时间:2023-03-24 15:21:15
序论:在您撰写封装工艺论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
一、国内外研究现状分析
2006年,电子科技大学罗小蓉老师强调将教师的理论教学、实验教学与学生的自主学习相结合的教学方式,以激发学生的学习兴趣,培养动手能力,提高教学效果。电子科技大学中山学院陈卉2016年提出“微电子器件”实验教学改革与探索。2012年,哈尔滨工业大学王蔚提出从课堂教学与实践教学整合角度出发,将“微电子工艺”课程的教学模式、内容、教材等将课堂、实验、实习3种不同教学形式作为一个课程模块穿插讲授,理论与实践彼此相互促进,编写教材,进行初步实施及评价,获得学生和微电子课程群其他课程主讲教师的肯定,评教结果为“A+”。2010年,华南理工大学廖荣提出微电子工艺实习教学改革探索。加快发展我国微电子产业成为刻不容缓的大事。高校必须为民族微电子产业做出贡献,让学生在校期间熟悉双极型和MOS集成电路的制造工艺流程,了解集成电路的新工艺和新技术,为学生毕业后从事相关专业打下坚实基础。
二、具体实施方案
1.课堂理论教学及学生学习效果实施标准建设。根据“微电子工艺学”知识点较多且抽象、工艺流程复杂等特点,教师在课堂教学中要重视与学生的互动,强调学生的自主学习能力培养,将讲解为主体改变为讲解——学习双主体。方法如下:首先,精简讲授时间,增加课堂讨论环节,给出课堂讨论结果的评价标准。对于“微电子工艺学”难度较大、实践性较强的专业核心课,学生独立思考尤其重要。增加课堂讨论环节是让学生独立思考的最好方法,但会减少理论课的时间,需要建立以下实施方案:①每堂课都要仔细设计该课主题,明确重难点,精简讲授时间;②合理设计和安排思考题和讨论题的内容以及实施方法;③合理设计和安排讨论效果的评价标准,激发学生学习积极性。其次,增加教学专题的seminar,采用案例教学方法,使学生不仅能理解基本理论,同时能结合应用,学会基本、常用的微电子器件工艺制造方法。2.习题试题库建设及理论考核标准。课堂练习题和思考题题库建设。根据该门课的特点,合理设计和安排本课主题下的思考题和练习题,使课堂教学有条不紊地进行。调动学生积极性,循序渐进地接受知识,提出问题、分析问题。目前,我校没有完善的“微电子工艺学”考试试题库。本项目拟根据国内外研究成果,结合我校实际和教学大纲编写试题库,使具有不同题型、不重复题目的试卷达10套以上。具体理论考核标准:测试项目一:课堂表现考核、考核内容、课堂表现情况;考核形式:以第一次形成性考核的条件及学生在课堂的表现为基础进行,主要内容为课堂回答问题、专题讨论、口试等。考核时期:课程结束为周期。测试项目二:作业考核,包括平时作业考核和登录网络教学平台进行学习的考核两部分;登录网络教学平台进行学习的考核。测试项目三:课堂卷面考核内容:课程大纲要求掌握的内容;考核形式:抽取题库中的试题进行卷面考试;考核时期:课程教学的最后两节课。3.实践教学实施标准与实验教学改革。本项目拟对实验教学内容进行改革,制定实施和测试标准。进一步调整实验课程方案,安排一次对新工艺和新技术的调查研究和一周的器件工艺流程仿真的课程设计。根据实验课程设置目标,编制“微电子工艺学课程设计指导书”,制定具体的实施方案和评价方案。拟设置的工艺设计的具体内容:利用器件仿真软件Medici和工艺仿真软件Tsuprem4,完成LDMOS和IGBT新结构的器件和工艺仿真设计,以汇报、答辩且最终以论文的形式提交。实验目的:学会利用模拟工具观察新结构的基本特性;通过实验设计掌握器件的工艺流程;在设计过程中体会设计器件结构的各个参数的折中关系和流程的烦琐性,初步建立工艺设计的思维。实践教学内容需要在教学的实际工作中不断更新,根据学生情况增减内容和调整教学大纲。实验教学测试标准:测试项目一:集成电路的新工艺和新技术前沿调研报告。考核内容:对集成电路的新工艺和新技术前沿的调研。考核形式:按时提交集成电路的新工艺和新技术前沿调研报告,字数不少于2000字。考核时期:课程结束2周内完成。测试项目二:工艺仿真设计和小论文撰写考核内容:结合工艺仿真软件Tsuprem4,完成LDMOS和IGBT系列新结构的设计论文。考核形式:以报告形式答辩,最终提交LDMOS和IGBT新结构的设计论文,字数不少于2000字。考核时期:课程结束1周内完成。4.专业见习。学生一方面可以利用学校学院筹建中的实验平成工艺相关实验,如微电子工艺实验室。主要功能是使学生初步掌握微电子器件的工作原理、工艺参数的控制方法。器件特性参数的测试分析方法、信息功能材料的制备和结构性能测试方法。内容涵盖CMOS工艺,半导体材料和器件制备工艺、LTCC材料制备和封装工艺、多芯片组件技术,MEMS传感技术及微系统构建工艺等,如微系统封装与测试实验室。该实验平台功能用于微系统封装与测试。实验内容包括各种可用于微系统封装的基板材料及其封装技术研究,系统级封装三维复杂结构的电磁场、热场分析建模、电特性、热特性快速仿真、复杂混合信号完整性分析、电磁兼容、热效应问题的认识和优化处理,封装工艺、可靠性与测试技术研究。集成电路设计实验室:集成电路(IntegratedCircuit,IC)通过一系列特定加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件按照一定电路互连集成在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,用以执行特定电路或系统功能的电子器件。该实验室平台主要用于集成电路设计。5.完善网络教学平台建设。充分利用学校已有的网络资源,在网络教学平台上完成课程创建和内容填充、作业功能、互动功能、阅读资源等内容;学生可以在课下参加讨论与交流、提交与查阅作业,还可以进行一对一的答疑解惑等。本文结合微电子工艺学的理论教学、实验教学与学生的自主学习,从课堂设计、课程考核标准、题库建设、实验环境建设、见习实习和网络平台建设等多方面进行课程设计。具体来说:①在课堂理论教学中,参考借鉴国内外著名高校的实施方法,制定学生课堂表现的考核标准,给出如增加课堂讨论、专题seminar、学生项目PPT展示的环节的具体实施建议,增加学生的参与度和学习热情;②期末考核中,参考借鉴国内外著名高校的教学大纲和教学重点,编写一套能极大指导学生学习的试题库和习题库,打下坚实的理论基础;③根据微电子行业的发展和我校实际,建立一整套合理的实验内容和实验体系,使学生在有限的时间内掌握微电子工艺学的核心技术和方法;④利用仿真软件模拟实际工艺流程,完成CMOS以及BCD工艺设计;⑤利用网络教学平台以帮助学生巩固已学知识,解决难题,实现师生互动,让电子科学与技术专业的学生通过这门重要专业课学习,在掌握微电子基本理论和技术的基础上具备自主学习,独立研究,勇于创新的能力,成为有一技之长的当代微电人。
作者:吴丽娟 宋月 张银艳 雷冰 唐俊龙 谢海情 刘斯 单位:长沙理工大学
参考文献:
[1]罗小蓉,张波,李肇基.《微电子工艺》的理论教学与学生实践能力培养[J].实验科学与技术,2007.05
[2]陈卉,文毅,张华斌,胡云峰.“微电子器件”实验教学改革与探索[J].高等学刊,2016.01
[3]王蔚,田丽,付强.微电子工艺课/实验/生产实习的整合研究[J].中国现代教育装备,2012
[4]廖荣,刘玉荣.微电子工艺实习教学改革探索[J].实验室研究与探索,2010.08
[5]高云,杨维明,叶葱.微电子器件与工艺模拟实验讲义[D].湖北大学物理与电子技术学院,2015
关键词:电子封装,SiCp/Al,浇铸渗透
1. 前言
SiC颗粒增强铝基复合材料因其具有广泛的、潜在的应用价值,是在目前非连续增强金属基复合材料中研究较多,较为成熟的复合材料。SiC颗粒增强铝基复合材料具有高比强度和比刚度、耐磨、耐疲劳、低热膨胀系数、低密度、高热导性、良好的尺寸稳定性和高微屈服强度等优异的力学和物理性能,被应用到汽车、航天、军事、电子和其他工业领域。从二十世纪八十年代初,世界各国开始竞相研究开发这种新型高性能材料。SiC颗粒增强铝基复合材料正受到越来越广泛的重视。
2. SiCp/Al复合材料在电子封装中的应用
随着电子装备的日益小型化、多功能化,LSI、VLSI不但集成度越来越高,而且基板上各类IC芯片的组装数及组装密度也越来越高(如MCM),也就是说,功率密度(输出功率/单位体积)越来越大。20世纪80年代末的功率密度为2.5W/cm 3 (40 W/in 3 ),而90年代己达6W/cm 3 (100 W/in 3 )以上。如何将产生的大量热量散发出去,这是电子装备在一定环境温度条件下能长期正常工作的保证,也是对电子装备的可靠性要求。在这类功率电路的电参数设计、结构设计及热设计三部分中,热设计显得更为重要。因为热耗散的好坏直接影响着电子装备的电性能和结构性能,甚至可引起重要电件能失效和结构的破坏。据统计,在电子产品失效中,由热引起的失效所占比重最大,为55%。由此可见,解决好热耗散是功率微电子封装的关键。
为从根本上改进产品的性能,全力研究和开发具有高热导及良好综合性能的新型封装材料显得尤为重要。热膨胀系数(CTE),导热系数(TC)和密度是发展现代电子封装材料所必须考虑的三大基本要素,只有能够充分兼顾这三项要求,并具有合理的封装工艺性能的材料才能适应电子封装技术发展趋势的要求。而SiC颗粒增强铝基复合材料则恰恰是既具有铝基体优良的导热性又可在相当广的范围内与多种材料的CTE相匹配的复合材料。 [1 ~ 2]
对表1中列出的芯片材料 Si、GaAs 以及各种封装材料的性能指标进行对比,不难看出,传统的材料如Al、Cu、Invar合金、Kovar 合金、W/Cu 合金、Mo/Cu 合金等 ,不能满足先进电子封装应用中低膨胀、高导热、低成本的严格要求。而Al 2 O 3 和BeO材料是广为使用的电子封装材料,但由于综合性能、环保、成本等因素,已难以满足功率微电子封装的要求。SiC颗粒增强铝基复合材料具有与Si、GaAs相匹配的热膨胀系数(CTE)以及强度高、重量轻、工艺实施性好、成本较低等特点。
因此,既具有优良的物理、机械性能,又具有容易加工、工艺简单、成本低廉、适应环保要求的新型微电子封装材料——SiC颗粒增强铝基复合材料——已能全面满足高密度电子封装技术的要求,成为最具有发展前景金属基复合材料。
表1 常用封装材料性能指标 [3]
材料 热膨胀系数 (10-6/K) 热导率 (W/(m*K)) 密度 (g/cm3) Si 4.1 150 2.3 GaAs 5.8 39 5.3 Al2O3 6.5 20 3.9 BeO 6.7 250 2.9 AlN 4.5 250 2.9 Al 23 230 2.7 Cu 17 400 8.9 Steel(4140) 13.5 50 7.8 Mo 5.0 140 10.2 W 4.45 168 19.3 Kovar 5.9 17 8.3 Invar 1.6 10
论文关键词:低温低噪声放大器(LNA),Ku波段,隔离器,噪声系数
1、引言
在微波通讯系统中,接收机噪声特性的优劣是决定系统接收灵敏度的重要因素,而接收前端的低噪声放大器(LNA)是影响接收系统噪声指标的关键部件,其噪声特性将直接影响系统整体的噪声水平[1]。低温下工作的Ku波段放大器具有极低的噪声特性,在微波通信、卫星通信、天文观测等领域中都具有非常重要的应用。当前Ku低温低噪声放大器的研究工作只有少量报道,性能尚不能达到实际使用的要求。
本文设计并制作了一个Ku波段低温低噪声放大器隔离器,旨在与高温超导滤波器级联,使用在高温超导滤波子系统之中[2]。该LNA采用插指电容新结构,使用ADS软件仿真优化性能,并通过优化的封装工艺制备了LNA样品站。在77K温度下测试结果表明,噪声系数小于2dB,增益约10dB,反射系数小于20dB。该LNA已与Ku波段超导滤波器成功级联。
2、低温低噪声放大器的仿真设计
2.1 器件选择
Ku波段LNA要求选用具有低噪声特性的晶体管,而高电子迁移率场效应管(HEMT)是新型的具有低噪声优点的一类晶体管,符合设计要求。通过晶体管性能分析并综合设计需要,选取了NEC公司的某一HEMT产品,其理论常温噪声系数高至18GHz只有0.75dB。
低损耗的PCB基板是研制Ku波段LNA的另一重要材料。本工作选用Rogers公司的高频PCB板,在高频段具有低插损特性,微波性能良好。
2.2 反射系数的设计
LNA设计中都需要考虑对反射系数S(1,1)和S(2,2)的设计隔离器,一般需要优化至-15dB以下,而最优化S(1,1)、S(2,2)的目标与最小化噪声和最大化增益往往是矛盾的,这给LNA的设计工作带来了很大的不便和困难。Isaac Lopez-Fernandez 在他的工作中使用了放大器设计中可以不考虑其反射性能,而使用隔离器来完善的方法[3],同时还给出了隔离器附加噪声温度的计算公式:
其中隔离器的物理温度,是放大器的等效噪声温度,是隔离器可达到的增益。根据这个公式计算可以知道,对于一般的LNA和隔离器,77K低温下隔离器附加噪声温度不超过20%,相对于直接在设计中优化反射的办法,隔离器的附加噪声更小,同时可以大大简化设计过程。因此本工作反射系数不再进行最优化设计,而采用级联隔离器的方法改善器件之间的匹配站。
2.3 稳定性设计
为了保证LNA的可靠工作隔离器,需要保证其全频段无条件稳定,或至少要保证工作频段附近绝对稳定。LNA的稳定性判据为[4]:
和
其中:,
在ADS中,有其自身设计的稳定系数Mu,只要Mu>1就实现了绝对稳定。在ADS中对我们选用的HEMT晶体管进行仿真,图1给出了其全频带Mu值,可以发现其全频带Mu>1,也就是全频带绝对稳定,因此在设计过程中不会存在陷入潜在不稳的问题。同时因为我们在输入输出端都采用了隔离器设计,可以进一步优化反射,保证了LNA的稳定工作。
图1 LNA稳定性系数
关键词:大功率白光LED;封装工艺可靠性;光斑;光通量
中图分类号:TN312+.8文献标识码:C
Reasearch on Encapsulation Technology Reliability of
High Power White-Light LED
(Ledman Optoelectronic Co., Shenzhen 518108, China)
Abstract: The package prospects and the main function of high power white-light LED are introduced firstly in this paper. And then, the key technology of high power white-light LED package is explained, which including fluorescent coating packaging technology, selecting the sealed silicone, packaging of large-size chip, reliability testing and evaluation. also some detailed researches on meliorating the light spot and improving luminous have been done.
Keywords: High Power White-Light LED; Encapsulation Reliability Technology; light spot; luminous
前 言
全世界已越来越重视节能省电的问题,而LED照明又被视为是下个10年颇受关注的应用,LED要走入普通照明仍有许多问题要克服,主要是由于发光效率太低、成本太高等两大限制,然而此两大限制却皆与大功率白光LED封装技术的发展息息相关。LED封装的功能主要包括:(1)机械保护,以提高可靠性;(2)加强散热,以降低晶片结温,提高LED性能;(3)光学控制,提高出光效率,优化光束分布;(4)供电管理,包括交流/直流转变,以及电源控制等。为提高大功率LED封装技术的可靠性,究竟可以从哪些方面去努力呢?
1 大功率白光LED封装关键技术
剖析LED封装所需的每一道制程可知,大功率白光LED封装技术可细分成:(1)支架的设计(包括取光与散热);(2)晶片的选择与排列方式;(3)固晶方式;(4)金线线形与粗细;(5)荧光粉种类与涂布结构;(6)Silicone Lens的曲率与折射率。此六项制程皆对LED的散热性能(热阻值)、光通量(流明)、发光效率、相对色温(CCT)、光色的均匀性、寿命等特性深具影响,因此每一环节皆不可轻忽。下面将针对荧光粉涂层结构、封装胶体、大尺寸晶片封装作一些研究,并逐一说明其对LED特性影响的关系。
具体从大功率白光LED封装以下几个关键技术做如下研究和说明:
1.1 荧光胶封装工艺
荧光粉的作用在于光色复合,形成白光。研究表明随着温度上升,荧光粉量子效率降低,出光减少,辐射波长也会发生变化从而引起白光LED色温、色度的变化。较高的温度还会加速荧光粉的老化,原因在于荧光粉涂层是由硅胶与荧光粉调配而成,散热性能较差,当受到紫光或紫外光的辐射时,易发生温度碎灭和老化,使发光效率降低。此外,高温下荧光胶的热稳定性也存在问题。
1.1.1 光斑改善问题
传统的荧光粉涂敷方式是将荧光粉与硅胶混合然后点涂在晶片上。根据白光的发光原理可以知道,如果荧光粉加入的量太多就会造成发出的光偏黄,加入的量太少就会使得发出的光偏蓝。现选用相对应波段的黄色荧光粉和硅胶,根据荧光粉的发光效率合理配制荧光胶,做出的白光其色坐标是在x=0.333,y=0.333附近,但是封装出的成品光斑是一片蓝,一片白,四周黄。这是因为荧光粉被蓝光激发的不均匀,也就是说荧光粉的细小颗粒没有被蓝色的光完全激发。分析具体的原因可能是荧光粉的涂敷厚度和形状未控制好,晶片各个发光面的荧光粉敷盖厚度不均或荧光粉沉淀导致出射光色彩不一致,出现局部光偏蓝或者偏黄。
为了解决光斑不均匀问题,根据两层透镜的光辐射图样,凸透镜的角度与外封胶形成的透镜角度是相近的,于是我们选取荧光粉在支架面上形成的凸透镜,即荧光胶点凸杯,这样光斑有一定的改善,但效果仍然不是很理想。
于是引入了扩散剂用以增强蓝光激发荧光粉的效率,增强荧光粉的发光效率。通过实验,发现扩散剂的确对光斑有了改善,使得发出的光斑均匀一致,但是对LED进行测试的时候,发现其亮度不能达到预期的效果。
1.1.2光通量提高问题
在烘烤的过程中,不同温度和时间对荧光胶的沉淀有不同的影响,使得荧光粉溶液的浓度分布均匀度有偏差,最后造成白光LED的色温分布不均,使得白光LED的亮度和光斑都不能达到预期效果。那如何改善荧光粉的沉淀,这是新一步研究的问题。从三个方面去改善:
(1) 通过生产工艺改善。即生产过程中,在很短时间里将荧光胶均匀搅拌并脱泡,加快点荧光粉的速度,点好荧光粉的半成品很快进入烘烤,同时依据硅胶特性选定最合适的烘烤温度和时间。
(2) 加入一种新的物质,使得荧光粉在高温下也能保持很好的均匀混合状态。于是导入了化工里面的一种可以同时吸附有机物和无机物的表面活性剂,在温度和湿度以及荧光粉溶液都相同的条件下,将其中一瓶加入表面活性剂,并做好标号,将两瓶溶液都搅拌相同的时间至均匀。将其分别排入晶片上,分时间间隔进行色温测试,通过实验我们得到了如图1所示色温变化图:
70min后加入表面活性剂的溶液比不加活性剂的溶液中荧光粉的沉淀率降低将近14%。
(3)采用倒装晶片,将荧光粉混合溶液直接涂抹在晶片上。所用到的溶液胶体不再是硅胶,因为硅胶的流动性较强,如果用传统的硅胶来混合荧光粉,荧光粉溶液就会从晶片表面溢出,所以这里选择可以自动成型的UV胶,将UV胶与普通荧光粉按照一定的比例进行均匀混合调配,将调配好的原料加入点胶机针筒对大功率发光二极管晶片进行点胶涂布,将涂布完成的晶片用紫外灯照射进行固化,完成固化工艺过程。UV胶固化后对光线无遮挡,透光性极强,紫外光固胶,固化速度快,产能高,同时流明值提高近10%。
1.2 封胶胶体的研究
在LED使用过程中,电子和空穴复合产生的光子在向外发射时产生的损失,主要包括三个方面:晶片内部结构缺陷以及材料的吸收;光子在出射界面由于折射率差引起的反射损失;由于入射角大于全反射临界角而引起的全反射损失。
根据折射定律,光线从光密介质入射到光疏介质时,当入射角达到一定值,即大于等于临界角时,会发生全发射。能射出的光只有入射角小于临界角所围成空间立体角内的光,因此其有源层产生的光只有小部分被取出,大部分易在内部经多次反射而被吸收,易发生全反射导致过多光损失。为了提高LED产品封装的取光效率,必须提高外封胶的折射率,以提高产品的临界角,从而提高产品的封装发光效率。同时,封装材料对光线的吸收要小。为了提高出射光的比例,封装的外形采取模塑(molding)半球形,这样,减少了出射界面由于折射率差引起的反射损失,而且光线从封装材料射向空气时,几乎是垂直射到界面,因而不再产生全反射。
对大功率白光LED 模塑进行灌胶,选取透光率、折射率、耐热性较好的双组份有机硅胶,这种封胶材料不会因为温度的剧变所产生的内应力使金线与引线框架断开,并且全硅胶形成的"透镜"不会黄变。
1.3 大尺寸晶片封装
目前,在大功率白光LED中,要在照明领域中普及,取代白炽灯,必须提高总的光通量或者说可以利用的光通量。光通量的增加可以通过提高集成度,加大电流密度、使用大尺寸晶片等措施来实现。虽然大型LED晶片可以获得大光束,不过加大晶片面积会导致晶片内发光层的电界不均等,发光部位受到局限、晶片内部产生的光线放射到外部过程会严重衰减。同厂商60mil和45mil晶片,其它封装物料相同,初始光通量60mil晶片比45mil晶片高了5个流明,但1,000h老化衰减大了10%,其成品老化光通量衰减对比如图2所示:
目前大尺寸晶片封装的散热,抗衰减等技术问题仍有待进一步研究。
1.4 封装可靠性测试与评估
LED器件的失效模式主要包括电失效,如短路或断路、光失效,如高温导致的灌封胶黄化、光学性能劣化等;机械失效,如引线断裂,脱焊等。而这些因素都与封装结构和工艺有关。对于主要用于照明用途的大功率LED,其使用寿命一般指LED输出光通量衰减为初始的70%的使用时间,寿命测试通常采取加速环境实验的方法进行可靠性测试与评估,对LED寿命的预测机理和方法的研究仍是有待研究的难题。
2 结束语
环保议题日益突出,各国政府持续推动节能政策,LED照明市场前景很是乐观。大功率白光LED封装是一个涉及到光学、热学、机械、电学、力学、材料、半导体等多学科的研究课题。为了提升LED封装技术的可靠性,须着重LED封装技术的每一环节,从某种角度而言,LED封装不仅是一门制造技术,而且也是一门基础科学。良好的封装需要对热学、光学、材料和工艺力学等物理本质的理解和应用。在封装过程中,虽然散热基板,荧光粉,灌封胶等材料选择很重要,但封装结构,如热学界面,光学界面及封装方式对LED光效和可靠性影响也很大。大功率白光LED封装需要不断的引入新材料,新工艺,新思路来提高其可靠性及在照明领域中的地位。
雷曼光电愿与各界同仁一起致力于大功率LED的研发,为LED光电事业做出贡献。
参考文献
[1] 彭万华.国内超高亮与白光LED产业解析[N].中国电子报,2004-03-19.
[2] 王耀明,王德苗,苏达.大功率LED的散热封装[J].江南大学学报,2009.
[3] 陈明详,罗小兵,马泽涛.大功率白光LED封装设计与研究进展[J].液晶与显示,2006,27(6):653-658.
[4] 余心梅.功率型发光二极管涂层技术的研究[D].成都:电子科技大学硕士论文,2007.
[5] Narendran N.Improved performance of white LED [J].Proc. SPIE,2005,5941:1-6.
[6] 刘丽,吴庆,黄先,等.白光LED荧光粉涂敷工艺及发光性质[J].发光学报,2007.
关键词:工艺;自控仪表;电气;安装
分类号:TU758.7
计算机、网络信息化发展提升了各个领域经济效益,而在集成化、智能化、数字化等方面自控仪表工艺取得前所未有的发展。自控仪表安装施工程序如下:对施工图与技术资料进行了解、给予土建预留预埋作业配合、调校仪表单体、铺设电缆管路、安装电缆桥架、安装控制箱盘、铺设线缆、铺设导压管、安装自控仪表等。
一 、自控仪表安装工艺
1. 调校仪表单体
仪表到货后,应核对、检查设备与装箱清单上数量、规格、型号是否相符。安装仪表前,根据说明书要求,合格校验单体后进行仪表安装。以出厂使用说明书为依据开展校验试验,选用标准仪器的量程、精确度,试验所用电源、气标准,连接线路、管路的原理等均需达到标准。试验工作人员应对试验方法、试验项目等内容明确。调校试验的情况应真实反映在调校试验记录中,调试仪表后,应出具试验报告。按照设备本体与工艺系统图,将调校合格的仪表清楚标志、完好封装,以备安装。
2.铺设电缆管路
电气保护管的管口应无锐边、光滑,内部应无毛刺、清洁,外部应无裂纹及变形。铺设路径应按照控制点或测量点至控制盘间的电气电缆、管道、设备的分布情况合理进行选择。应按照电缆的安装位置、型号、规格等来确定保护管的支架位置、铺设位置、材质以及管径。保护管弯曲位置不应有裂缝或凹坑,其弯曲半径应超过管外径的六倍,弯曲角度应小于90度。
3.安装电缆桥架
根据现场实际情况,按照各系统仪表设计更改图或施工图,应预先规划电缆桥架路径,以防止管道、工艺设备等发生冲突。测量路径,按施工设计安装高度以及美观整齐、横平竖直、固定牢固等原则制作并安装吊架、托臂、支架。电缆桥架的组对应按分段的原则,平直连接,分段吊装定位,桥架之间应由跨接保护接地,同时连接接地网。
4.安装导压管
选择管子及附件材料时,应与设计标准相符,为便于检查及清理管线,附件及管子的连接应方便拆装。应以1:10至1:15的比例确保仪表管路坡度。并确保倾斜处气体凝结水的排出。安装管子时,还需对管道沉降物、冷凝水的排放进行考虑。为避免测量精度受管内液体温度变化的影响,其它高温管路应与测量液位管路保持一定距离。测量液位管路。应将排气阀安设于液体管路中;将集水器或排水阀安装于管路最低处,以便含湿气体的排出。全面检查安装完成的导压管系统,如:可拆连接的严密性、管道及支架的可靠性与安全性、设置排放口的正确性等等。安装完毕后,可开展管道系统试压,此时应将靠近压力变送器的阀门关闭。试压完毕后,拆开仪表管路2端阀门接头,仪表管路内部的吹扫采用压缩空气,同时对仪表管的连接进行确认与检查。
5.安装自控仪表
(1)安装压力表
以盘上安装为例进行介绍,在表孔内缓慢装入压力表,找正后固定,在接头中放入垫圈,拧紧接头,注意压力表与导压管的连接。
(2)安装变送器
用SC50镀锌钢管制作差压变送器与压力变送器的支架,并将钢管固定于就近位置,之后再钢管上安装差压变送器与压力变送器。为便于维护时将外壳揭开、或调零,变送器顶部与调零侧须留有一定距离。须将三阀组接于差压变送器前面,而二次阀门须接在压力变送器前面。变送器上丝扣螺纹须匹配于与变送器相连接的螺纹。在安装差压变送器时,应先对安装位置进行查找,之后将变送器的支架固定在该位置上,于支架上固定变送器。将毛细管放开,对好法兰,先将2根螺栓穿上,再将另外的螺栓穿好、拧紧。为使变送器在具有粉尘或腐蚀性气体的环境中得到保护,还必须试压、冲洗、吹扫取压管,之后连接差压变送器与压力变送器。变送器的安。
(3)安装流量仪
在无交直流电场干扰或强烈振动的地方,按照说明书要求控制前后4段的长度。施工工艺管道时,应将变送器发盘置于安装处,找正、找平后将法兰盘点焊住,待冷却,将变送器安装好。值得注意的是,安装在立管上时,为使被测介质流进变送器,应遵循垂直的原则。水平安装电磁流量变送器时,应垫稳变送器,使2电极处于同一水平面。如果工艺管道与变送器电接触不良,连接须采用金属导线。安装变送器时,应将无衬里的金属管道接于有绝缘衬里的工艺管道之间。为确保法兰与接地环良好接触,被测介质与环内边缘发生接触,变送器内径应较接地环内径略大。变送器流向应一致于被测介质流向。当管道试压吹扫结束后,可先行拆下变送器,清洗后再装上。
(4)安装转子流量
按照垂直安装原则安装转子流量计,且用支架固定转子流量计前后管段。如果玻璃管转子流量计对介质进行测量时具有腐蚀性或温度超过70摄氏度的情况下,应考虑加装防护罩。
(5)安装分析仪表与盘上仪表
分析仪表的安装必须满足避免服饰气体、剧烈的温度变化、防止高温、无强磁场干扰、无振动、易于维护操作、干燥、可靠安全、光线充足等安装条件。单独安装预处理装置的同时,应尽量缩短取样管线,并尽可能与传送器贴近。安装盘上仪表时,应注意其边缘光滑度,抽出、推进仪表时避免过于松或过于紧。仪表安装在盘内框架上应方便维护和接线,并且接地良好。须清楚、正确盘上仪表的铭牌、标志牌等。
二、处置施工中常见问题
常见问题与处置方法如下:①未正确显示差压、压力,这是由于变送器选型与安装位置出现差错。处置方法:当变送器取压点较变送器安装位置低时,进行正迁移;变送器安装位置低于变送器取压点时,进行负迁移。②测压、测温不标准,这是由于施工未严格按照图纸要求和规范进行,插入的温度计过浅、或者过于深所致。处置方法:在安装测压、测温部件之前,测压位置应严格按照仪表规范来确定,以管道的50%为基准判定温度计插入深度,建议测压位置远离三通、弯头、以及阀门处。③测定流量缺乏稳定性,在连接差压变送器与取压管时,喷嘴或孔板方向上反,正负错位所致。处置方法:在连接差压送变器与取压管时,应对其正负进行核对、确认后在进行操作。在安装喷嘴或孔板时,必须在对喷嘴或孔板安装方向与关内流向进行确定后进行操作。④二次仪表未显示,连接端子与线头时,端子被绝缘层压住,造成闭合回路不通。处置方法:在结束线缆施工后,绝缘测试线缆,并校对标号线缆,端子中插入线缆头时应防止端子被绝缘层压住,且插入深度适宜。⑤管内堵塞,施工前未清理干净取压管内部。处置方法:进行施工前,应预先用空压机吹扫取压管,待清理干净后,再进行安装。⑥气动、电动薄膜调节阀闭、开不到位,出现闭、开超过极限,或者管内渗漏,顶坏阀体、阀杆或者阀芯。处置方法:对行程开关进行合理的调整。
三、结束语
自控仪表工艺及施工中逐渐运用了集成化、智能化、数字化技术,本文对自控仪表的安装工艺与施工种常见问题进行总结,并针对其问题进行处理。特别在安装自控仪表一节中,详细地介绍了压力表、变送器、流量仪、电子流量、分析仪表与盘上仪表等步骤,最后提出针对性措施。
参考文献
[1]禹扬,余国平,朱雀,文鹏. 石油化工装置中自控仪表工程施工流程的质量控制 [期刊论文].电源技术与应用,2012(9).
本文以微电子专业人才培养为例,针对我校微电子专业教学资源库的建设,从微电子的需要来说明其重要性,通过与企业联合分析职业岗位的工作内容、工作岗位、工作职业技能来合理开设学校的相关课程,来培养专业性技术人才的学生[1]。
现状与背景分析
国家的需求。微电子技术都是高科技、高风险、高投入、高利润的行业,而且是一个国家、地区科技、经济实力的反映,美国就是以集成电路设计、制造为核心的地区,让美国拥有了世界上一流的计算机和IT核心技术,为此,中国于1998年下发了《鼓励软件产业和集成电路产业发展的若干政策》的18号文件,大力支持、鼓励我国微电子产业发展。
企业的需求。从2005年8月的西永微电子园的建立,北大方正FPC等十大项目的建设,200亿资金的投入。到2015年4月8号,东方重庆8.5代新型半导体显示器件及系统项目,在重庆两江新区水土工业开发区举行产品投产暨客户交付活动。该项目总投资328亿,为重庆近年来最大投资项目。如此浩大的产业发展,必将大量需求各阶层微电子技术人才[2]。
高职学院自身的需求。近几年,高职教育在改革和发展中取得许多可喜的成果。但是专业不对口,学生兴趣缺乏,企业抱怨人才不足,应届毕业生的实践技能不够等相关问题也成为我们教学的薄弱环节。基于职业岗位来分析,才能真正让学生毕业更快的适应工作环境,解决专业不对口问题。
高职学生的需求。高职学生都期望通过学校专业课程学习,找到一份合适的工作。学生也在思考如何将专业知识转化成专业能力,如何消化书本内容。学生期望能学习在以后的工作岗位更实用的课程内容。因此基于职业岗位分析构建微电子专业课程,能更好的教学,让学生明确的学习提升自己的能力,同时帮助学生就业,解决专业不对口等问题。
研究内容、目标、要解决的教学问题
研究内容和目标。通过往届毕业学生的就业情况分析对应的岗位,找出专业不对口,或者就业工作不影响的主要问题。通过修改课程教学模式,提高学生兴趣,激发主观能动性。通过调研会邀请重庆44所,24所,西南集成设计有限公司等从事微电子行业的公司,分析高职学生通过学生什么课程能快速适应岗位,达到合理构建微电子课程来使高职学生具有对应的岗位能力,从而有效地培养微电子人才[3]。
要解决的教学问题。激发学生对课程的兴趣,提升主观能动性;学生不仅掌握对应岗位的理论知识,也要有熟练对应岗位的实际动手能力;调研企业岗位,分析微电子集成电路设计课程的建设;调研全国高职微电子课程开设,合理调整集成电路设计课程。
采取的分析方法
文献研究法:利用网络、报刊等媒介,搜集与课堂教学模式相关的专著、论文等文献资料,掌握课堂教学模式研究,掌握相关理论知识和国内外对课堂教学模式研究现状。
企业调研法:派成员组去江苏,上海,成都等微电子发达区域了解微电子产业发展对应的岗位需求。在我校组织的微电子行业专家职业分析研讨会,邀请重庆24所、44所、西南集成有限公司、鹰谷光电等行业专家从微电子高职学生岗位需要来分析,构建微电子专业课程建设[4]。
实验教学法:用微课进行微电子专业课程的建设,利用我校作为西南地区唯一的仿生产工艺线,以及封装测试线,配套生动形象来表达上课内容。“校企合作,工学结合”,让学生直接企业顶岗实习,验证微电子专业课程建设对应岗位的合理性,优化调整。通过微电子相关的职业技能大赛嵌入式比赛等等提升学生兴趣,对应的课程建设学习。
微电子专业课程建设
本校通过与微电子多个企业联合分析,将微电子专业课程分成集成电路制造、集成电路设计、集成电路封装、集成电路测试、半导体行业设备维护、半导体安全生产管理等相关方向,然后转为为A、B、C三类课程,由最基础的理论知识,如计算机使用,英语阅读,电路分析,工具使用到专业性技能的操作和综合职业技能的培养。
A类课程转换分析表提供的职业需求信息为基础,并依据课程的需要可补充相关理论知识信息,使课程具有理论知识的相对系统性和完整性。如分半导体器件物理,半导体集成电路,工程制图,电子材料,SMT工艺等基础课程。
B类课程的目的是培养基本技能。可以通过集成电路版图设计实训,集成电路生产工艺实训,集成电路封装工艺实训,集成电路测试实训,自动化生产线安装与调试实训等课程培养学生的基本技能。
C类课程的目的是培养综合职业能力,也称为综合职业能力课程。通过学习集成电路制造工艺,半导体工厂设计与管理,集成电路封装工艺,半导体工艺设备,集成电路的可靠性等相关课程来培养学生的综合职业能力,从工艺到测试,电路到自动化的职业系统化培养。
关键词:芯片封装;引线键合;小波;焊点定位
中图分类号:TP391文献标识码:ADOI:10.3969/j.issn.10036199.2017.01.028
1引言
芯片封装是在引线框架的外接管脚与芯片焊点之间建立可靠的连接,实现芯片的功能[1]。目前常用的芯片封装技术包括三种方法:引线键合、载带自动焊和倒装芯片技术[2]。在三种方法中由于引线键合技术具有成本低、精度高、可靠性好的优点,因此,90%以上的芯片封装都采用的是引线键合形式。引线键合焊点的视觉定位就是首先通过视觉系统获取芯片和贴片基板的数字图像,从中提取出芯片和基板的实际中心坐标参数。计算出芯片和基板相对于预定义位置的坐标偏差和角度偏差。通过定位偏差参数实时计算芯片和引线框架焊点的实际坐标位置,实现芯片引线键合焊接劈刀定位误差的在线修正[3]。
芯片的封装工艺中需要将芯片粘贴在引线框架的贴片基板上,贴片机吸取芯片后将其放在基板上,由于取片和放片时存在误差,导致芯片在基板上存在位置偏差。这种误差的出现,在引线键合时会导致键合劈刀无法准确定位到芯片焊点的焊接位置。这种情况将导致金属引线的焊球焊接不牢或者定位不准确,导致芯片的可靠性下降甚至失效。为了提高芯片的引线键合精度,本文采用构造多尺度小波变换的方法提取芯片和基座的边缘信息,实时检测芯片和贴片基板的边缘;计算芯片和贴片基板边缘的中心坐标和偏转角度;为焊点实时定位和焊接劈刀的实时调整定位提供参数。
2基于小波变换的边缘提取
通过CCD数字相机采集到的芯片图像经过预处理后,采用基于小波分析的多尺度图像分析的办法提取芯片和引线框架的边缘特征。通常图像特征局部的不连续称为“边缘”。就灰度突变性而言,图像的边缘一般分为两大类,一类是阶跃状边缘,其特征是边缘两边象素的灰度值有显著的不同;另一类是屋顶状边缘,其特点是它位于灰度值由增加到减小的变化转折点。在阶跃边缘点,图像灰度在它两旁的变化规律是灰度变化曲线的一阶导数在该点达到极值,二阶导数在该点近旁呈零交叉,即其左右分别为一正一负两个峰;对于屋顶状边缘的边缘点,其灰度变化曲线的一阶导数在该点近旁呈零交叉,二阶导数在该点达到极值。
5芯片特征识别与测试
本文在MATLAB软件平台上开发芯片引线键合焊点的定位检测程序。首先从数字相机读取芯片图片,在采集芯片照片时设置环境光源,使得芯片处于良好的光照环境下。调整数字相机的镜头取景范围,使芯片及其贴片基座尽量处于最大的取景范围,使芯片图像有较大的分辨率。采集到数字图像后,根据数字相机的畸变校正矩阵[9]修正数字图像误差;然后通过图像预处理技术[10]初步消除图像中的干扰信息;其次采用图像灰度处理[11]将其转化为灰度图像;再采用数字形态学技术消除芯片图像上的微小孔隙,消除边缘检测过程中出现的亢余信息,完成数字图像预处理过程。
将预处理过的图像进行多分辨率分析,由边缘检测算法得到的边缘信息保存到链表结构中,链表的每一行就保存一条边缘。首先,在链表中查找被断开的边缘,并将断开的边缘重新连接起来,形成完成的边缘。其次,将拼接起来的边缘进行平移和旋转不变性处理,使得图像特征中的芯片和基板的边缘特征转化为具有不变性的封闭曲线。第三,在实时提取到的芯片和基板边缘曲线进行不变性处理并提取其小波特征后,将模板的小波特征与实时图像中的边缘特征参数进行对比,从而在采集到的图像中识别出芯片和贴片基板的边缘。最后通过计算边缘曲线的矩特征参数,计算出芯片和基板对应的偏移参数。
以任意两幅图片为例,芯片和贴片基板中心坐标检测实验以芯片和基板周边一定范围为拍摄区域,如图1和图2所示。如前所述,芯片在粘贴在引线框架的贴片基板上时存在贴片误差,在这两个随机选择的芯片贴片图像中芯片相对于基板的位置并不固定。这种误差将导致在引线键合时,焊接劈刀无法与芯片和引线框架的焊点精确对准,这种误差将导致芯片可靠性降低甚至残片。计算出芯片和贴片基板的位置偏移量之后,可以根据偏移量计算出芯片和引线框架上的焊点位置[12]。此时计算出的焊点坐标是采用像素为单位的坐标参数,通过对数字相机的标定,可以计算出焊点的实际位置参数(单位:mm)。
6结论
芯片粘贴在引线框架后,为解决芯片和基座几何中心坐标与设备坐标系中理论坐标偏差和轴向偏角实时测量,以及实时修正芯片的键合焊点的位置提高引线键合质量的问题,文中提出采用基于紧支集双正交小波的方法实现边缘提取和边缘特征识别。通过实验表明,该算法能快速、准确的将芯片边缘和贴片基板的边缘从图像中识别出来;并根据两者的中心位置偏差计算出焊点的实际位置,修正参数反馈给键合头驱动系统。这种算法能够提高引线键合工艺中的焊接质量,简化了特征提取的步骤,缩短了算法的复杂度,提高了算法的精确度。
参考文献
[1]丁汉, 朱利民, 林忠钦.面向芯片封装的高加速度运动系统的精确定位和操作[J].自然科学进展, 2003, 13(6): 568-574.
[2]李可为.集成电路芯片封装技术[M].北京:电子工业出版社,2007:19.
[3]李君兰.面向IC封装的计算机视觉定位系统的研究[D].天津大学T士学位论文,2007.
[4]ALPHA K, 彭嘉雄.小波多尺度方法用于边缘检测[J].华中科技大学学报:自然科学版, 2001,29(5):74-76.
[5]胡敏, 陈强洪.多尺度分析方法中四种典型小波基的选择与比较[J].微机发展, 2002,12(3):41-44.
[6]常辉, 胡荣强.基于B样条小波的图像边缘检测[J].武汉理工大学学报:信息与管理工程版, 2002,24(3):31-33.
[7]刘曙光, 朱少平.B样条正交小波的构造[J].纺织高校基础科学学报,2001,14(2):147-153.
[8]张德干, 高光来.通用双正交小波构造方法的研究[J].内蒙古大学学报:自然科学版, 1999,30(5):662-670.
[9]丁婷婷, 方舟, 刘波,等. 基于机器视觉检测的摄像机快速标定与误差分析[J]. 制造业自动化, 2015,37(1):89-91.
[10]李刚, 范瑞霞.一种改进的图像中值滤波算法[J].北京理工大学学报,2002,22(3):376-378.
[11]吴冰, 秦志远.自动确定图像二值化最佳阈值的新方法[J].测绘学院学报,2001,18(4):283-286