CF3I与HC290的循环性能指标分布在CFC12的两侧。
CF3I各项性能指标随回热温度的变化所表现的规律与CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。
5 CF3I/HC290混合物作为冰箱制冷剂的循环性能分析
5.1 冰箱名义工况
由以上分析可知,CF3I与HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。
计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。
由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋势,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。
对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标与CFC12吻合得很好。
5.2变工况
对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能与CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。
图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也与之相近。
5.3 可燃性分析
以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9],以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10]指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是安全的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的安全性是可以得到保证的。
6 结论
(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。
(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能与CFC12相近。
(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能与CFC12十分接近,可作为CFC12的灌注式替代物。
参考文献
1 何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1):10~14
2 梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1):57~60
3 段远源.三氟碘甲烷和二氟甲烷的热物理性质研究:[博士学位论文].北京:清华大学,1998
4 DoddD.E.etc.FundamentalandAppliedToxicology,1997,35:64
5 NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringSci ence,1982,37(3):463~473
6 王建栓.碳氢化合物在家用小型制冷装置中的替代研究:[硕士学位论文].天津:天津大学,2000
7 刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州:浙江大学出版社,1992,73~76.
8 1993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993
关键词:留学;日本;动力工程及工程热物理;机械理工学;培养方案
中图分类号:G643 文献标识码:A 文章编号:1007-0079(2014)29-0008-02
从1872年中国近代走出第一名留学生容闳以来,我国的出国留学事业已经走过多个历史阶段。进入21世纪后,我国自费出国留学人数激增,兴起留学的热潮。因地理位置的相近与文化的相似,赴日留学逐渐成为很多学生的选择。另外,日本为全面加入到全球化人才争夺战而积极地调整留学政策,在2008年提出接收“留学生30”,更使日本成为中国留学生的首选国之一。[1]
在日本,研究生院被称为大学院,硕士研究生则称作大学院生。大学院生毕业将被授予修士学位,等同于我国硕士学位。特别要说明的是,研究生或特别研究生在日本是期望在大学研究机构中针对相关专业领域继续深造的入学者,学习期满后将不被授予学位。京都大学(Kyoto University)是日本一所国立研究型综合大学,在日本国内大学综合排名中排位第二,仅次于东京大学。其大学院18个研究科中的工学研究科包含社会基础工学、建筑学、机械理工学、航空宇宙工学等17个专业。其中机械理工学专业下又分有机械系统创成学、流体理工学、物性工学、机械力学等8个研究室。物性工学研究室中的热物理工学方向、机械系统创成学研究室的机械系统创成学方向以及流体理工学研究室的分子流体力学方向等多个研究方向与北京工业大学动力工程及工程热物理专业的研究方向相似,故本文以北京工业大学动力工程及工程热物理专业与京都大学机械理工学专业为例,分析对比各自在硕士研究生阶段的培养方案,希望对将来有留学日本意向的学生起到参考作用。
一、中日两国硕士研究生培养方案的比较
1.培养目标
北京工业大学的硕士研究生阶段分别设置有学术学位硕士研究生(简称学硕)和专业学位硕士研究生(简称专硕)。它们虽处于同一层次,但在培养规格上各有侧重点。专业学位硕士研究生的专业名称虽为动力工程专业,但其研究方向与动力工程及工程热物理专业相同,故本文视其为同一专业的另一种培养方案。
从培养目标上来看,学术学位硕士研究生的动力工程及工程热物理专业侧重培养满足科研、教学、设计、工程设计等各方面需求的高层次应用型人才,要求兼有扎实的专业知识和合格的实践与创新能力。在培养目标中不仅对学科领域的学习成果做出要求,在道德素质与文化素质上也有着较高的期望。专业学位硕士的培养目标成为专业领域高层次应用型的专门人才,要求基础扎实、实践能力强且具有一定的创新能力。
京都大学的机械理工学专业的培养目标是培养拥有克服有挑战性研究课题能力,具有领导能力的技术人才和研究人才。在京都大学该专业教育目标别提到了期望学生能够利用所学知识努力回馈社会。
对比两所大学的培养目标,可看出北京工业大学的学术学位硕士研究生偏重科研,专业学位硕士研究生偏重工程实践,而京都大学在科研与工程实践间并没有明确的偏重。国内高校近年学术道德问题频出,研究生教育不仅要达到学术的标准,更要注重个人的学术道德与学术规范。所以将德才兼备写入培养目标有着深远的意义。[2]将回馈社会写入培养目标对日本本国来说是为了维持产业活力以解决少子化带来的人才匮乏,对于留学生则是为了提高日本的国际威望,为日本在国际人才争夺中取得优势。[1]
2.学制与课程设置
现在日本的大学课程设置制度是根据1991年7月正式实施的新《大学设置基准》制定而成的。其中提到,在符合国家最基本课程设置要求下,各个大学可以基于学校特点制定其办学方针与教学思想,并且可自主进行课程设置。[3]所以京都大学的课程设置在个别课程上和其他日本大学会有不同,但在实现相应学位的教育目的上是相同的。
北京工业大学此专业学术学位硕士课程分为学位课、选修课与学术活动,研究生需要修满至少26学分。专业学位硕士课程分为基础知识、专业知识、工程知识、综合素养、实践训练共5个模块,研究生需要修满至少32学分。在课程设置上学硕与专硕大致相同,区别在于专硕课程中增加了科技文献检索、六西格玛管理、工程伦理案例分析等工程综合素养课程与总计1年的校内外实践训练环节。从图1中可看专硕在各模块中所分配必修学分较平均,使其在理论知识与工程实践两方面得到平衡。京都大学机械理工学修士课程包含基础科目、发展科目与实习科目,大学院生至少需要修满30学分。
表1 京都大学机械理工学专业与北京工业大学动力工程及工程热物理专业的课程设置
从图1中可以看出,京都大学的必修学分配比相对北京工业大学的学硕更平均。如上文诉述京都大学机械理工学专业涵盖的研究方向众多,所以基础科目需要兼顾各研究方向。学生需根据各研究室研究题目在发展科目中学习相应内容。其次,如表1所示日本高校和国内的专硕课程同样重视实践训练环节。在图1中也可以看到京都大学的实践环节必修学分占到总学分的近三分之一。北京工业大学动力工程及工程热物理专业的研究方向集中,在课程中设置了更多针对本专业研究方向的课程。国内的学硕课程虽然也有实践训练课程的设置,但更注重科研方面。另外,受到国情的影响,国内必修课程中均含有思想政治、哲学和英语课程。京都大学工学研究科为深化专业教育与拓宽工程技术相关知识的学习,面向全体学生设有选修的共通科目,如表2所示,其中大多为英语课程。面向留学生还开设有辅导日本语的专项课程。
表2 工学研究科共通科目
北京工业大学动力工程及工程热物理专业的硕士研究生学制均为3年,学习年限2.5-3年。京都大学机械理工学专业的学习年限为2年,在研究和学习中有出色进展者可以缩短修业时间。日本大学大学院中普遍采用2年学制,与国内相比缩短了学习年限,但必修学分却与国内大致相同。虽然中日两国1学分对应学时数略有差异,但也不难得出日本大学院课程与国内相比并不轻松的结论。
3.招生要求
日本申请修士课程与国内一样需要相应的学历证明,并且报考大学院留学需要提交自己的研究计划,明确自己希望研究的课题。可以参考相关的学术论文来确定自己的研究课题。在确定了自己的研究课题之后,需要撰写研究计划书。在申请之前,需要与目标导师取得联系,进行沟通,在获得内诺之后申请入学。
成为大学院生与国内一样要经过大学院生录取考试。以京都大学机械理工学为例,设有笔试和面试。笔试有数学、机械力学和专业科目三门考试。另外,英语也作为考核的科目之一,非英语母语的考生需要提供TOEFL或TOEIC成绩,成绩优秀者可抵作英语笔试成绩。
二、结论与讨论
综上所述,国内大学大多设有学术学位硕士研究生和专业学位硕士研究生,而日本大学中只有大学院生。从培养目标来看,中日大学均以培养具备各方面能力的高层次应用型人才为目的,但从京都大学的培养目标中可以看出,相比国内日本大学更注重所培养人才对社会、对环境的意义和对国际化人才的培养。在课程设置方面,相比国内日本大学一方面在同一专业下涵盖更多的研究方向,另一方面日本大学在课程设置上具有一定的自主性,所以学生在选课时具有更多的选择余地。日本在招生方式上更加灵活,有意留学日本的同学在取得必要资质的同时,也要与研究室导师取得联系,进行良好的沟通。
参考文献:
[1]王磊.日本“留学生30”的背景、问题与展望[J].淮北师范大学学报:哲学社会科学版,2012,33(2):128.