时间:2023-03-22 17:44:52
序论:在您撰写机械加工技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。
(1)数控技术的概念
数控技术是在传统机械加工技术的基础上,采用数字控制技术来进一步提高机械加工的质量,并且结合传统机械制造技术、计算机技术与网络通信技术等进行机械加工运动。较传统机械加工技术来说,其不但具有高准度与高效率,同时还具备柔性自动化等优点,国内现在对数控技术的应用主要是预先编制好程序,再通过控制程序来控制设备,一般采用计算机进行控制。
(2)数控加工技术的主要特点
数控加工技术可以简便的改变相关工艺参数,因此在进行换批加工与研制新产品时非常方便。另外,像普通机床很难完成的加工复杂零件与零件曲面形状等,利用数控加工技术都可以高质量量完成。数控加工技术采用模块化标准工具,在换刀与安装方面都节省了很多时间,同时对工具的标准化程度与管理水平都有较大的提高。
2数控技术在机械加工技术中的应用意义
(1)数控技术在机械加工技术中的应用
提高了机床的控制力近年来数控技术在机械加工技术中的应用,对机床控制力有了很大程度上的提高,进一步提高了机械加工的工作效率。采用数控技术来控制机床设备,充分发挥了机床设备的功能,同时使机床设备的操作更加简单,通过在数控器上预先编制好机械加工的流程与操作方法,并由控制器依据相关数字信息来控制机床运行,不但保证了机械加工的质量,同时也使机床设备更具高效化。
(2)数控技术在机械加工技术中的应用
推动了汽车制造业的发展数控技术对进一步发展汽车制造业有很大的帮助,通过将数控技术应用到机械加工技术中以提高机械加工技术的有效,为进一步发展汽车制造业提供了技术保障,在汽车零件的加工中运用数控技术可有效提高生产率,同时强化了汽车进行机械加工的效果,使原本复杂的操作更加简单,提高汽车零件加工生产的效率同时促使汽车制造业实现最大化收益。
3有效提高数控技术在机械加工技术中的应用效果
(1)重视对数控技术的应用
近些年来,数控技术虽已被广泛应用到机械加工技术中,但是仍然有一部分企业内部对数控技术的应用缺乏足够的重视。因此,要想进一步将数控技术融入到机械加工技术当中,首先就必须要让企业的经营管理者充分认识到数控技术在机械加工技术中的重要意义,给予充分的重视。同时,积极组织数控技术相关知识的培训,提高工作人员数控技术水平,结合数控技术的实际操作与理论知识,以便更好的发挥数控技术的优势,提高机械加工的质量与效率。
(2)在机械加工过程中实现自动编程
一般在机械加工的过程中都是采用人工手动进行对生产制造图样与编写零件加工程序单以及工艺过程进行确定,这样不仅效率低且容易出现人为计算失误。因此,应注重对数控技术有效性的应用,尽快实现自动编程,使用计算机来替代人工操作,不但可保证加工质量,同时提高机械加工制造的效率,实现人力与物力的合理化配置,为加工企业节约制造成本,进一步推动机械制造业的发展。
(3)合理改进并更新机械加工中的原有设备
在全球经济发展的推动下,我国工业大力发展,数控技术被越来越普遍的应用到了机械加工技术中,而时代新形势对机械加工的要求越来越高,因此,应当积极创新数控技术,大力倡导经济型数控机床的发展,以保证数控机床的稳定性与高效性。同时,对机械加工中的原有设备应当进行合理改进,提升机械加工的技术水平,完善数控技术的应用,提高我国机械制造业的生产水平。
(4)实现数控技术的智能化与网络化发展
通过相关文献阅读,我们可以清楚的看到,在历史上机械加工技术发生过三次革命,而这三次革命,每一次都给人类的生产、生活带来了翻天覆地的变化,影响着整个世界制造业的发展。第一,机械加工技术的第一次革命。18世纪初期,近代机械制造业就已经在欧美国家形成,并在19世纪中期逐渐实现了制造机械化,形成了一整套的机械加工技术。直至20世纪80年代,随着电子技术与电力技术、制造技术的结合,促使了第一次制造革命的爆发。可以说在第一次革命中,产生了许多的全新加工方法,而这些加工方法又被人们称之为特种加工。此时期的特种加工,是以减材加工为主要加工手段。并在传统机械加工的基础上进行的研发与改革,如:在变形加工方面增加了放电成型、电磁成型、激光三维成型等诸多新方法;而在接合加工方面增加了放电冲击焊接、电子束焊接、激光焊接、等离子焊机等方法。第二,机械加工技术的第。至20世纪90年代,以减材加工为主要手段的机械加工技术早已无法满足制造企业的生产加工需求,无法满足市场经济的发展。因此,以制造技术、材料技术、能源技术、微电子技术、信息技术相结合以及加工方法逆向思维的突破,促进了第二次制造革命的爆发。可以说第二次制造革命是在特种加工基础上,选取固化液体材料,采用粘结、熔结、聚合等化学反映手段,制造其所需要的机械加工零件。其实质是一种增材加工方法。而该阶段,也出现了许多先进的增材加工方法,如:化学法中的液态光敏树脂选择性固化、数字化喷射RP技术等,为机械加工技术的发展开启了一展全新的大门。第三,机械加工技术的第三次革命。相较于前两次的制造革命,第三次制造革命可以说是历史发展的必然因素,也是机械加工技术发展的必然趋势。第三次制造革命在本质上与前两次制造革命不同,其并不是在外界环境的强制作用下形成的,因此说其是应运而生也未尝不可。其主要是因为各种生物技术、生命科学、材料科学等学科在制造技术中的不断融入而引发的革命,根本在于人们对产品的需求。
2现今我国的机械加工技术
现状相较于西方发达国家,虽然我国的机械加工技术发展较晚,但是经过数十几年的发展与研究俨然已经取得了十分骄人的成绩。尤其是机械加工技术类型繁多,能够满足一些机械产品的加工需求,提高机械产品的加工精确度与质量。目前,我国现代机械加工技术类型主要包括:高速加工技术;超精密加工技术;数控加工技术;水喷射加工技术;超高能束加工技术;超自动化加工技术;快速成型技术;成型工艺技术;干式切削技术等。而从我国机械加工技术的整体发展趋势来看,我们可以清楚的看到,目前我国的机械加工技术正走在高速、超高速,精密、超精密的发展方向。高速、超高速加工是一项系统工程,其是在高速主轴、高速加工机床结构、高速加工刀具、系统的不断改进上发展而来的。同时,高速、超高速加工技术不仅可以用于加工普通的钢、铁、有色金属材料,还可以加工高强度的合金钢、纤维强化复合材料,扩大加工范围的同时,也极大的提高了我国机械加工的生产效率,加工质量。目前,高速、超高速加工技术正在我国航天、航空、汽车、机床等制造行业中被广泛应用。而精密、超精密加工技术则在我国尖端武器制造中占据着十分重要的地位,始终是我国机械加工技术发展的最主要方向。具体来讲,精密、超精密加工技术,其在我国是一项内容十分广泛的新技术,工艺实质在于提高机械加工的精确度,使表面质量达到极高的标准,并且在提高机电产品的使用性能、可靠性等方面都有着十分重要的作用。因此,精密、超精密加工技术也可谓是国际竞争中的核心技术之一。
3结束语
数控技术的应用,使得机械加工脱离了传统以人工控制为主的加工时代,对生产力的提高具有重要作用。数控技术的应用对机械加工的变革性意义主要表现在以下几方面:1)生产效率大幅提高。应用数控技术后,机械加工脱离人为控制,生产周期大大缩短,生产效率大幅提高,废料率大幅降低;2)生产速度更快。数控技术对机械加工时间的控制非常精确,完全不受人为主观控制,在机械加工速度上去除了人为干扰,加工速度得到迅速提高;3)产品外观更美观。机械加工的产品,外观要求精美,数控技术将外观要求输入后,电子自动控制,外观与模型几乎无异;4)产品外形实现多样化。通过制图工具制作模型,产品形状随心所欲,经过数控技术加工都能成为现实;5)产品精度更标准。传统人为控制的机械加工,产品在精度方面控制不够精细。而数控技术的应用,精确控制完全自动化,可以完全避免人为误差。产品加工精度更符合设计标准;6)生产控制自动化。这也是最直观的表现。数控技术的最直接目的就是自动控制,是机械加工摆脱人力因素的唯一选择。数控技术运用自身的数字化功能,可以有效控制机械加工的设备和过程,并采用数控设备、数控编控等技术使机械加工更加系统化。
2机械加工中数控技术的应用
2.1数控技术在机床加工中的应用
机械加工中,机床的应用比例很大。各种各样的模具生产都是由机床来完成的。传统的机床生产,模具的精度控制很难实现自动化,因此,生产出的模具合格率较低,材料利用率低。而数控化技术在机床上应用后,实现了机床全自动化机电一体制,这种机电一体化加工生产技术能保证产品的质量。
2.2数控技术在煤矿机械加工中的应用
煤矿机械具有特殊性,是专用的机械设备,由于其工作环境复杂多变,对安全系统要求较高,煤矿机械加工过程要求精细化程度高。而传统机械加工很难实现其精度的要求。而且,煤矿机械更新换代较快,应用领域单一,所以生产加工量小,下料难。数控技术得到应用后,设备下料切割采用数控技术,改变了过去的工作模式,切割效率得到成倍提高,切割质量高,提高了材料的利用率,降低了设备的生产成本。同时,数控气割机装有自动可调的切缝补偿装置,它允许对构件的实际轮廓进行程序控制,好比数控机床上对铣刀的半径补偿一样。这样可以通过调切切缝的补偿值来精确控制毛还件的加工余量。
2.3数控技术在工业生产中的应用
工业生产过程中,难免会有恶劣的工作环境存在,如高温、高压、操作空间狭小,操作高度过高等。这些危险的工作环境极大地增加了工作人员的工作危险性。而数控技术的应用后,工业生产上类似的恶劣环境完全编入数控程序,使工业生产危险性得到极大改善。在实际的生产过程当中,应用数控技术之后,生产过程可以由计算机系统全程控制。只要预先输入各种生产程序和产品参数,则计算机系统便能够依照指令实现真正意义上的无人自动化生产。即便是在生产过程当中出现了故障或者问题,系统会根据错误的等级来决定是否继续进行生产,同时采用有关的保护性护理措施,并向管理者报警。除此之外,机械加式中数控技术的应用还有很多,如航空设备的生产、机器人系统的生产、汽车工业的生产、石油机械的生产、国家武器装备的生产以及建筑机械、农业机械等领域,应用数控技术后,无一不推动了行业的快速良性发展。
3机械加工中数控技术的应用趋势
随着新的智能化技术的发展,机械加工中数控技术的发展同样朝向智能化方向发展。主要表现在加工过程的自适应控制和工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算等;操作方面的智能化,如智能化的自动编程、智能化的人机界面等。另外,随着数字技术的不断进步,机械加工也面临着新的市场需求,特别是人们对精细化的要求也越来越高,于是高速度、高精加工技术成为必然的趋势。
4结语
机械加工工艺相对于其他工艺来说要复杂的多,其本身就是一个复杂的加工过程。因此,在进行机械加工时,必须要有相关措施来规范工艺,否则会出现一系列的问题,而这种约束性的规范就称为工艺规程。工艺规程的定义是技术人员在机械加工时对工艺产品进行规范制约,即技术人员根据工艺产品的形状或规格等因素来制定一系列的工艺流程,然后将其制成相关技术文件,在加工过程中就以此文件为基础进行操作,这也被称为工艺规范。在机械加工中,工艺规范文件占了很重要的地位,其对机械加工起着指导性作用。工艺规程对整个机械加工来说非常重要,由于其具有指导性,因此在实际的操作中就应该以工艺规程为基础而对实际的加工操作作出相应的调整。在调整过后,产品的相关位置、尺寸等因素也会有一些变化,但是不能违背工艺规程,以此形成一个生产环节,产品经过这个环节之后就会成为一个完整的工艺成品,这就是机械加工工艺的基本流程。
2加工工艺的误差以及原因
(1)定位误差及原因。在机械加工工艺中,加工中的定位误差是比较常见的,其主要表现在两个方面。第一,由于基准的重合不准确而导致的误差;第二,由于定位副加工的准确度不高从而导致的定位误差。由此看出,在加工机械零件时定位的准确性是非常重要的。机械加工必须要有准确的定位基准,且要使用正规的几何要素。如果采用不正确的几何要素来作为定位基准,则会出现相应的定位误差,并且所选择的定位基准必须要与设计基准相吻合,否则会出现基准不重合的现象,这就是导致基准不重合的主要原因。定位副主要是由两方面组成,即夹具定位原件和工件定位面,引起定位副加工不准确的主要原因就是由于定位副制造或定位副间的配合不协调,使得其间隙发生变化而导致零件发生变化,从而使定位副加工的准确度受到影响。这种误差一般在调整法加工中出现,若换成试切法加工会将此误差的出现概率降低。
(2)制造误差及原因。在机械加工工艺误差中,由于机床生产的制造误差主要包括三方面,即导轨误差、传动链误差以及主轴回转误差。所谓导轨是指机床各部分零件位置的基准,机床之所以能运转,是因为有导轨的支撑。出现导轨误差的主要原因是由于在使用过程中出现局部磨损、安装的质量不过关等,从而造成了机床生产制造误差。出现传动链误差的主要原因是传动链在使用的过程中会出现不同程度的磨损,而磨损后的传动链在运转时就会产生一定的差距,这样就会导致传动链出现误差。主轴回转误差的产生原因是由于主轴的实际回转线与平均回转线不是一成不变的,两者之间会产生一系列的变动,其变动的量就是所谓的主轴回转误差,该误差的大小直接影响了加工产品的精细度。同时,产生主轴回转误差的原因还包括了同轴度误差以及轴承运转的磨损程度等因素。
(3)加工工具的误差及原因。对于机械加工的工具来说其主要有夹具和刀具,而夹具和刀具的使用误差对加工工艺来说也是比较严重的问题。使用夹具的主要作用是确定加工零件的具置,如果在夹具的使用过程中出现了误差,则会直接导致加工零件的定位出现偏差。出现刀具使用误差的主要原因是由于刀具在使用过程中会受到各种因素的影响从而出现不同程度的磨损,而将磨损后的刀具用于加工工艺中则会对产品的尺寸以及形状造成一定程度的影响。因此,加工工艺中刀具的误差是一个不容忽视的问题。
(4)工艺系统的误差及原因。在机械加工工艺中,出现工艺系统误差的主要原因是由于在加工过程中有一些硬度不高的零件会容易变形。而变形后的零件就会促使工艺系统误差的出现,并且在加工过程中,切削力的变化、材质不均匀等也会导致误差的出现从而对整个工艺系统造成影响。
3如何降低加工工艺技术的误差
(1)避免直接误差。在机械加工的过程中并不是所有误差都不能避免,一些误差是可以被避免的。工程技术人员首先要高度重视在加工过程中所出现的误差,并及时的处理这些误差,从而避免这些误差再次出现。例如,在磨削薄片零件的端面时,技术人员可以根据以往的经验先将原件粘在平板上,然后准备一个磁力吸盘,并将两个工件放于吸盘上,将零件端面磨平再取出。随后在打磨另一个端面时就以此为基准进行,这样打磨出来的薄片不容易变形。
(2)及时处理误差。虽然在加工过程中有些误差能够避免,但是仍有一些误差是必然的,若出现了不可避免的误差,则工程技术人员应立即处理,从而降低因误差带来的损失。避免误差的主要做法就是人为制造出新的误差,并利用这种误差来抵消原有的不可避免的误差,这样才能及时的避免误差恶化。
(3)利用误差分组法。在机械加工工艺中常用降低误差的方法主要就是误差分组法,其可以很大程度的降低误差并且提高工艺的精确度。误差分组法顾名思义就是进行分组,而分组依据是按原件的尺寸和误差的大小进行。这样分组之后会使得每组的准确度大幅度提高,然后在进行一定的调整,就可以很大程度的降低所有组的整体误差,从而使工艺的误差能够大幅度的减少。
4结束语
(1)加工原理误差。加工原理误差是在实际的机械零件加工过程中,使用和理论加工方法类似的技术、刀具轮廓以及传动比等使得产生的零件参数与理论有所偏差。这也是数控机床机械加工中最常出现的精度误差原因。产生这种误差的原因有两种:a.实际的加工中使用类似的加工方法,在数控机床的实际操作中,为了使加工的流程看起来和理论相似,使用的加工方法和理论上有所差距,这必然会造成加工原理上的误差。b.实际机械加工中使用的工具和理论模具不一样,比如刀具轮廓的使用,理论上机械加工要求刀具应当具有很高精度的刀具曲面,但是实际操作中,机械加工的刀具不能达到理想的要求,一般会采用近似的刀具曲面,像弧线、直线等线性进行替代,这种情况就会造成刀具轮廓加工过程中带来的加工理论误差。(2)工艺系统误差。a.机械零件受力点位置变化引起误差。在机械加工工艺的生产中,工艺系统的切削着力点通常会伴随着切削的位置进行变化,两者之间位置的变化,使得加工零件受力点在不断变化,在位置的交错中,会造成一定的误差。b.机械加工受力程度的变化引起误差。在机械加工中,零件受力点在不断变化过程中,点受到的切削程度也会不一样,由于被加工的零件本身就存在材质、形状和尺寸的不均匀情况,在加工的过程中就会形成不同受力点切削的力度不一,形成加工工艺中的误差。
2数控机床机械加工精度提升的误差补偿技术
在现代科技的发展和应用中,保证机械加工的精度的方法有两种,一是提高数控机床的质量,二是采用误差补偿技术,本文着重从误差补偿技术进行精度提升的研究。误差补偿一般又可以分为误差预防和误差补偿技术,在误差补偿技术中常用的方法是误差建模、误差测量、误差补偿实施。(1)硬件静态补偿法。在机械加工精度控制中利用硬件静态补偿法是指通过添加外部硬件机构,在外力的作用下让机床运用副位置产生与误差方向相反的运动来减少加工中的误差。在加工螺丝时由于加工机床丝杠之间存在误差,通过螺距校正尺来进行丝杠之间的螺距,就属于是静态补偿法。由于静态补偿法的局限性,只能在停止时进行数值或者是硬件的参数调整进行补偿,在运动时不能进行实时的补偿,这种硬件静态补偿法被使用的频率相对较低,一般会和其他方法进行综合使用。(2)静态补偿法和动态补偿法综合使用。上面已经给提到静态补偿法是在数控机床加工的静止时,通过调整参数进行误差补偿,这种补偿法可以对精度进行系统补偿提高,不能在运动中进行随机的误差补偿,通过和动态补偿法的相结合可以实现加工精度的大大提高。动态补偿是在加工的切削情况下,依据机床的工况、环境条件和空间位置的变化追踪进行补偿量亦或参数补偿,通过运动的实时现状进行反馈补偿,例如在轴承的机床加工中,通过对热量、几何形状、切削程度的监控进行及时的参数修改补偿,是一种具有现实实际意义的误差补偿法,但对于数控机床的技术水平要求极高,投入的成本很大。(3)进给伺服系统补偿法。伺服系统是驱动各加工坐标轴运动的传动装置。这种补偿系统可以正反两个方向运行,能够根据加工轨迹的要求,进行实时的正向或者反向运动,其加工控制精度可以达到0.1微米,另外它的调速范围宽、快速响应并无超调、低速大转矩。在典型的数控机床进给系统中由步进电机构成的开环控制系统,步进电机的角位移或者线位移与脉冲数成正比,其转速与脉冲频率成正比,它将指令脉冲变成步进电机输出轴的旋转运动来控制机床加工;闭环进给位置伺服系统,它主要是采用直流伺服电动机或交流伺服电动机驱动,机床工作台的实际位移可通过检测装置及时反馈给数控装置中的比较器,以便于指令位移信号进行比较,两者差距有作为伺服电机的控制信号,进而驱动工作台消除位移误差;半闭环进给位置伺服系统,该系统由位置控制单元和速度控制单元构成,光电脉冲编码器发出的脉冲,一方面用作位置的反馈信号,另一方面用作测速信号。当点击的负载变化时候,反馈脉冲信号的频率将会随着变化,在实际的机床加工中,通过控制伺服电机的转速进行精度误差的减小。(4)修改G代码补偿法。G代码是编制机床加工程序的语言,G代码中有刀具的补偿功能,像G44、G43是刀具长度补偿。G代码的补偿原理是通过对刀位信息的修改来补偿误差的范围。这种补偿也被广泛用于数控机床的机械加工误差补偿,例如Hsu等人建立的五轴机床误差补偿模型,根据对模型对CAM软件生成的初始刀位进行修改,用修改G代码的方法完成数控机床机械加工误差补偿。这种补偿方法需要G代码的编程人员进行工件的几何形状确定,确定工艺过程和刀具轨迹,在进行实际的运行中,如果出现位置偏移就需要通过修改G代码进行误差补偿,一般运用于比较简单的加工零件,其形状不复杂,主要是直线和圆弧组成的轮廓,数据的处理量不大,在遇到工作量大,复杂的零件时候,就需要通过计算机的G代码控制进行修改,程序员通过计算机辅助进行编程。(5)坐标偏置补偿法。坐标偏置补偿法是利用数控系统的坐标原点偏移,参照位置等信号的反馈进行机床误差的补偿。在程序员进行操作时候,可以通过数控系统的直观显示进行零件加工的误差校对,对于出现误差的,可以通过操作数控系统对原点坐标进行重新设置,使其对出现的误差进行补偿,这种补偿方法适用于三轴坐标的数控机床。这种补偿法一般在使用侧头时候用的是固定侧头,同时还需要一定的软件补偿,保证地基的稳定。
3结束语
综上所述,误差补偿法可以有效的提高数控机床机械加工精度,并能够给数控机床带来经济效益。误差补偿可以有效的控制数控机床机械加工过程的零件精度,有助于提高机械加工工艺技术,能够适应数控机械加工企业的高级精度、高级质量水平化发展方向。误差补偿法是在原有数控机床的基础上,通过科学的技术和手段,来实现零件设计的理论值,目前误差补偿的技术已经被广泛的应用和被相关学者所关注,并且在通过不断完善和更新误差补偿技术,使其成为现代社会精密工程的主要技术。
作者:王少彬 单位:浙江省宁波市宁波大红鹰学院
参考文献
[1]丁来军.误差补偿在提高数控机床机械加工精度中的应用[J].黑龙江科技信息,2016(10):23.
[2]龙鹏,李洪涛,李安国.基于数控机床空间误差提高其加工精度的补偿方法研究[J].机械工程师,2012(6):41-43.
[3]王倩,王贺.误差补偿在提高数控机床机械加工精度中的应用[J].科学与财富,2015(15):161.
[4]李绪平.数控机床的误差补偿技术研究[J].中国机械,2015(5):113-114.
关键词:机械加工;精度;几何形状;工艺系统;误差
一、机械加工精度
1、机械加工精度的含义及内容
加工精度是指零件经过加工后的尺寸、几何形状以及各表面相互位置等参数的实际值与理想值相符合的程度,而它们之间的偏离程度则称为加工误差。加工精度在数值上通过加工误差的大小来表示。零件的几何参数包括几何形状、尺寸和相互位置三个方面,故加工精度包括:(1)尺寸精度。尺寸精度用来限制加工表面与其基准间尺寸误差不超过一定的范围。(2)几何形状精度。几何形状精度用来限制加工表面宏观几何形状误差,如圆度、圆柱度、平面度、直线度等。(3)相互位置精度。相互位置精度用来限制加工表面与其基准间的相互位置误差,如平行度、垂直度、同轴度、位置度零件各差来表示的要求和允许用专门的符明。
在相同中的各种因对准确和完足产品的工加工方法,的生产条件下所加工出来的一批零件,由于加工素的影响,其尺寸、形状和表面相互位置不会绝全一致,总是存在一定的加工误差。同时,从满作要求的公差范围的前提下,要采取合理的经济以提高机械加工的生产率和经济性。
2、影响加工精度的原始误差
机械加工中,多方面的因素都对工艺系统产生影响,从而造成各种各样的原始误差。这些原始误差,一部分与工艺系统本身的结构状态有关,一部分与切削过程有关。按照这些误差的性质可归纳为以下四个方面:(1)工艺系统的几何误差。工艺系统的几何误差包括加工方法的原理误差,机床的几何误差、调整误差,刀具和夹具的制造误差,工件的装夹误差以及工艺系统磨损所引起的误差。(2)工艺系统受力变形所引起的误差。(3)工艺系统热变形所引起的误差。(4)工件的残余应力引起的误差。
3、机械加工误差的分类
(1)系统误差与随机误差。从误差是否被人们掌握来分,误差可分为系统误差和随机误差(又称偶然误差)。凡是误差的大小和方向均已被掌握的,则为系统误差。系统误差又分为常值系统误差和变值系统误差。常值系统误差的数值是不变的。如机床、夹具、刀具和量具的制造误差都是常值误差。变值系统误差是误差的大小和方向按一定规律变化,可按线性变化,也可按非线性变化。如刀具在正常磨损时,其磨损值与时间成线性正比关系,它是线性变值系统误差;而刀具受热伸长,其伸长量和时间就是非线性变值系统误差。凡是没有被掌握误差规律的,则为随机误差。
(2)静态误差、切削状态误差与动态误差。从误差是否与切削状态有关来分,可分为静态误差与切削状态误差。工艺系统在不切削状态下所出现的误差,通常称为静态误差,如机床的几何精度和传动精度等。工艺系统在切削状态下所出现的误差,通常称为切削状态误差,如机房;在切削时的受力变形和受热变形等。工艺系统在有振动的状态下所出现的误差,称为动态误差。
二、工艺系统的几何误差
1、加工原理误差
加工原理误差是由于采用了近似的成形运动或近似的刀刃轮廓进行加工所产生的误差。通常,为了获得规定的加工表面,刀具和工件之间必须实现准确的成形运动,机械加工中称为加工原理。理论上应采用理想的加工原理和完全准确的成形运动以获得精确的零件表面。但在实践中,完全精确的加工原理常常很难实现,有时加工效率很低;有时会使机床或刀具的结构极为复杂,制造困难;有时由于结构环节多,造成机床传动中的误差增加,或使机床刚度和制造精度很难保证。因此,采用近似的加工原理以获得较高的加工精度是保证加工质量和提高生产率以及经济性的有效工艺措施。
例如,齿轮滚齿加工用的滚刀有两种原理误差,一是近似造型原理误差,即由于制造上的困难,采用阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆;二是由于滚刀刀刃数有限,所切出的齿形实际上是一条折线而不是光滑的渐开线,但由此造成的齿形误差远比由滚刀制造和刃磨误差引起的齿形误差小得多,故忽略不计。又如模数铣刀成形铣削齿轮,模数相同而齿数不同的齿轮,齿形参数是不同的。理论上,同一模数,不同齿数的齿轮就要用相应的一把齿形刀具加工。实际上,为精简刀具数量,常用一把模数铣刀加工某一齿数范围的齿轮,也采用了近似刀刃轮廓。
2、机床的几何误差
(1)主轴回转运动误差的概念。机床主轴的回转精度,对工件的加工精度有直接影响。所谓主轴的回转精度是指主轴的实际回转轴线相对其平均回转轴线的漂移。
瞬时速度为零。实际上,由于主轴部件在加工、装配过程中的各种误差和回转时的受力、受热等因素,使主轴在每一瞬时回转轴心线的空间位置处于变动状态,造成轴线漂移,也就是存在着回转误差。超级秘书网
主轴的回转误差可分为三种基本情况:轴向窜动——瞬时回转轴线沿平均回转轴线方向的轴向运动,如图l(a)所示。径向跳动——瞬时回转轴线始终平行于平均回转轴线方向的径向运动,如图l(b)所示。角度摆动——瞬时回转轴线与平均回转轴线成一倾斜角度,交点位置固定不变的。
(a)轴向窜动;(b)径向跳动;(c)角度摆动动,如图1(c)所示。角度摆动主要影响工件的形状精度,车外圆时,会产生锥形;镗孔时,将使孔呈椭圆形。实际上,主轴工作时,其回转运动误差常常是以上三种基本形式的合成运动造成的。
(2)主轴回转运动误差的影响因素。影响主轴回转精度的主要因素是主轴轴颈的误差、轴承的误差、轴承的间隙、与轴承配合零件的误差及主轴系统的径向不等刚度和热变形等。主轴采用滑动轴承时,主轴轴颈和轴承孔的圆度误差和波度对主轴回转精度有直接影响,但对不同类型的机床其影响的因素也各不相同。
参考文献:
[1]郑渝.机械结构损伤检测方法研究[D];太原理工大学;2004年
为了提升零件的精密度,提高机械零件加工的效果和质量,人们将先进的生产设备和科学技术应用到机械设备中,从而保障机械设备的运行达到预期的使用效果。其中应用数控加工技术编程技术可以优化机械零部件的加工工艺,有利于研究分析与刀具设备相关的工艺信息,有利于人们用相关软件编程程序对复杂的机械零部件加工处理的时候对整个机械加工程序优化处理,保障其质量。
1.1刀具的选择
在进行零部件加工时,数控铣削加工工艺发挥着十分重要的作用,因为它会影响机械零部件的加工成本,影响整个机械加工的质量。作为数控铣削加工工艺的主要设备,刀具的选择就十分的重要。目前常用的刀具包括锥度铣刀、刀铣刀、以及圆角立铣等,不同的刀具在不同的应用过程中有着不同的使用效果,所以在选择刀具的时候,必须有一定的原则。首先,在选择刀具类型时应该考察其被加工型面形状。再次,选取刀具时应采用从小到大的原则并考虑型面曲率的大小。最后,尽可能选择圆角铣刀进行粗加工。
1.1.1考虑被加工型面形状
为了保障被加工面的加工质量,在加工机械零部件时,有时也会对凹形进行精细加工处理,一般情况下,处理工具是球头刀。然而,在加工凸形面时,人们一般都是用平端立铣刀作为加工工具。但是也有用圆角立铣刀工具进行加工的情况,就是如果人们明确要求凸形面的加工质量。
1.1.2考虑从小到大的原则
在进行机械零部件加工处理时,不能只使用一把刀具,因为机械型腔存在许多不同的曲面类型。为了顺利完成整个机械加工处理过程,就必须在处理时采用从小到大的原则。这样可以在对机械零件进行加工时有效避免明显的质量问题,还可以提升机械零件的加工效益。
1.1.3考虑型面曲率的大小
为了保障机械零件的加工的精度,在进行机械零件精加工时,就应该用半径较小的刀具进行处理,尤其在进行拐角加工时,施工人员选择刀具时是根据型面曲率大小进行选择,并且必须严格按照规范要求进行控制。
1.1.4考虑圆角铣刀进行粗加工
一方面,选用圆角铣刀进行粗加工,相比平端立铣刀留下较为均匀的精加工余量,而相比球头刀有更好的切削条件。另一方面,在切削过程中,圆角铣刀可以在工件与刀刃接触的90度以内的范围的切削变化比较连续。
1.2刀具的切入与切出
由于机械加工型腔十分复杂,所以在机械加工数控铣削中,为了完成机械零部件的加工,需要经常更换不同的刀具。在精加工过程中,加工表面质量的差异往往受到切出和切入时的切削方式的变化的影响。因此,应该加强对刀具切出切入方式的选择。在粗加工过程中,每次加工完成后留下的余量的几何形状不会相同,如果在下次尽进刀时选择不正确的切入方式,就非常容易造成裁刀事故。CAM软件提供的切入切出方式包括圆弧切入切出工件、刀具以斜线切入工件、刀具通过预加工工艺孔切入工件、以螺旋轨迹下降方式刀具切入工件以及刀具垂直切入切出工。切削方式最常用的,最简单的方式便是刀具垂直切入切出,可用于机械型腔侧壁的精加工以及从工件外部切入的凸模类工件的精加工和粗加工。凹模粗加工最常用的下刀方式是将预加工工艺孔切入工件;较软材料的粗加工常用刀具以螺旋线或斜线切入工件;由于可以消除接刀痕,所以圆弧的切入切出工件常用于曲面的精加工。在进行粗加工过程中,如果是单项走刀方式,一般将一个加工操作开始时的切入方式作为CAD/CAM系统提供的切入方式,但是并不是每一次加工时都采用这种方式。而这主要导致了工件和刀具的损坏,解决方式一是减少加工步距,二是采用双向走刀方式或走刀方式进行加工。
1.3切削方式和走刀方式的确定
加工时工件相对于刀具的运动方式就是切削方式,在加工工程中,刀具轨迹的分布形式即是走刀方式。机械零部件的加工效率与加工质量受到切削方式和走刀方式的影响。在保障加工精度的前提下,为了使刀具受力平稳,尽可能地缩短切削时间。在机械加工中,经常使用的走刀方式包括往复走刀、单向走刀和环切走刀三种形式。单项走刀方式切削效率较低,因为切削方式在加工中保持不变,这样可以使顺铣或逆铣一致,但加了空走刀和提刀。为了保证切削过程稳定和刀具均匀受力,在粗加工过程中,切削量较大,所以选用单项走刀方式。在加工过程中,进行逆铣和顺铣交替加工,质量较差,因为在加工过程中,进行不提刀地连续切削。一般情况下,选用往复走刀的情况是半精加工和表面质量要求不高的精加工,而在粗加工时,不宜采用,因为加工时的切削量太大。加工过程的平稳性、加工表面质量和刀具耐用度铣削方式受到铣削方式。在进行圆周铣削时,选用顺铣或逆铣,则是根据表面质量的要求和加工余量的大小。在实践时,一般为了减少机床的震动,进行粗加工时余量较大,选用逆铣加工方式较好。而在进行精加工时,选择顺铣加工方式,以达到表面粗糙和精度的要求。
2CAXA制造工程师方面的机械数控加工编程技术
曲面实体相结合的CAD/CAM一体化软件即是CAXA制造工程师。CAXA制造工程师功能强大,应用广泛,效率高,代码质量好,是国产AD/CAM数控加工编程软件。CAXA制造工程师支持批处理功能和轨迹参数化,可直接设定实体、曲面模型,支持高速切削,可以大幅度提高加工质量和加工效率。CAXA制造工程师在高效数控加工过程中,具有通用后置处理;多轴的数控加工功能;支持高速加工;支持多轴加工;典型的加工仿真与代码验证;参数化轨迹编辑处理;加工工艺控制等。具有灵活的特征实体造型、强大的曲面实体复合造型、完美的曲面实体组合功能、NURBS自由曲面造型等功能。CAXA制造工程师的数控加工具体步骤是:
1)根据工件图纸,造型工件;
2)数控加工方案设计;
3)根据被加工工件工艺要求、形状、精度要求选择加工参数和加工方法;
4)轨迹生成与仿真加工;
5)后置处理生成G代码。工程师可以利用CAXA制造师自动编程系统进行各种造型设计,选取合适的设定数控加工工艺参数和加工方法,进行仿真加工,生成刀具轨迹,生成加工代码,解决了复杂零件不能用手工编程、手工编程耗时的问题,大大提高编程加工和编程问题。
3宏编程技术方面的机械数控加工编程技术
宏编程是可以使用变量进行算术运算(+、-、*、/)、逻辑运算(AND、OR、NOT)和函数(SIN、COS等)混合运算与高级语言相像的程序编写形式。在宏程序形式中,用于编制许多复杂的零件加工的程序,一般提供判断、循环、子程序调用的分支和方法。在利用宏程序技术进行零部件加工不但可以加工复杂形状的机械零部件,而且还可以格式化普遍加工,大大缩短编程时间。比如本零件中的椭圆短半轴、长半轴值发生变化,只要更改A、B值就行。但是进行宏程序编写时难度很大,因为编程人员不仅需要知道关于基本机械工艺数控编程的知识,还需要知道深厚的计算机语言知识和数学建模知识。
4结束语