欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

建筑防雷论文范文

时间:2023-03-22 17:43:17

序论:在您撰写建筑防雷论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

建筑防雷论文

第1篇

关键词:建筑防雷防雷装置安全隔离距离等电位连接

前言

在人类生存的环境中有许多自然灾害,如地震、暴雨、冰雹、水灾、旱灾、火灾、雷击等等。对此,人们总是想方设法进行防御,或减轻它们所造成的损失。雷击就是严重的自然灾害之一。但就我国而言,过去防雷设计在整个建筑设计中所占的比重很小。电气设计人员不重视,其他专业的设计人员更不重视,但雷击所造成的损失却无法轻视。如1989年山东黄岛油库遭受雷击并引起大火,损失惨重。

就防雷历史而言,我国建国初期大多是按照日本的45°~60°保护角确定避雷针的保护范围,用三叉小针铜避雷针、铜引下线和1m×1m铜板作为接地装置。50年代初期,引进苏联技术,采用抛物线或折线计算法,用铁管或镀锌元钢做避雷针,用镀锌元钢做引下线,地下打入3~5m长的镀锌铁管或钢材作接地极,以致现在的避雷带和避雷网均采用镀锌钢筋或扁钢。

80年代以前,我国没有建筑物防雷规范,建筑电气设计人员只能凭自己的认识设计避雷针。自1957年北京市两大雷击事故发生以后,我国大量的古建筑物和群众集中的公共场所才开始安装避雷装置。1957年7月6日明十三陵长陵棱恩殿遭受雷击,劈掉西部吻兽,劈裂两根直径1.17m,高14.3m的大楠木柱子,死一人,伤三人;1957年7月8日中山公园内的一棵大树落雷,雷电流感应至附近的配电线路,然后传到中山公园音乐堂,烧毁了配电室、舞台和观众厅大顶棚。为此,北京市领导召开了紧急会议,决定对北京市重要古建筑物和人员众多的影剧院安装避雷针并指定由笔者负责设计。此后,从天安门开始,到劳动人民文化宫三大殿、景山万春亭、北海公园白塔,以至鼓楼、天坛祈年殿、颐和园排云殿、智慧海、十三陵长陵棱恩殿、明楼、戒台寺等30多处古建筑物和中山公园音乐堂等重要影剧院都相继安装了避雷装置。

1957年,笔者将过去积累的雷击事故调查和设计经验进行了总结,写出了“民用建筑物防雷保护”研究报告并且于1958年9月在建工部设计局于武汉召开的“全国电气设计人员交流大会”上,作了报告,发表了防雷观点和设计方法。报告中提出的雷击规律、防雷标准、保护方式、设计要点、屋顶板内钢筋作接闪装置的理论以及详细的设计实例和数十种做法大样得到了与会代表的一致赞同,以后被广泛采用。

1958年底,北京市建筑设计院研究室、中国科学院电工研究所和清华大学高压教研室共同成立了“北京建筑物防雷研究小组”。1962年5月出版的《民用建筑物防雷保护》和1980年9月出版的《建筑物防雷设计》就是在笔者1957年研究报告和小组研究成果的基础上写出来的。书中突出的观点是建筑物防雷设计的六项重要因素,即接闪功能、分流影响、屏蔽作用、均衡电位、接地效果和合理布线。现在看来,国内外的标准和规范都离不开这六要素,有的单位还把它们作为设计原则。笼式避雷网和等电位连接早在1958年就在人民大会堂的设计和工作实践中采用了,而国际上戈尔德(G.H.Golde)于1997年才在《雷电》一书(国际名著)中谈到等电位连接的做法,所以我国的防雷研究和实践并不落后。

笔者主审的我国第一部《建筑物防雷设计规范》(GBJ57-83)于1983年11月7日公布。第二部《建筑物防雷设计规范》(GB50057-94)(机械工业部设计研究院林维勇先生主笔)于1994年4月18日公布。该部规范吸收了许多国外先进的东西,将接闪器保护范围的计算方法改为滚球法并结合我国防雷设计的实际经验增加了许多新条款。这两部规范对指导我国建筑物防雷设计起了很大的作用。

70年代以前,人们听到的雷击事故多是击中建筑物或大树,严重的造成了建筑物烧毁或人员伤亡。那时被雷击的建筑物绝大多数是没有安装防雷装置(避雷针、避雷带或避雷网)。现在听到的雷击事故相对少了,其原因是,六层以上的多层建筑物和高层建筑物都安装了防雷装置。有时,接闪器接闪后,即使是微电子设备因雷电电磁脉冲感应受损,局外人也不知道,本单位做些局部修理也就完事了。其实,现在的雷击事故并不算少。雷击建筑物对某一栋楼而言可能是百年不遇的事,但防雷装置接闪则是较常见的,这也是正常的。

接闪装置接闪后,建筑物引下线附近的设备会受到雷电流的感应,这就是雷电电磁脉冲干扰。90年代以前,国际和国内的规范都没有关于雷电电磁脉冲的规定。1992年国际电工委员会建筑物防雷专委会(IEC-TC/81)才开始讨论这个问题。1995年2月,该机构了国际标准《雷电电磁脉冲的防护》(IEC1312-1.2.3)。目前我国尚没有类似的规定,这是近年来的问题。

随着电子技术的飞速发展,电子计算机早已步入社会的各行各业。建筑物内几乎无不设有复杂程度不同的微电子设备和计算机系统,民用建筑也不例外。雷电电磁脉冲干扰日益成为频发事故。面对这种挑战,设计人必须转变观念,把雷电电磁脉冲防护当作防雷设计的重点。这不只是电气一个专业的事,因为它涉及到电子设备的位置和管线的布置等问题。各个专业应充分协商,从整体上解决防雷设计上的问题。否则,建筑物设计得再好,也无法正常使用。

研究建筑物防雷应从雷击事故调查入手,找出雷击规律,然后,利用雷击模拟实验,对所总结的规律和所提出的解决方案予以验证。研究人员应根据科技的发展,不断吸收新东西对满足不断变化的社会需要,如计算机的发展导致的对雷电电磁脉冲防扩的需要。

下面将对防雷设计的基本原则、雷击规律、近年来国际上提出的新概念以及随着科技发展出现的新问题分别予以论述。

1.雷电电磁脉冲

雷电电磁脉冲(LightningElectromagneticPulse),简称LEMP,是天空打雷时产生的作为干扰源的强大闪电流及其电磁场。它的感应范围很大,对建筑物、人身和各种电气设备及管线都会有不同程度的危害。这种危害就是雷电电磁脉冲所产生的干扰。

建筑物内的雷电电磁脉冲干扰指以下三种情况:

(1)天空中雷电波的电磁辐射对建筑物内电力线路和电子设备的电磁干扰;

(2)建筑物的防雷装置接闪时,强大的瞬间雷电流对建筑物内电力线路和电子设备的干扰;

(3)由外部各种强、弱电架空线路或电缆线路传来的电磁波对建筑物内电子设备的干扰。

现代电子技术日益向高精度、高灵敏度、高频率和高可靠性方向发展。这些电子设备非常灵敏,但耐压很低,一般电子设备都承受不了正负5伏的电压波动。以各种微机为例,当雷电电磁脉冲的磁场强度超过0.07高斯时,就会引起微机的误动作,当磁场强度超过2.4高斯时,就会造成微机的永久性损坏。因此,我们必须对雷电电磁脉冲采取必要的防护措施,以便在先进的建筑物内实现良好的电磁兼容性(ElectromagneticCompatibility)。

防御雷电电磁脉冲干扰的理想防雷设计方案是笼式避雷网,它利用的是法拉第笼原理。建筑物的金属结构物遍及各处,不用很多钢材就可很容易连接起来形成法拉第笼,从而建筑物内的电子设备得到很好的屏蔽。屏蔽做得好,不仅能防御空间电磁波的辐射,而且还可使建筑物内部的分流和均压达到最佳效果。这里要说明,屏蔽的做法应根据建筑物内电子设备的要求决定。由于设备的性质不同,因此,有的要求仅对设备本身做屏蔽,有的要求在设备与设备之间做屏蔽,还有的要求在机房做屏蔽。正因为这个问题的重要,所以1995年国际电工委员会建筑物防雷分委会(IEC/TC-81)在《雷电电磁脉冲的防护》的标准中提出了防雷保护区(LPZ)的概念,国际上刚开始实行这种规定,而我们国家还没有提出。笔者认为,设计人员可以按照微电子设备的多少、繁简、重要程度、摆放位置及进出管线的具体情况自行划分防雷区以取得良好的屏蔽、等电位和接地效果。

因此,防御雷电电磁脉冲对室内布线的要求非常严格。由于用作引下线的钢筋混凝土柱内的钢筋和整个建筑物的屏蔽网都在外墙处,雷电流需经此处的钢筋分流到接地装置上,所以外墙处的电流密度大,电磁场强。因此,建筑物中的电源和通信等线路的主干线不应靠近外墙,最好设置在建筑物的中心部位,如电梯井在中心部位,可设置在电梯井的近旁。建筑物内的各种电气馈线都要穿金属管保护或采用双层屏蔽电缆(或同轴电缆)。在一些有特殊要求的线路电源侧,还应加装电涌保护器、隔离变压器、稳频、稳压以及滤波等装置。

防御雷电电磁脉冲对接地的要求也很严格。电子系统的低频信号工作接地应采用单点接地系统,在整个建筑物内应为树干式结线布置。各层或各段的低频信号工作接地均应直接接到单点接地板上,不得形成环路。单点接地系统不应与用作防雷引下线的柱子平行,以防强磁场干扰。由于是利用建筑物结构钢筋作屏蔽,因此必须采用综合共同接地方式,即将防雷接地、电源的工作接地、各种装置的外壳、铁管外皮和高频电子设备的信号接地都统一接到建筑物的基础上或室外接地装置上。为避免杂散电流,单点接地系统必须采用绝缘线,其主接地板必须置于建筑物的最底层且直接与基础或室外接地装置连接。各层单点接地系统的区域接地板或终端接地板如需要与综合共用接地系统的装置接地板连接,应在它们之间加装不大于直流300V的放电管或压敏电阻。综合共用接地的电阻一般应在1欧姆以下,对于特殊的电子设备,可在0.5欧姆以下。确定接地电阻时,应考虑各种设备对接地电阻值的要求,在所要求的各种阻值下,应取最低值。

在低压220/380V供电系统中,应采用三相五线(TN-S)系统,以便于装置接地(PE)线和中性(N)线分开,PE线应接到各层或各段装置接地的终端地板上。为了防御雷电电磁脉冲,建筑物的电源、电话、广播等线路最好采用埋地电缆引入,所用电缆应为铠装电缆或同轴电缆且外皮两端均要接地。

2外部防雷装置与内部防雷装置

国际电工委员会编制的标准(IEC1024-1)将建筑物的防雷装置分为两大部分:外部防雷装置和内部防雷装置。笔者认为,这样划分很有必要,建筑物的防雷设计必须将外部防雷装置和内部防雷装置作为整体统一考虑。

外部防雷装置(即传统的常规避雷装置)由接闪器、引下线和接地装置三部分组成。接闪器(也叫接闪装置)有三种形式:避雷针、避雷带和避雷网,它位于建筑物的顶部,其作用是引雷或叫截获闪电,即把雷电流引下。引下线,上与接闪器连接,下与接地装置连接,它的作用是把接闪器截获的雷电流引至接地装置。接地装置位于地下一定深度之处,它的作用是使雷电流顺利流散到大地中去。

内部防雷装置的作用是减少建筑物内的雷电流和所产生的电磁效应以及防止反击、接触电压、跨步电压等二次雷害。除外部防雷装置外,所有为达到此目的所采用的设施、手段和措施均为内部防雷装置,它包括等电位连接设施(物)、屏蔽设施、加装的避雷器以及合理布线和良好接地等措施。

随着电子设备的广泛使用,雷电电磁脉冲的危害也相对严重起来。1992年6月22日国家气象局中心大楼发生雷击事故,北京-东京的同步线路的调制解调器被击坏,致使线路中断46小时,另一主机的一块异步板被击坏,导致8条线路中断,影响了国际通讯。其他地点因雷电电磁脉冲干扰而导致电子设备损坏的例子还有不少。这类例子说明,只设计外部防雷装置而不配之内部防雷手段,接闪器再好,也无法获得好的防雷效果。

防雷工程是一种系统工程。笔者早在1960年作人民大会堂工程总结及写作《建筑物防雷设计》一书时就提出了建筑物防雷设计的六项重要因素,目的是提醒人们要整体地、全面地考虑建筑物防雷设计。这六项要素是:

(1)接闪功能:指实现接闪功能所应具备的条件,包括接闪器的形式(避雷针、避雷带和避雷网)、耐流耐压能力、连续接闪效果、造价以及接闪器与建筑物的美学统一性等。

(2)分流影响:指引下线对分流效果的影响。引下线的粗细和数量直接影响分流效果,引下线多,每根引下线通过的雷电流就小,其感应范围就小。引下线相互之间的距离不应小于规范中的规定。当建筑物很高,引下线很长时,应在建筑物的中间部位增加均压环,以减小引下线的电感电压降。这不仅可以分流,而且还可以降低反击电压。

(3)均衡电位:指使建筑物内的各个部位都形成一个相等的电位,即等电位。若建筑物内的结构钢筋与各种金属设置及金属管线都能连接成统一的导电体,建筑物内当然就不会产生不同的电位,这样就可保证建筑物内不会产生反击和危及人身安全的接触电压或跨步电压,对防止雷电电磁脉冲干扰微电子设备也有很大的好处。钢筋混凝土结构的建筑物最具备实现等电位的条件,因为其内部结构钢筋的大部分都是自然而然地焊接或绑扎在一起的。为满足防雷装置的要求,应有目的地把接闪装置与梁、板、柱和基础可靠地焊接、绑扎或搭接在一起,同时再把各种金属设备和金属管线与之焊接或卡接在一起,这就使整个建筑物成为良好的等电位体。

(4)屏蔽作用:屏蔽的主要目的是使建筑物内的通信设备、电子计算机、精密仪器以及自动控制系统免遭雷电电磁脉冲的危害。建筑物内的这些设施,不仅在防雷装置接闪时会受到电磁干扰,而且由于它们本身灵敏性高且耐压水平低,有时附近打雷或接闪时,也会受到雷电波的电磁辐射的影响,甚至在其他建筑物接闪时,还会受到从该处传来的电磁波的影响。因此,我们应尽量利用钢筋混凝土结构内的钢筋,即建筑物内地板、顶板、墙面、及梁、柱内的钢筋,使其构成一个六面体的网笼,即笼式避雷网,从而实现屏蔽。由于结构构造的不同,墙内和楼板内的钢筋有疏有密,钢筋密度不够时,设计人应按各种设备的不同需要增加网格的密度。良好的屏蔽不仅使等电位和分流这两个问题迎刃而解,而且对防御雷电电磁脉冲也是最有效的措施。此外,建筑物的整体屏蔽还能防球雷、侧击和绕击雷的袭击。

(5)接地效果:指接地效果的好坏。良好的接地效果也是防雷成功的重要保证之一。每个建筑物都要考虑哪种接地方式的效果最好和最经济。笔者认为,当钢筋混凝土结构的建筑物符合规范条件时,应利用基础内的钢筋作为接地装置。当达不到规范中规定的条件或基础包在防水卷材层内时,可做周圈式接地装置,但应将周圈式接地装置预先埋在基础槽的最外边(不必离开建筑物3m以外)。接地体靠近基础内的钢筋有利于均衡电位,同时还可节省为挖深沟所花费的人力和物力。在基础完工后再挖深沟则易影响基础的稳定性。

对木结构和砖混结构建筑物,必须做独立引下线并采用独立接地方式。当土壤电阻率大,使用接地极较多时,也可做周围式接地装置。因为周圈式接地装置的冲击阻抗小于独立接地装置的冲击阻抗,而且有利于改善建筑物内的地电位分布,减小跨步电压。采用独立式接地方式时,以钻孔深埋接地极(约4~12m)的效果为最好,深孔接地极容易达到地下水位,且能减少接地极的用钢量。

(6)合理布线:指如何布线才能获得最好的综合效果。现代化的建筑物都离不开照明、动力、电话、电视和计算机等设备的管线,在防雷设计中,必须考虑防雷系统与这些管线的关系。为了保证在防雷装置接闪时这些管线不受影响,首先,应该将这些电线穿于金属管内,以实现可靠的屏蔽;其次,应该把这些线路的主干线的垂直部分设置在高层建筑物的中心部位,且避免靠近用作引下线的柱筋,以尽量缩小被感应的范围。在管线较长或桥架等设施较长的路线上,还需要两端接地;第三,应该注意电源线、天线和屋顶高处的彩灯及航空障碍灯等线路的引入做法,防止雷电波侵入。除考虑布线的部位和屏蔽外,还应在需要的线路上加装避雷器、压敏电阻等浪涌保护器。因此,设计室内各种管线时,必须与防雷系统统一考虑。

3安全隔离距离与等电位连接

在建筑物内部,就总体来说,防雷措施可分为安全隔离距离和等电位连接两大类。安全隔离距离指在需要防雷的空间内,两导电物体之间不会发生危险的火花放电的最小距离,即不会发生反击的最小距离。等电位连接的目的是减小或消除内部防雷装置各个部位上所产生的电位差,包括靠近进户点的外来导体上的电位差。

笔者主张,若采用安全距离法就应严格按照《建筑物防雷设计规范》(GB50057-94)规定的各类防雷措施去计算;若采用等电位连接法,就应彻底实现等电位。木结构和砖混结构结构应采用安全距离措施,钢筋混凝土结构和钢结构应采用等电位连接措施。

1957年首次为天安门(木结构建筑物)补做防雷装置时,在其上部设置了明装避雷带和避雷网;在其内部采用了安全距离措施。由于是补装,难度相当大,对内部达不到安全距离的管线都做了改装或加强了绝缘并把进户处的各种架空电源线、电话线和广播线一律拆除,改为地下电缆。为确保木结构建筑物的安全,工程人员每年都在结构上稍有变形的部位加固,到1986年,在天安门大顶内加固总共用了60吨钢材。此时,再也不能给建筑物增加荷重了,因此中央决定将天安门城楼上的建筑物全部拆掉,彻底翻建。这给我们的防雷设计带来了有利条件。所以,1969年第二次设计天安门防雷装置时,就采用了等电位连接措施(外部防雷装置仍用原方案),在城台上的地面(包括屋内地面)下的“金砖”下面铺设了一层钢筋网(即等电位面)并将各种金属管线(包括屋顶彩灯管线)、斗拱上的防鸟铁丝网、检阅台前的铁栏杆和铁旗杆等物体统一连接到等电位面上,此外,又增加了引下线的根数,使之达到等电位的条件。

1958年,人民大会堂工程采用了彻底的等电位防雷设计,这是我国首次将等电位避雷网应用于工程。人民大会堂是钢筋混凝土框架结构和钢结构相结合的建筑物,又是现浇施工做法,对防雷装置的设计十分有利。其防雷方案是:在各建筑段的屋顶上分别采用明装避雷网、暗装避雷网和四周避雷带相结合的方式,接闪装置均与楼板内的钢筋连接成一体;柱子内的钢筋用作引下线;基础内的钢筋用作接地装置。从基础到梁、板、柱到屋顶的避雷带和避雷网的全部连接点(包括各种管线的连接点)都是焊接的,从而构成一个笼式避雷网,所以我们说它是最彻底的等电位连接工程。1963年,瑞士的波哥(K.Berger)提出,利用建筑物内的结构钢筋作防雷系统时,钢筋之间如有多点绑扎,则不必焊接就可以构成电气导通系统,他还做了试验。所以,我们以后就不全部焊接了,但作为引下线的柱内钢筋,仍必须焊接两根主筋。1974年审查《建筑物防雷设计规范》时,规定为:可以绑扎或焊接。人民大会堂工程是全国最重要的工程,当时是不敢不焊接的。

就防火而言,等电位连接和安全隔离距离至关重要。火灾多属不易预防的事故,对多数建筑物,能采取等电位连接措施的,应做彻底的等电位连接;不能采取等电位连接措施的,应尽量保证安全隔离距离,以防发生火灾。

4常规防雷装置与非常规防雷装置

常规防雷装置即传统上所使用的防雷装置,包括避雷针、避雷带、避雷线和避雷网。它是继1759富兰克林发明避雷针后各国防雷专家经200多年研究和实践的成果,有充分的理论根据、实验数据和长期的实际运行经验。

非常规防雷装置指某些厂商近年推出的所谓的新式防雷装置。本文所指的所谓新式防雷装置是半导体消雷器、导体消雷器、优化避雷针和流注提前发射接闪器等(本文这里不指激光引雷装置、火箭引雷装置和水柱引雷装置等)。各种消雷器的设计思想是企图中和雷云电荷,把雷电荷消灭掉或限制放电电流;各种提前发射接闪器的设计思想是企图把避雷针的接闪效果提高,即扩大保护范围。这几种防雷产品到目前为止都没有被国际防雷组织所承认。

其实,从1996年起到现在,北京的学术界和工程技术界围绕消雷器进行过多次讨论并发表了许多文章。许多专家都认为消雷器的“中和”理论和“限流”理论站不住脚。1997年9月18~23日中国电机工程学会高电压专委会过电压与绝缘配合分专委会在合肥举行了学术讨论会。论题之一就是半导体消雷器,与会者进行了热烈的讨论。特别值得一提的是一位高工为验证半导体消雷器的通流能力而做的一次实验。该实验充分表明,半导体消雷器的通流能力极低。会议《纪要》曰:“与会代表认为,迄今为止,理论和实践未能证明此类非常规防直击雷产品具有产品说明书所表述的性能,实践也未显示出此类产品具有比常规防防直击雷装置更优越的性能,还有许多问题尚待研究和解决,因此此类非常规防直击雷产品不再在工程中采用。还有少数代表对此尚有不同意见。”

实际上,消雷器厂商所卖的只不过是接闪器。其引下线、接地装置及内部防雷装置还得靠设计人按常规方法去设计,而这些都是建筑设计中的环节,卖接闪器的厂商也参与不了设计。另外,非常规防雷装置的价格极高,以半导体消雷器为例,其价格比常规避雷针高几十倍至几百倍(见表1)

由表1可以看出非常规防雷装置比常规防雷装置贵得多,而且非常规防雷装置还有很多问题有待解决。因此防雷设计人员和使用单位应认清这种情况,必须选择优质而经济的产品。

5球雷

在国际建筑物防雷标准(IEC/TC-81)和我国的《建筑物防雷设计规范》中,均没有对球雷的防护作出规定。在笔者的调查中,北京地区的球雷事故还是不少的,球状闪电约占闪电统计总数的13.7%。尽管国内外科技人员对球状闪电的形成机理尚无一致的观点,但对其性质、状态和危害还是比较清楚的。

球雷(即球状闪电)是一种橙色或红色的类似火焰的发光球体,偶尔也有黄色、蓝色或绿色的。大多数火球的直径在10~100cm左右。球雷多在强雷暴时空中普通闪电最频繁的时候出现。球雷通常沿水平方向以1~2m/s的速度上下滚动,有时距地面0.5~1m,有时升起2~3m。它在空中漂游的时间可由几秒到几分钟。球雷常由建筑物的孔洞、烟囱或开着的门窗进入室内,有时也通过不接地的门窗铁丝网进入室内。最常见的是沿大树滚下进入建筑物并伴有嘶嘶声。球雷有时自然爆炸,有时遇到金属管线而爆炸。球雷遇到易燃物质(如木材、纸张、衣物、被褥等)则造成燃烧,遇到可爆炸的气体或液体则造成更大的爆炸。有的球雷会不留痕迹地无声消失,但大多数均伴有爆炸声且响声震耳。爆炸后偶尔有硫磺、臭氧或二氧化碳气味。球雷火球可辐射出大量的热能,因此它的烧伤力比破坏力要大。

下面是一个典型的球雷实例:1982年8月16日,钓鱼台迎宾馆两处同时落球雷,均为沿大树滚下的球雷。一处在迎宾馆的东墙边,一名警卫战士当即被击倒,该战士站在2.5m高的警卫室前,距落雷的大树约3m,树高20多米。球雷落下的瞬间,他只感到一个火球距身体很近,随后眼前一黑就倒了。醒来后,除耳聋外并无其他损伤。但该警卫室的混凝土顶板外檐和砖墙墙面被击出几个小洞,室内电灯被打掉,电灯的拉线开关被打坏,电话线被打断,估计均为电磁感应的电动力所致。另一处在迎宾馆院内的东南区,距警卫室约100m,也是沿大树滚下。距树2m处有个木板房(仓库),该房在三棵14~16m高大槐树包围之中,球雷沿东侧的大树滚下后钻窗进屋,窗玻璃外有较密的铁丝网,但没有接地,铁丝网被击穿8个小洞,窗玻璃被击穿两个小洞。球雷烧焦了东侧木板墙和东南房角,烧毁了室内墙上挂的两条自行车内胎,烧坏了该室的胶盖闸,室内的电灯线也被烧断。落雷大树下放有十多盘钢筋、8辆铁推车和6个空汽油桶。这此金属物都是招引雷电的条件。

防护球雷并不困难,应该在规范或标准中规定相应的措施。就防护球雷措施而言,最好是笼式避雷网,如果达不到笼式避雷网条件,就在建筑物的门窗上安装金属纱网并接地;堵好建筑物墙面上不必要的孔洞;烟囱与出气管上口均要加装铁丝网并接地;储存或损伤易燃易爆物体的仓库和厂房的烟囱和放气管应加装阻火器并接地。对高大树木下的重要建筑物尤其要采取防护球雷的措施。

6雷击规律

认识雷击事故的规律非常重要,只有掌握了规律,防雷设计才能取得良好的效果。在雷雨天,天空的雷云与地面上的物体各带不同的电荷,当电荷积累到一定的程度,就会产生电场畸变而发生落地雷击。但如果地上某处没有足够强大的上行先导,则雷电是不会打到该处的。

北京紫禁城内的建筑物落较多,其原因在于:紫禁城周围是护城河,河内现在仍有水;通往护城河的古河道有4条:一条是玉河,它流入护城河的西北角;一条是潮白河的支流,它流入护河的东北角;一条是大通河,它流入护城河的正东部;另一条是潞河的支流,它流入护城河的东南角。故宫内各栋建筑物下的基础均潮湿,过去东南部的水位较高,地下不到2m就能见水,可见故宫院内地下的土壤电阻率相对较低;另外院内又有高大的古树。这些即为易发生雷击的内因,这些内因决定着该地区电场易产生电场畸变,瞬间发生的上行先导容易与雷云的下行阶段先导会合,从而形成落地雷。这就是紫禁城范围内的明显雷击规律。

笔者自1954年到1988年在北京地区调查过的建筑物雷击事故共有170多处,其中,因雷击引起火灾的占37.7%,导致人员死亡的占6.9%,致伤的占15.4%,球雷雷击事故占13.7%。现将分析总结得出的北京地区总的雷击规律归纳如下:

(1)河、湖、池、沼旁边的建筑物易受雷击。如1961年6月21日颐和园昆明湖东边的文昌阁被雷击掉西房角及坡顶瓦,内部电线被感应烧断;1988年8月6日通县永乐店草厂乡黄厂村北部湖力的茅草房落球雷,击死一人。

(2)古河道上的建筑物和河流桥上的构筑物易受雷击。如紫禁城内自1954年至1992年共落雷16次(据文献记载,明、清两代共发生过25次火灾,其中写明为雷击所致的5次,未说明原因的也可能是雷击所致);1988年8月30日卢沟桥中部北侧石狮子的头被击掉。

(3)在潮湿地区以及过去是苇塘或坑洼地带的区域上建造的建筑物易受雷击。如1957年7月31日陶然亭地区建工局一公司工棚(该处过去是苇塘)的收音机天线落雷,墙内铁丝被熔化;1965年7月22日北郊土冷库(即几十栋内装冰块以贮藏食物的平房)的老虎窗被雷电击中起火。

(4)在四周大片土壤电阻率高,中间局部土壤电阻率低的环境中或在高、低电阻率分界之处建造的建筑物易受雷击。如1981年8月2日八里庄善家坟公安局仓库西墙外大树落雷,雷电入室打碎5个电警棍盒,盒内33根电警棍被感应烧坏(该仓库的西南两面为稻田)。

(5)局部漏雨或局部房角新修缮且十分潮湿的建筑物易受雷击。如十三陵长陵棱恩殿落雷(当时该殿西部房角刚刚修缮且很潮湿)。

(6)突出高或孤立的建筑物易受雷击。如1957年7月29日原朝阳门北部的吻兽被雷击掉;据十三陵当地老农说,十三陵大多数的明楼或正殿均被雷击过(明楼和正殿都属高而孤立的建筑物)。

(7)曾经遭受过雷击的地区和建筑物容易再落雷。如1956年×月×日、1957年7月8日和1957年8月16日北京鼓楼东部吻兽曾三次被雷击。

(8)金属屋顶易受雷击。如1957年7月8日原民航局礼堂的铁皮屋顶被雷击裂3处,顶内明配线被感应烧成3段,1988年8月6日北京火车站东北角出租汽车站的铝合金房顶落雷。

(9)收音机天线、电视共用天线易受雷击。如1986年10月13日左家庄柳芳东里的居民楼电视共用天线遭受雷击,1992年8月3日和平里民旺胡同的居民楼电视共用天线也遭受雷击。

(10)地下管线多或管线交叉处易落雷。如1963年8月4日天安门广场大旗杆西侧(现人行过街地道的西南出口)一位卖冰棍的老太太被雷击倒(该处地下敷设的管线较多且是转角处)。

(11)铁路沿线和终端易受雷击。如1965年7月22日东郊百子湾棉花仓库室外堆场靠近铁道终端的一个棉花垛被雷击中燃烧;1984年8月6日东郊百子湾物资局储运公司水泥库铁路西侧站台上的水泥袋落雷,烧焦约20个水泥袋的纸边。

(12)山区泉眼、风口或地下有金属矿床的地方易受雷击。如1985年6月18日西山下马岭水电站室外变电构架进出线的主线落雷,烧焦母线2处,每处约长1~3m。

(13)高大的烟囱和工厂的排气管最易接闪。如1957年8月16日朝外门诊部的烟囱被雷击裂;1979年4月8日东郊宋家庄化工三厂南北两厂的室外化工设备构架上的两个排气管同时接闪并点燃。

(14)高大的树木和屋顶旗杆容易落雷。如1967年6月11日前门劝业场屋顶木旗杆被雷击坏;1993年8月19日日坛公园西北角一棵大树被雷劈掉树叉,树干也被劈裂。

北京地区总的落雷走向是:西山八里庄紫村城朝阳门宋家庄百子湾通县。这些地方多数是古河道或地下水线,其建筑物下的土壤电阻率小,潮湿或水位高。

笔者认为,以上这些雷击规律虽是北京地区的,但颇具普遍性,因而对防雷、防火很有价值(因篇幅有限,以上各种规律只各举2个例子)。

7.建筑物防雷设计的整体观念

所谓整体观念是指设计和安装防雷装置时,对建筑物的内外都要有整体观念。这里的建筑内外不单是指内部防雷装置和外部防雷装置。建筑物内的整体观念是指设计和安装时,要对内部防雷装置和外部防雷装置做整体的统一的考虑;建筑物外的整体观念是指对一个院落、一个小区以及附近的环境要做全面的防雷规划,同时还不能违反小区规划的要求例如:所安装的避雷针杆塔是否影响小区的美观,所用的避雷针、避雷带或避雷网是否与建筑物的立面相配以及低矮建筑物能否由高大建筑物或高大烟囱上的避雷装置所保护等等。对接地装置也要综合统一考虑,例如,相距较近的建筑物能否共用接地体,地下管网能否用接地体的一部分,以及能否在一个大院或小区内为将来综合共用接地创造等电位连接的条件等等。

值得指出,利用建筑物附近的大树作为避雷针杆塔是一个较好的做法。大树最易接闪且越长越高,有时比建筑物还高。因此,避雷针应安装在树顶,引下线应沿树干设置而且应与建筑物的防雷装置相结合。这样既节约又美观,同时还保护了名贵的树木。利用大树安装避雷针不仅能防直击雷,而且能防球雷、绕击雷和侧击雷。例如,北京北海公园团城内在大树上安装的避雷针已运行了20多年,效果很好,但必须采取保护树干生长的措施。

现在各个城市的绿化越搞越好,高大的树木也越来越多。有的建筑物虽然安装了避雷针,但大树距建筑物很近并且比建筑物还高,在这种情况下,建筑物上的避雷装置实际上等于虚设。因为大树接闪的机会多,易引来直击雷和球雷,对邻近的建筑物威胁更大。所以说建筑物的防雷设计和安装应将外部防雷装置、内部防雷装置、建筑物外的环境及至全小区的防雷装置进行整体统一的考虑。不仅电气专业的设计者要有整体观念,建筑专业的设计者对防雷也要有整体观念。这是现代防雷设计观念转变的重要问题之一。

参考文献

1.王时煦等.建筑物防雷设计.中国建筑工业出版社1980年9月第一版,1985年11月第二版

2.R.H.Golde.雷电.水利电力出版社,1983年12月

3.林维勇.介绍IEC/TC81澳大利亚霍巴特92年会议和防闪电电磁脉冲标准的编制.1993年机械部设计研究院印

4.金磊、王时煦等主编.最新现代建筑防雷与电气安全设计资料选集.电杂志社出版,1996年

第2篇

关键词:建筑物防雷保护

随着现代社会的发展,建筑物的规模不断扩大,其内各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。

直击雷和感应雷是雷电入侵建筑物内电气设备的两种形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于该区域的电子设备采用何种电涌保护器在何处以何种方式实现与共同接地体等电位联结。

建筑物直击雷的保护区域为LPZOA区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由遭受雷击电磁脉冲感应或静电感应而产生的,形成感应雷电压的机率很高,对建筑物内的电气设备,尤其低压电子设备威胁巨大,所以说对建筑物内部设备的防雷保护的重点是防止感应雷入侵。由感应雷产生的雷电过电压过电流主要有以下三个途径:(1)由供电电源线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或感应雷过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内计算机通信等信息线路入侵;可分为三种情况:①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的计算机防雷系统,层层防护,确保计算机特别是计算机网络系统的安全。

由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用

电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

1、国家标准建筑物防雷设计规范GB50057-94(2000年版)北京中国计划出版社2001

第3篇

建筑用电安全中,供配电系统线缆是影响用电安全与可靠性的重要因素。应当注意两个重点,一是高层建筑如果配备了备用发电机组,发电机组与市电之间应当建立备自投关系;二是消防负荷与非消防负荷,应当设置在不同的母线段以保证消防电源安全。尤其是消防与非消防负荷,在母线段上的接线必须彼此独立互不干扰,以保防消防系统在遇到安全事故时不会失电。在发生火灾时,消防控制室应当能切断非消防负荷电源,对火灾蔓延进行最大程度的限制,但安全照明、防恐慌照明、排水泵等非消防负荷电源不应切断。消防系统的备用照明应当采用氧化镁电缆,根据情况采用吊架安装或沿电缆架安装的方式,具备火灾时持续运行3h的能力。喷淋水泵应当在火灾时具备持续运行时间1h的能力,防排烟风机、加压风机、加压泵等应当具备火灾时1h持续运行能力,线缆可选择NH型耐火电缆或氧化镁电缆,用防火架敷设。非消防系统线路在火灾时将参与燃烧,因为普通聚氯乙烯绝缘电缆在燃烧时将产生滚滚浓烟和大量有毒气体,应采用元卤阻燃耐火材料电缆。

2构建用电安全防范系统

高层建筑应当设置用电安全防范系统,对建筑本体的用电安全进行监控,并防范安全事故的发生和扩大。目前通常采用构建电气火灾监控系统的方法,对配电线路剩余电流和电缆温升进行监控,从而迅速判断供配电系统是存在用电安全问题,是高层建筑防范用电安全事故的有效措施。监控系统的导线选择、线缆敷设、电源及接地等,都应与消防系统的配置要求相同。同时,还需要根据功能分区、风险系数来合理设置系统的监测点,并与火灾自动报警系统相协调,对建筑用电安全进行实时监控和防范。

3高层建筑防雷措施

3.1高层建筑的防雷接地策略

高层建筑的防雷系统包括内部防雷接地与外部防雷接地,外部防雷接地有接闪器、引下线、均压环、避雷带、接地网等,内部防雷接地有笼式避雷网、专用接地装置等。高层建筑的防雷接地网,是水平方向由钢筋绑扎或焊接形成的网格,如同一块独立的平板,在该平板上附加一定长度的竖向钢筋接地体用以改变接地网电容。接地网的埋设并不是越深越好,应当根据地质情况设计埋深。引下线起到将避雷带与自然接地体连接起来构成雷电流通路的作用,在高层建筑中通常利用柱或剪力强的主筋做为引下线,逐层串联至屋顶避雷线。避雷带由避雷线和支持卡子组成,设置于建筑物易受雷击的女儿墙等部位,起到引雷效应,通过引下线将雷电流引向接地网最终传输至大地,防止建筑体遭受雷击。除了外部防雷措施外,还需要构建内部防雷措施。

3.2侧击雷的防范措施和等电位联结

侧击雷危害主要来自于窗框架、栏杆、建筑表面装饰物等部位,侧击雷一般不需要专门设置接闪器来防范,可以将窗框架、栏杆、表面装饰物接到建筑钢构架或钢筋主体上接地,或利用均压环就近与防雷装置接地。由于高层建筑的施工往往电气预埋、门窗、幕墙等并非同一队伍施工,在交接和施工配合上需要注意,以免留下盲点,通常情况下是从圈梁主筋引出圆钢或扁钢,与接地端子搭焊连接。等电位连接,就是用连接导线或过电压保护器,将一定空间内的防雷装置、金属装置、导体物、电气电讯装置等连接起来,以使建筑物地面、墙板、金属管、线路等处于同一电位,避免在建筑物内部产生雷电反击及危险的接触电压。

3.3电子设备屏蔽措施

第4篇

由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用

电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

1、国家标准建筑物防雷设计规范GB50057-94(2000年版)北京中国计划出版社2001

第5篇

[关键词]建筑物防雷设施装置间距跨步电压埋地深度接地电阻

一、前言

在建筑物防雷设计中,设计人员对一、二级防雷建筑物的防雷设计比较重视,疏漏差错很少,但对大量的三级防雷建筑物的防雷设计却常有忽视。由于设计质量管理规定:对于一般工程的电气设计允许可以不要计算书,因此许多设计人员对三级防雷建筑物的防雷设计,不再进行设计计算,仅凭经验而设计。对于防雷设施的是否设置及防雷设施的各种安全间距未进行计算、验算,因此造成大量的三级防雷的建筑物的防雷设计、施工存在较大的的盲目性,使有些工程提高了防雷级别,增加了工程造价,而有些工程却未按规范设计、施工,造成漏错,带来很大隐患和不应有的损失。

二、建筑物防雷规范的概述及比较

现今建筑物防雷标准有1993年8月1日起实施的《民用建筑电气设计规范》?JGJ/T16-92?推荐性行业标准,1994年11月1日起实施的《建筑物防雷设计规范》?GB50057-94?强制性国家标准。GB50057-94使建筑物的防雷设计、施工逐步与国际电工委员会?IEC?防雷标准接轨,设计施工更加规范化、标准化。

GB50057-94将民用建筑分为两类,而JCJ/T16-92将民用建筑防雷设计分为三级,分得更加具体、细致、避免造成使某些民用建筑物失去应有的安全,而有些建筑物可能出现不必要的浪费。为更好的掌握IEC、GB50057-94、JCJ/T16-92三者的实质,特择其主要条款列于表1。且后面的分析、计算均引自JCJ/T16-92中的规定。

三、预计的年雷击次数确定设置防雷设施

除少量的一、二级防雷建筑物外,数量众多的还是三级防雷及等级以外的建筑物防雷,而对此类建筑物大多设计人员不计算年预计雷击次数N,使许多不需设计防雷的建筑物而设计了防雷措施,设计保守,浪费了人、材、物。现计算举例说明:

例1:在地势平坦的住宅小区内部设计一栋住宅楼:6层高?层数不含地下室,地下室高2.2m?,三个单元,其中:长L=60m,宽W=13m,高H=20m,当地年平均雷暴日Td=33.2d/a,由于住宅楼处在小区内部,则校正系数K=1。

据JCJ/T16-92中公式?D?2-1?、?D?2-2?、?D?2-3?、?D?2-4?得:与建筑物截收相同雷击次数的等效面积?km2?:Ae=?L?W+2?L+W?H?200-H?+πH?200-H??×10-6=?60×13+2(60+13)20(200-20)+3.14×20(200-20)?×10-6=0.02084?km2?

建筑物所处当地的雷击大地的年平均密度:

Ng=0.024Td1.3=0.024×33.21.3=2.28次/?km2?a?

建筑物年预计雷击次数:

N=KNgAe=1×2.28×0.02084=0.0475?次/a?

据JCJ/T16-92第12.3.1条,只有在N≥0.05?GB50057-94中:N≥0.06?才设置三级防雷,而本例中:N=0.0475<0.05,且该住宅楼在住宅楼群中不是最高的也不在楼群边缘,故该住宅楼不需做防雷设施。

根据以上计算步骤,现以L=60m,W=13m,分别以H=7m、10m、15m、20m四种不同的高度,K值分别取1,1.5,1.7,2,Ng=2.28?km2?a?进行计算N值,计算结果见表2。

从表2中的数据可知,在本区内:①当K=1时,举例中的建筑物均N<0.05,不需设置防雷设施。②当K=1.5时,即建筑物在河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的或特别潮湿的建筑物,在高度达15m或以上者,必须设置三级防雷措施。③当K=1.7时,即金属的砖木结构的建筑物,高度达7m及以上者,必须设置三级防雷措施。④当K=2时,即建筑物位于旷野孤立的位置,高度达7m?两层以上者,均设置三级防雷措施。

可见,有的建筑物在20m的高度,却不需设置防雷措施,而有的建筑物高度在7m,就必须设置三级防雷措施。关键因素在于建筑所处的地理位置、环境、土质和雷电活动情况所决定。

同时在峻工的工程中,我们也看到,例1中的民用建筑物,有许多类似的工程不该设置防雷却按三级防雷设计施工了,施工后的防雷接地装置如图1所示。

其中8组引下线均利用结构中的构造柱的4?12主筋,水平环路接地体埋深1m,距楼外墙1m。以上钢材均为镀锌件,则共需镀锌钢材0.192t,人工费2950元,定额预算工程直接费约0.75万元。类似这种三级防雷以外的住宅楼、办公楼及其他民用建筑,在我们地区1998年约竣工600~800栋,仅增设的防雷设施其工程直接费约为450~600万元。以此类推,在全省、全国因提高防雷等级而提高工程造价?浪费?的数字是巨大的。因此,设计人员对民用建筑物的防雷设计必须对建筑物年预计雷击次数进行计算,根据计算结果,结合具体条件,确定是否设置防雷设施。

四、防雷设施与人、金属管道等的安全距离

1.雷电流反击电压与引下线间距的关系

当建筑物遭受雷击时,雷击电流通过敷设在楼顶的避雷网,经接地引下线至接地装置流入地下,在接地装置上升高的电位等于电流与电阻的乘积,在接地引下线上某点?离地面的高度为h?的对地电位则为

Uo=UR+UL=IkRq+L?1?

式中Ik―雷电流幅值?kA?

Rq―防雷装置的接地电阻?Ω?

L―避雷引下线上某点?离地面的高度的为h?到接地装置的电感?μH?

雷电流的波头陡度?kA/μH?

?1?式中右边第一项?UR即IkRq?为电位的电阻分量,第二项?UL?即?为电位的电感分量,据GB50057-94有关规定,三类?级?防雷建筑物中,可取雷电流Ik=100kA,波头形状为斜角形,波头长度为10μs,则雷电流波头陡度==10kA/μs,取引下线单位长度电感Lo=1.4μH/m,则由?1?式可得出

Uo=100Rq+1.4×h×10=100Rq+14h?kV??2?

根据?2?式,在不同的接地电阻Rq及高度h时,可求出相应的Uo值,但引下线数量不同,则Uo的数值有较大差异。下面以例1中引下线分别为4、8根?假定每根引下线均流过相同幅度的雷击电流,且忽略雷电流在水平避雷上的电阻及电感压降?,计算出的UR/UL值列于表3。

由表3中可知,接地电阻?Rq?即使为零,在不同高度的接地引下线由于电感产生的电位?电感分量?也是相当高的,同样会产生反击闪络。

2.引下线与人体之间的安全间距

雷击电流流过引下线及接地体上产生的雷击电压,其电阻分量存在于雷电波的持续时间?数十μs?内,而电感分量只存在于波头时间5μs内,因此两者对空气绝缘作用有所不同,可取空气击穿强度:电感UL=700kV/m,电阻ER=500kV/m。混凝土墙的击穿强度等于空气击穿强度,砖墙的击穿强度为空气击穿强度的一半。

据表3计算的数据,下面计算引下线与人体之间的安全距离。因每组引下线利用构造柱中的4?12钢筋,可以认为引下线与人体、金属管道、金属物体之间为空气间隔,且认为引下线与空气之间间隔层为抹灰层,可忽略不计。

?1?当引下线为4组时,人站在一层,h1=3m,Rq=30Ω,则URI=750kV?UL1=10.5kV?人体与引下线之间安全距离L安全1>

?方可产生的反击。人站在5层,h2=15m,Rq=30Ω,则:UR2=750kV?U12=52.5kV?则安全距离L安全2>

1.575m<1.83m。在上述两个房间内,保持如此的距离是很难做到的,因此存在很危险的雷电压反击。

(2)当引下线为8组时,当站在一层房间内,h1=3m,Rq=30Ω,则UL1=5.25kV?UR1=3.75kV?则安全间距L安全1>

0.757m。人站在5层时,h2=15m?则UL2=26.25kV?UR2=375kV?则安全间距L安全2>

可见,引下线数量增加一倍,安全间距则减小一半。因此设置了防雷设施后,应严格按照规范设置引下线的数量及间距。同时建议可缩短规范内规定的引下线间距,多设一定数量的引下线,可减少雷电压反击现象。这样处理,对增加工程造价微乎其微。

3.引下线与室内金属管道、金属物体的距离

?1?当防雷接地装置未与金属管道的埋地部分连接时,按例一中数据:楼顶的引下线高度h=Lx=20m,Rq=30Ω时,据JCJ/T16-92第12.5.7条规定,Lx<5Rq=5×30=150m,则

Sal≥0.2Kc?Ri+0.1Lx?

式中Kc―分流系数,因多根引下线,取0.44

Ri―防雷接地装置的冲击电阻,因是环路接地体,Ri=Rq=30Ω

Sal―引下线与金属物体之间的安全距离/m

Sal≥0.2×0.44×?30+0.1×20?=2.816m。

?2?当防雷接地体与金属管道的埋地部分连接时,按式?12.3.6-3?,Sa2≥0.075KcLx=0.075×0.44×20=0.66

由以上计算的Sal≥2.816m,Sa2≥0.66m,在实际施工时,均很难保证以上距离,因为金属管道靠墙0.1m左右安装,又由于Sa2≤Sal,因此可将防雷接地装置与金属管道的埋地部分连接起来,同时,在楼层内应将引下线与金属管道?物体?连接起来,防止雷电反击。

4.引下线接地装置与地下多种金属管道及其它接地装置的距离Sed

据JCJ/T16-92第12.5.7条及公式?12.3.6-4?:Sed≥0.3KcRi=0.3×0.4×30=3.96m,而在实际施工中,地下水暖管道交错纵横,先于防雷及电气接地装置施工,等施工后者时,已经很难保证Sed≥3.96m了,也难于保证不应小于2m的规定,因此可将防雷接地装置与各种接地装置共用,即实行一栋建筑一个接地体。将接地装置与地下进出建筑物的各种金属管道连接起来,实行总等电位联结。

综上所述,在实行一栋建筑一个总带电位联结、一个共用接地体的措施后,在楼顶部应将避雷带?针?与伸出屋面的金属管道金属物体连接起来,在每层内的建筑物内应实行辅助等电位联结,即引下线在经过各个楼层时,将它与该楼层内的钢筋、金属构架全部联结起来,于是不论引下线的电位升到多高,同楼层建筑物内的所有金属物?包括地面内钢筋、金属管道、电气设备的安全接地?都同时升到相同电位,方可消除雷电压反击。

五、跨步电压与接地装置埋地深度

跨步电压是指人的两脚接触地面间两点的电位差,一般取人的跨距0.8m内的电位差。跨步电压的大小与接地体埋地深度、土壤电阻率、雷电位幅值等诸多因素。当接地体为水平接地带时,

?3?

式中ρ―土壤电阻率/?Ω.m?

L―水平接地体长度m

Ik―雷电流幅值kA

K―接地装置埋深关系系数,见表4

Ukmax―跨步电压最大值?kV?

按例一中的接地装置计算,接地体长度L=146m,取Ik=150k,土质为砂粘土,ρ=300Ω.m,则按埋深深度0.3m,0.5m,0.8m,1m时相应的K值取2.2,1.46,0.97.0.78。按?3?式计算:

其Ukmax值分别为107.97,71.66,47.61,38.28/kV。

世界各国根据发生的人身冲击触电事故分析,认为相当于雷电流持续时间内人体能承受的跨步电压为90~110kV。从计算结果可知,该工程的防雷接地体埋深0.8m时,跨步电压已在安全范围内。JCJ/T16-92第12.9.4规定接地体埋设深度不宜小于0.6m,第12.9.7条规定:防击雷的人工接接地体距建筑物入口处及人行道不应小于3m,当小于3m时,接地体局部埋深不应小于1m,或水平接地体局部包以绝缘物。包以绝缘物易增大其接地电阻,因此还是以埋深大于1m时为好。这样处理,只增加少量工程造价,却将接地装置处理得更加安全可靠,起到事半功倍的效果。

若采用基础和圈梁内钢筋作为环形接地体,但由于三级防雷的建筑物大多为毛石基础,毛石基础上的圈梁埋地一般为0.3m左右,较浅根本达不到防止危险的跨步电压需将接地装置埋深1m的要求,因此不宜采用圈梁做为环形接地体?指三级防雷建筑物?。

六、区别工频、冲击接地电阻

工频、冲击接地电阻两者的区别及关系,许多施工技术人员不能区别与明晰,使部分工程的防雷装置接地电阻已达到设计值,而仍然盲目采用降阻措施,增加了工程造价。

工频接地电阻是按通过接地体流入地中工频电流求得的电阻。可以认为是接地体20m以内土壤的流散电阻,距接地体20m以外的大地是电气上的零电位点。用接地电阻测量仪测量的电阻,即为工频接地电阻。

自表4中可知,当接地体为环绕建筑物的环路接地体与敷设于陶粘土、沼泽地、黑土、砂质粘土等电阻率ρ≤100Ω的土壤内的接地体,其工频接地电阻与冲击电阻相等。但当敷设于砂、砂砾、砾石、碎石、多岩山地的环境时,其工频接地电阻是冲击接地电阻的2~3倍。因此如在上所述地面内敷设接地体时,如用接地电阻仪测出的工频接地电阻,只要不超过设计要求的冲击接地电阻值的2~3倍,即可为符合设计要求,不需再采取降阻措施。如不分析接地装置敷设地点的土质、接地环境条件,发现接地电阻仪摇测值大于设计要求值,就盲目再增加人工接地体或采用降阻剂来追求达到设计值,必须造成人力、物力浪费,提高了工程造价,而这一现象却有普遍性。

第6篇

(1)古建筑为体现福祥,大多都会在建筑的大殿正脊中部埋设有金属宝盒。有些建筑的房顶内部还设有锡背,极大地增加遭受雷击的概率。另一方面来说,我国的古建筑风格本身就存在着雷击的危险,像是飞檐、翘角、梁柱、屋脊、吻兽、塔刹等构架都是突出建筑轮廓的,这就会造成安全隐患。

(2)古建筑分布在比较空旷的风景区、江河湖泊的附近等区域,极易遭受雷击。

(3)从古建筑选址的地理环境可知,其修建的场地一般地势都是比较高的,为了显示其高贵壮观,位置还比较突出,这都会加大遭受雷击的可能性。还有些古建筑比较讲究风水,其四周一般都会有高大的树木,而且都是成片的分布,这些高大的树木会增大遭受雷击的可能性。

(4)为了保护古建筑,国家也相继出台了一系列的规定,但毕竟是有限的,再加上古建筑本身的结构构架不能够被二次改造,所以有些建筑还是存在着很大的问题,其防雷设施的安装及使用均未达到应有的标准。

2关于古建筑防雷类别的分类与确定

我国建筑防雷标准是按照《建筑物防雷设计规范》(GB50057-1994(2000版))来作为建筑的建设与后期维修中的防止雷击标准来执行的。另外在GB50165-1992第3、4、5条做了以下大致的规范:对于不同的建筑的防雷要求不同,它是根据防雷的装置与构造的不同来变换的。对于国家一类的古建筑要进行专门的研究,分析并制定出有效的防雷保护措施;关于二类古建筑的保护,要求是按照一类民用建筑的标准来进行保护;对于三类的古建筑,要严格的执行第二类民用建筑物来考虑,尽量做到很好的保护古建筑与建筑内的文物。另外,我国的古建筑的防雷分类也是有特定的标准的,要求是必须要根据其重要性与使用性质来确定,并且规定国家级的文物保护单位的古建筑大小至少要分为二类以上的防雷建筑物,尽量避免稀有文物的损失与破坏。

3古建筑设计的防雷措施

在具体的古建筑物防雷设施中,要根据条件的不同来分别进行不同的防雷设施的安装。我们可以大体的将防雷措施分为内、外部防雷,就是可以按照建筑物对雷电的感应程度不同分为若干个不同的防雷区,这些防雷区有专门的功能要求,并做了不同的规定:直接接受雷击不采取任何的防护措施非保护区,没有任何的保护方法,这些区域会直接遭受雷击,天空中的雷电周围的电磁场没有任何的衰减;直接接受雷击但受保护的防护区,这个区域内的特点就是电磁场没有减弱,但是这个区域内的大部分物体都很少遭受雷击,并且所有的建筑物都是暴露在空旷的空间内。第一防雷击的保护区,这一保护区简称LPZ1,它的特点就是从空中流来的电磁场得到了一定的减弱,其结果与作用就是这个区域内的所有物体都能够有效的避免直接遭受雷击;第二防止雷击保护区,这一区域可以减少所导引的雷电流或电磁场而引起的后续防护区;防雷击后续防护区,这个防护区的具体要求就是进一步减少雷电电磁脉冲,以此来达到保护水平高的标准。

3.1直击雷的防护措施

我们大致的了解一下过去的外部防雷设施,从以前的防雷经验上总结来看,传统的避雷装置一般是由接闪器、引下线和接地装置来组成的。接闪器通常有避雷针、避雷带和避雷网这样的三种部件。接闪器都是安装在建筑物的顶部,其功能与作用就是要把高空中的雷电引下来。然后接闪器的下部会和引下线的上部紧密的相连,接闪器的下部件就会和接地的装置相连,它的作用类似有一条通路的导线,把接闪器引下来的雷电顺利的流到接地装置,这样接地装置会埋于地面很深的地方,就可以把大电流疏散到大地中去。另外除了以上的要求外还有一些特殊的要求:

(1)在避雷装置的安装时,要尽量采用长度比较短的避雷针。

古建筑的宝贵之处是由于其保存着其原始原貌,所以在安装避雷装置的时候,要在满足要求的前提下尽量保存其原始面貌,这样的话就能够尽最大可能的满足建筑物的旅游价值和观赏价值。另外我们要合理科学的铺设避雷设施,一般的情况下,我们会在建筑物屋面的正脊、斜脊等地方安装。同时要尽量避免直、锐角弯曲,采用圆弧状的弯曲,并且其引下线的弯曲弦长应该大于对应弧长的1/10。

(2)避雷装置中的引下线应该环绕古建筑的四周、墙面铺设,两条引下线的平均距离为18m。

为了保证古建筑正面的足够美观,原则上是不能铺设引下线的,但是为了安全,所以在铺设引下线的过程中,要尽量隐蔽铺设安装。另外,在一些面阔较大的钱物避雷带要尽量的选用直径较大的材料来进行铺设,在两端的引线也要加大材料的直径。同时要增加引线的数目,这样能够做到有效的分流。在铺设的时候要严格按照操作规范来进行。

(3)在古建筑的的不同地域要根据游客的分布和集中程度来采取不同的均压措施。

如:在宽度较为狭窄的古建筑周围可以采用水平圈式的接地装置,这样的话,要特别注意保持接地装置与地下管线的安全距离,避免引下来的雷电击穿地下管线。

3.2关于侧面雷击的应对措施

在古建筑的防雷措施方面,我们可以根据古建筑物的地理位置来确定防侧击雷的方法。如在山区地带亦或是在空旷的古建筑物周围,要确定需要进行防雷的均压带,并且使均压带和建筑物四周的金属物体进行接地。最基础的安全要求就是窗上的玻璃没有空洞,因为在山野地带雷电可能会以雷球的状态钻进室内。还要特别注意一下树木与建筑物的安全距离。

3.3做好建筑物内部的防雷措施

古建筑的内部防雷就是指的减少建筑物内的雷电流和所产生的电磁感应以及防止反击、接触电压、跨步电压等二次危害。在加强建筑物的外部防护措施的同时,也不能够放松对于内部防雷的建设安装,它大致可以分为地位连接、加装避雷器和合理布线等一系列措施。在我国重点保护文物的古建筑内,一般都设有消防、报警和监控设备等,然而这些弱电系统的雷电感应的危害很大,因此加强内部防雷显得尤为重要。

4在古建筑防雷工程中需要注意的问题

我们发现,很多古建筑的建筑地理位置都不是很好,大都处于高山、险峻的地带,这样地理不佳的问题就会在一定程度上增加防雷工程施工的难度。另外,考虑到为了使古建筑保持良好的艺术价值和观赏价值,防雷工程施工时就要小心,隐蔽。除此之外还有一些技术指标不能够达标:

(1)我国对于古代建筑的统一避雷施工标准,会使得文物保护人员难以保持一个合理的尺度,可能会存在着想要很好的保护古建筑,加大防雷措施,但会减弱古建筑的魅力。否则就会使得古建筑风韵犹存,但处于极易破坏的状态下。

(2)我国的古建筑大都是以木材为主,但是现代的避雷装置都是一些沉重的金属,这样就很容对古建筑造成伤害。

(3)在古建筑地面四周的引下线的间距很难达到技术规范的要求,加上古建筑的墙体形状不一,也极大地增加了施工的难度。

5结论

第7篇

1.1内部防雷系统内部防雷主要分为防雷电波侵入,防反击以及防雷电感应。优秀的内部防雷系统能更好的减少建筑物内部的雷电流和其产生的电磁效应所造成的危害,并且及时防止造成不必要的损失。内部防雷主要采取等电位连接、屏蔽等手段。在智能楼宇内也需要电磁兼容的措施,为了使智能楼宇内的设备不会出现功能障碍以及设备损坏的问题,应当建立构成布线系统来防止在设备内部自身传导干扰和外来干扰。其主要原因都是由于超高电压,大功率辐射电磁场,自然雷击放电。这些现象都将会影响测试结果严重可能会导致设备损坏。因此对智能楼宇建筑内部的设备的保护措施是我们需要注意的。

1.2外部防雷系统智能建筑的外部防雷主要是指防直击雷和防侧击雷,我们通过共用接地系统和泄流通路来保护建筑物自身不遭受雷击。①智能建筑需要建立综合的共用接地系统。因为在智能楼宇内存在着许多交流、直流设备,其中线路纵横交错,因此应该将智能楼宇建筑里的直流工作地、安全保护地、交流工作地与建筑施工过程中为防雷所用作的钢筋紧密连接,形成一个完整的共用接地体。这样就大大减少了在接地线之间存在着电位差的可能性,也消除了感应过电位的反击现象,从而保证了高科技设备的正常工作。②足够的泄流通路和均压措施通过在建筑物钢筋混凝土的钢筋来制作防雷引下线,并且从屋顶的部位就开始增多分路,用来分散各个导体上的雷电流的数量。而由于智能楼宇大多数为高层,还应该采取防侧击雷措施,在智能楼宇中间的部位将建筑的外圈梁钢筋焊接连通形成均压环,同时与防雷引下线相连。通过充分利用建筑物自身的柱钢筋、桩基钢筋、屋顶楼面钢筋、各圈梁钢筋等,将它们细致的焊接,形成良好的雷电流泄流通路以阻止侧击雷造成危害。

2.智能防雷新技术

一种新的技术的要求,必然催生出相应的处理技术,随着我国智能建筑物各项电气设备的日益复杂化,以及智能建筑物中电气设备的种类的繁杂化,大量的科研技术人员投入到了智能防雷技术的研发中去,目前已经研发出一种应用效果比较合理的新型防雷技术。该技术彻底克服了传统避雷技术中被动接闪、二次雷击效应严重的缺点,因此,受到广大建筑施工单位和群众的喜爱,发展前景非常好。它的基本原理是,发生闪电前的地面和云层之间有一个电势差可以作为避雷针的能源,在雷击即将发生的时候提前产生一个向上先导,形成一个雷电优先通路,克服了传统避雷针被动的迎接闪电的不足,从而大幅度的提高了防雷保护的范围。在智能建筑中的电子设备大部分采用了超大规模的集成电路,因此其本身很容易在高电压、高电流的情况下被烧毁。因此以前的避雷针防雷、电源防雷等方法已经不能适应当前社会建筑领域智能楼宇防雷的需求。当雷击发生的时候将会产生较大的电场,进而导致这个区域内的电位快速升高,大大高于其它区域,而作为电的良导体,很容易在电位不相等时对雷电产生影响形成感应,从而遭遇雷害。

3.结束语