欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

裂缝控制技术论文范文

时间:2023-03-22 17:42:47

序论:在您撰写裂缝控制技术论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

裂缝控制技术论文

第1篇

关键词:混凝土;裂缝;干缩;收缩;骨料;水灰比;硬化;添加剂

1.引言

大体积混凝土由于水泥凝结硬化过程中释放出大量的水化热,形成较大的内外温差,当温差较大超过25℃时,混凝土内部的温度应力有可能超过混凝土的极限抗拉强度从而产生温度裂缝,同时混凝土降温阶段如果降温过快,由于厚板收缩,又受到强大的摩阻力,可能导致收缩贯穿裂缝。此外,混凝土本身的收缩也可能造成裂缝的产生。因此大体积混凝土存在的主要问题是裂缝的控制。

2.大体积混凝土的概念

目前国内对于大体积混凝土尚无一个明确的定义。我国有的规范认为,当基础边长大于20m,厚度大于1m,体积大于400m3时称大体积混凝土;有的则认为混凝土结构物实体最小尺寸等于或大于1m,或预计会因水泥水化热引起混凝土内外温差过大,导致裂缝的混凝土为大体积混凝土。

3.大体积混凝土的主要类型

目前主要根据混凝土的种类和要求的性能进行分类。按照混凝土种类主要分为不含钢筋的素混凝土、含钢筋的钢筋混凝土或掺入钢纤维的钢纤维混凝土;按照要求的性能主要分为干硬性混凝土、低流态混凝土、高流态混凝土和常态混凝土等。

4.大体积混凝土的特点及施工技术要求

大体积混凝土结构厚、体形大、钢筋密、一次浇注量大、施工时间长、施工工艺要求高、受环境影响大,浇注完毕后,由于体积过大,造成混凝土水化热大,温度场梯度大,混凝土“内热外冷”极易产生裂缝。工程实践证明,大体积混凝土施工难度比较大,混凝土产生裂缝的机率较多。

5.大体积混凝土裂缝的主要类型

5.1干缩裂缝

混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。是混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。

5.2塑性收缩裂缝

塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细,且长短不一,互不连贯状态。常发生在混凝土板或比表面积较大的墙面上,较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm.从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度一般3~10cm,通常延伸不到混凝土板的边缘。

5.3沉陷裂缝

沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致混凝土出现沉陷裂缝。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。

5.4温度裂缝

温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇注后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升。而混凝土表面散热较快,这样就形成内外的较大温差。较大的温差造成混凝土内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。

6.大体积混凝土裂缝的材料控制技术

6.1水泥的合理选取

优先选用收缩小的或具有微膨胀性的水泥。因为这种水泥在水化膨胀期(1~5d)可产生一定的预压应力,而在水化后期预压应力部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。

6.2骨料的合理选取

选择线膨胀系数小、岩石弹性模量低、表面清洁无弱包裹层、级配良好的骨料,这样可以获得较小的空隙率及表面积,从而减少水泥的用量,降低水化热,减少干缩,减小了混凝土裂缝的开展。

6.3尽可能减少水的用量

水对混凝土具有双重作用,水化反应离不开水的存在,但多余水贮存于混凝土体内,不仅会对混凝土的凝胶体结构和骨料与凝胶体间的界面过度区相的结构发展带来影响,而且一旦这些水分损失后,凝胶体体积会收缩,如果收缩产生的内应力超过界面过度区相的抗力,就有可能在此界面区产生微裂缝,降低混凝土内部抵抗拉应力的能力。再者,大体积混凝土一般强度都不是很高。

7.混凝土凝结硬化过程的控制

宏观上,硬化混凝土在约束条件下,收缩变形会产生弹性拉应力,拉应力的近似值最初可假定为杨氏模量和变形的乘积,当诱导拉应力超过混凝土的抗拉强度时,混凝土材料就会开裂。但事实上,由于混凝土是一种兼具粘性和延展性(徐变)的复杂相组成的非均质材料,一些应力被徐变松弛所释放,混凝土是否产生裂缝是徐变应力松弛后的残余应力所决定。

8.外加剂与掺合材料的控制

8.1粉煤灰

混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱集料反应,减少新拌混凝土的泌水等。这些诸多好处均将有利于提高混凝土的抗裂性能。但是同时会显着降低混凝土的早期强度,对抗裂不利。试验表明,当粉煤灰取代率超过20%时,对混凝土早期强度影响较大,对于抗裂尤其不利。

8.2硅粉

(1)抗冻性:微硅粉在经过300~500次快速冻解循环,相对弹性模量隆低10~20%,而普通混凝土通过25~50次循环,相对弹性模量隆低为30~73%.(2)早强性:微硅粉混凝土使诱导期缩短,具有早强的特性。(3)抗冲磨、控空蚀性:微硅粉混凝土比普通混凝土抗冲磨能力提高0.5~2.5倍,抗空蚀能力提高3~16倍。

8.3减水剂

缓凝高效减水剂能够提高混凝土的抗拉强度,并对减少混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形等性能起着极为重要的作用。

8.4引气剂

引气剂除了能显着提高混凝土抗冻融循环和抗侵蚀环境的能力外,能显着降低新拌混凝土的泌水,提高混凝土的工作度,降低混凝土的弹性模量,优化混凝土体内微观结构,提高混凝土的抗冻性能。

9.结语

大体积混凝土结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素有几种:一是结构型裂缝,由外荷载引起的。二是材料型裂缝,主要由温度应力和混凝土的收缩引起的。目前控制和解决的重点是温度应力引起的混凝土裂缝。

参考文献:

第2篇

关键词:大体积砼承台裂缝控制温度应力施工技术措施

1引言

白果渡嘉陵江大桥是国道212线四川武胜至重庆合川高速公路横跨嘉陵江的一座特大桥,全桥长1433米,主桥为(130+230+130)m预应力砼连续刚构,单箱单室,下部结构为16根24米长Ф230cm的群桩基础,上接大体积分离式承台。单幅承台结构尺寸为18.7mx10.2mx5m,单幅承台砼方量为953.7m3,一次浇注完成。

2简述

2.1温度应力的主要成因:

2.1.1大体积砼在硬化期间,水泥水化后释放大量的热量,使砼中心区域温度升高,而砼表面和边界由于受气温影响温度较低,从而在断面上形成较大的温差,使砼的内部产生压应力,表面产生拉应力(称为内部约束应力)。

2.1.2当砼的水化热发展到3~7d达到温度最高点,由于散热逐渐产生降温产生收缩,且由于水分的散失,使收缩加剧,这种收缩在受到基岩等约束后产生拉应力(称为外部约束应力)。

2.2温度应力在承台砼内的分布如下图所示:

综上所述,在承台大体积砼施工前,必须进行砼的温度变化,应力变化的估算,以确定养护措施、分层厚度、浇筑温度等施工措施,并以此来指导施工。

3C30承台大体积砼砼裂缝控制的施工计算

3.1相关资料:

3.1.1配合比

水泥:粉煤灰:砂子:碎石:水:NNO-Ⅱ减水剂

369:50:677:1148:176:3.66

1:0.136:1.835:3.111:0.48:1%

3.1.2材料:

水泥:腾辉F.032.5级水泥

碎石:草街连续级配碎石(5~31.5mm)

混合中砂:机制砂40%,渠河细砂60%

粉煤灰:硌黄华能电厂Ⅱ级粉煤灰

外加剂:达华NNO-Ⅱ型缓凝减水剂

3.1.3气象资料

相对湿度80~82%;年平均气温17.5~17.6℃,最高气温40.5℃,夏热期(5~9月份)平均气温20℃。

3.1.4采用自动配料机送料,装载机加料,拌和站集中拌和,混凝土泵输送砼至模内。

3.2砼最高水化热温度及3d、7d的水化热绝热温度

C=369kg/m3;粉煤灰32.5水泥:水化热Q7d=257J/kg,Q28d=222J/kg(腾辉水泥厂提供的数据);c=0.96J/kg.k;ρ=2400kg/m3。

3.2.1砼最高水化热绝热温升

Tmax=CQ/cρ=(366*257)/(0.96*2400)=40.83℃

3.2.23d的绝热温升

T(3)=40.83*(1-e-0.3*3)=24.23℃

ΔT(3)=24.23-0=24.23℃

3.2.37d的绝热温升

T(7)=40.83*(1-e-0.3*7)=35.83℃

ΔT(7)=35.83-24.23=11.6℃

(4)15d的绝热温升

T(15)=40.83*(1-e-0.3*15)=40.38℃

T(15)=40.38-35.83=4.55℃

3.3砼各龄期收缩变形值计算

εy(t)=εy0(1-e-0.01t)*M1*M2*…*M10

查表得:M1=1.10,M2=1.0,M3=1.0,M4=1.21,M5=1.2,M6=1.11(1d)、1.09(3d)、1.0(7d)、0.93(15d),M7=0.7,M8=1.4,M9=1.0,M10=0.895

则有:M1M2M3M4M5M7M8M9M10

=1.10*1.0*1.0*1.21*1.2*0.7*1.4*1.0*0.895=1.401

3.3.13d收缩变形值

εy(3)=εy0*(1-e-0..03)*1.401*M6

=3.24*10-4*(1-e-0..03)*1.401*1.09=0.146*10-4

3.3.27d收缩变形值

εy(7)=εy0*(1-e-0..07)*1.401*M6

=3.24*10-4*(1-e-0..07)*1.401*1.0=0.307*10-4

3.3.315d收缩变形值

εy(15)=εy0*(1-e-0.15)*1.401*M6

=3.24*10-4*(1-e-0..15)*1.401*0.93=0.588*10-4

3.4砼收缩变形换算成当量温差

3.4.13d

T(y)(3)=-εy(3)/α=(-0.146*10-4)/(1.0*10-5)=-1.46℃

3.4.27d

T(y)(7)=-εy(7)/α=(-0.307*10-4)/(1.0*10-5)=-3.07℃

3.4.315d

T(y)(15)=-εy(15)/α=(-0.588*10-4)/(1.0*10-5)=-5.88℃

3.5各龄期砼模量计算E(t)=Ec*(1-e-0..09t)

3.5.13d龄期

E(3)=3.0*104*(1-e-0..09*3)

=7.1*103N/mm2

3.5.27d龄期

E(7)=3.0*104*(1-e-0..09*7)

=1.40*104N/mm2

3.5.315d龄期

E(15)=3.0*104*(1-e-0..09*15)

=2.22*104N/mm2

3.6砼的温度收缩应力计算

砼强度换算f(n)=f(28)*lgn/lg28,砼抗拉强度ft=0.23*f2/3cu对于C30砼f(28)=15N/mm2

3d龄期:f(3)=f(28)*lg3/lg28=15*lg3/lg28=8.76N/mm2

ft=0.23f2/3(3)=0.23*4.952/3=0.668N/mm2

7d龄期:f(7)=f(28)*lg7/lg28=15*lg7/lg28=8.76N/mm2

ft=0.23f2/3(7)=0.23*8.762/3=0.98N/mm2

由于在七月份浇注承台砼,气温较高,假设入模温度To=30℃,Th=25℃

3.6.13d龄期H(t)=0.57,R=0.35,V=0.15

ΔT=To+2/3T(t)+Ty(t)-Th=30+2/3*24.23+1.46-25=22.61℃

σ=-(7.1*103*10*10-6*22.61*0.57*0.35)/(1-0.15)

=0.377N/mm2<(0.668/1.15)=0.581N/mm2可

3.6.27d龄期H(t)=0.502,R=0.35,V=0.15

ΔT=30+2/3*35.83+3.07-25=31.96℃

σ=-(1.4*104*10*10-6*31.96*0.502*0.35)/(1-0.15)

=0.93N/mm2<0.98N/mm2

抗裂安全系数:K=0.98/0.93=1.05<1.15

4裂缝控制的施工技术措施

通过以上分析可知,承台基础在露天养护期间,7d龄期时,抗裂安全系数K值稍小于1.15,此时砼有可能出现裂缝,因此,在设计配合比、砼施工过程及养护期间应采取一定措施,以减小砼表面与内部温差值,使得砼表面与砼内部温差小于25℃,σ/(1.15)<ft,则可控制裂缝的不出现。采取如下措施:

4.1采用双掺技术,掺入粉煤灰和NNO-II型缓凝减水剂,粉煤灰掺入采用超量代换法,减水剂的缓凝时间15个小时(通过实验室测定结果表明),延缓砼的初凝时间,延缓砼水化热峰值的出现。

4.2通过技术性能比较,石灰岩碎石的线膨胀系数较小,弹模低,极限拉伸值大,据相关资料表明,在相同温差下,温度应力可减小50%,能提高砼的抗拉强度,因此,选用石灰岩碎石作为粗骨料;控制骨料(砂、石)的含泥量,以减小砼的收缩,提高极限拉伸。

4.3严格控制砼的入模温度在30℃左右。选择在傍晚开始浇注承台砼,对粗骨料进行喷水和护盖;施工现场设置遮阳设施,搭设彩条布棚,避免阳光直晒;在水箱中加入冰块,降低拌和水的温度;在基坑内设一大功率的鼓风机进行通风散热。

4.4埋设6层冷却管,每层冷却管配一潜水泵,在第一批开始砼初凝时由专人负责往冷却管内注入凉水降温,冷却水流速应大于15L/min,冷却水采用嘉陵江水,持续养生7天。通过冷却排水,带走砼体内的热量,许多工程实践表明,此方法可使大体积砼体内的温度降低3~4摄氏度。

4.5浇注砼时,采用薄层浇注,控制砼在浇注过程中均匀上升,避免砼拌和物堆积过大高差,砼的分层厚度控制在20~30cm。

4.6设10台插入式振捣器,加强振捣,以期获得密实的砼,提高密实度和抗拉强度,浇注后,及时排除表面积水,进行二次抹面,防止早期收缩裂缝的出现。

4.7砼浇注后,搭设遮阳布棚,避免阳光曝晒承台表面。

4.8砼浇注后,砼表面用土工布覆盖保温,并洒水养生,使砼缓慢降温、缓慢干燥,减少砼内外温差。

4.9砼浇筑后,每2小时量测冷却管出口的水温和砼表面温度,若温差大于20℃时,及时调整养护措施,如加快冷却水的流通速度等措施,以控制温差小于25℃。

5温度监测

承台砼入模温度为30℃~34℃,1.5d后中心温度最高达50℃,温升达20℃,3d后中心温度达57℃~60℃,温升27℃~30℃,经过10~12d降温阶段后,中心温度基本稳定。

承台中心与侧面中心温度的最大温差为10℃,与承台表面的最大温差为17℃左右,因此,在养护阶段必须做好承台表面的保温措施,延缓承台表面的降温速度,减小温差。

第3篇

广东奥林匹克体育场是九运会的主会场,设固定观众座位8万席,总建筑面积达14.56万m2,规模巨大,造型新颖,质量标准高,施工难度大,工期短,由广东建工集团总承包施工,本工程(包括场外环境及附属结构)高性能混凝土用量达13万m3。本工程面积巨大的环状结构看台楼层采用现浇混凝土结构,由于其特殊功能要求,花瓣形看台面积达4.25万m。,属超大面积钢筋混凝土结构。看台下各楼层面积分别为:首层3.79万m。,2层2.84万m2,3层1.52万m。,4层1.4万nfl。,5层1.24万m2。看台楼层沿径向设计有6道永久性伸缩缝,其间距超长,约为90m。地下室底板面积近2.5万m。,浇筑混凝土量达1.87万m3,虽然其厚度仅为600mm,但分布其中的众多大承台和底板合在一起浇筑施工,合并后的最大厚度达1.7m,亦属大体积混凝土施工。底板设计有7条后浇带,分为8大块,最大一块面积达4100m。,底板宽约36m,长约120m,底板后浇带间距超长。超长、超大面积及大体积混凝土是本工程结构的重要特色之一,其裂缝控制也就成为工程施工的重点与难点。

2采用高性能混凝土施工技术

本工程混凝土最大输送距离达300m,最大输送高度为60m,为满足泵送混凝土和体育场复杂特殊造型的施工要求,我们大量采用了高性能混凝土施工技术。在体育场北区配置了l台意大利进口的大型现代化搅拌站,产量为90m’/h;南区配置了自动上料和自动称量系统的混凝土搅拌站2座,产量为30~50m3/h。针对本工程的需要,配制高性能混凝土时为了优选原材料和配合比,我们应用“双掺”技术,除提高混凝土的可泵性外,还有意识地预先通过试验确定低收缩率的混凝土配合比,同时减少水泥用量,降低混凝土的水化热和改善其收缩性能。

2.1优选原材料

选用优质的原材料,如底板施工中采用连续级配骨料,增大混凝土的密实度。严格控制混凝土出机和人泵坍落度,随不同施工阶段的设计要求与天气变化情况跟踪调整配合比,详见表1。

2.2采用“双掺技术

在本工程施工中,地下室底板使用KFDN-SP8外加剂,看台楼层等混凝土结构根据具体情况,选用HPM一2高效缓凝减水剂、FE—C2外加剂等,这些高效外加剂具有高减水率和良好的保塑性能。掺外加剂混凝土与基准混凝土的减水效应比较如图1所示。

根据本工程的具体情况,我们分别选用黄埔电厂、广州发电厂等的I级或Ⅱ级粉煤灰,采用粉煤灰这种活性的水硬性材料代替部分水泥,补充泵送混凝土中的细骨料,提高混凝土的抗渗性、耐久性和流动性,并改善其可泵性和降低水化热,从而提高混凝土的后期强度。

2.3配合比选择

混凝土的配合比决定了混凝土的强度、抗渗性、和易性、坍落度、水泥用量、水化热大小、初凝和终凝时间以及混凝土收缩率等性能指标。根据结构的不同特点和设计要求、气候条件,掺人粉煤灰的影响以及施工现场的生产管理状况,采用不同技术指标,由实验室试配确定。

(1)地下室底板施工阶段根据现场条件,对底板混凝土提出以下指标:①坍落度12—14cm;②初凝时间6—8h;③掺加高效减水剂,超量掺加I级粉煤灰,减少水泥用量,降低水化热;④通过试验选定收缩率较小的配合比。为了确保混凝土具有高性能,我们提前对混凝土配合比进行了大量反复多次的试验,取得十几组试配数据,测试了不同配合比混凝土的收缩率及收缩与龄期的关系,并采用钢环试验方法测试混凝土的长期收缩情况。测定混凝土收缩率后,有意识地模拟浇筑一块混凝土试件进行试验,测试其温度变化和收缩率,确定了表2的配合比,其收缩率为0.12%0,且在14d后基本上不再收缩。实践证明,本配合比是成功的,用I级粉煤灰代替部分水泥,大大减少了水泥用量和降低了水化热,在确定了收缩率较小的配比后,据此收缩率确定底板分块的最大长度为45m,相邻块之间混凝土浇筑的时间间隔为14d。

(2)看台楼层选择不同的水泥和多种外加剂进行配合比试验研究,对外加剂的适应性进行对比试验,得出针对不同阶段和不同施工部位的优化配合比。北区采用深圳产FE—C2外加剂掺量为1.6%,黄埔电厂的Ⅱ级粉煤灰掺量为22%,既满足了混凝土的强度要求,又具有良好的可泵性和经济性。南区采用HPM一2高效缓凝减水剂和黄埔电厂的Ⅱ级粉煤灰得出的配合比,即:水泥:混合材:砂:石:水:外加剂=l:0.23:2.17:3.20:0.53:0.016,水泥、砂、石、水、粉煤灰、外加剂用量分别为332,722,1063,176,77,5.28~m3,水胶比0.44%,含砂率40.4%,坍落度145mm,质量密度2370kg//m3,初凝n,-Jl''''~q5—8h,终凝时间8—10h。

3合理增加施工缝数量以改善约束条件在超大面积现浇底板、看台和楼层中,通过合理增加施工缝数量,降低了约束应力,减少了混凝土收缩,取得良好的效果。

第4篇

关键词:水稳; 裂缝; 控制; 措施

中图分类号:TV698.2+31 文献标识码:A 文章编号:

引言

水泥稳定碎石基层是将一定级配的集料与水泥和水一起拌和后, 在最佳含水量状态下碾压成型,经过养生达到一定强度的路面基层结构,此基层是一种半刚性结构。水泥稳定基层容易产生裂缝是影响沥青混凝土面层破坏的关键因素。若不及时处理, 雨水从裂缝内向下渗透,沥青混凝土和基层裂缝缝隙处充满自由水,在车辆荷载反复冲击下,就会使沥青混凝土中粘附在碎石表面的沥青剥离, 基层的细集料形成泥浆被挤压出路面,沥青混凝土路面出现坑洞、碎裂、松散,造成沥青混凝土路面早期破损,影响其使用寿命。基层裂缝的危害较为常见,直接影响到了路面行车的速度和安全。

一、项目概述

某南方高速公路项目水稳基层板块在温度梯度应力和施工车荷的疲劳作用下使裂纹发展为裂缝,严重时加宽变长且相互连通,并由底、基层逐渐反射到沥青面层,造成路面破坏。据施工现场收集的数据统计,每段铺筑一定时期以后都发现不同程度的开裂现象。裂缝多分布于基层两侧各3~5m的范围内,主要为横向裂纹,其间距为40~50m左右,裂缝顶面宽,底面细小;施工碾压振动过强造成板块表面出现微裂纹的地段易出现裂缝;同时,施工时出现粗集料窝的部位易出现放射性裂缝;再经施工重车磨耗而出现车槽的地点也易出现开裂现象。

二、裂缝产生的原因分析

施工作业安排不连续,水稳基层铺筑后长期暴露于空气中,未进行沥青层施工。而南方项目,水稳基层施工基本在高温季节,据随机测定:日照强烈时,水稳表面最高温度为41℃,而室内温度30℃(板底温度与室内基本接近)。将板作为一单向板(长宽比大于1.5 )来研究,其在温度梯度应力的作用下将导致顶面承受弯拉应力;另一方面,板体顶面为自由面,而底面因受到下承层的摩阻作用,其线性变形受到约束,即高温时板顶受拉而板底受压。两者共同作用的结果为裂纹由上而下,裂纹渐小。

板体白天承受温度梯度应力,而晚上底、顶面温度接近,均为21℃,即板体在温度梯度应力的疲劳作用下产生疲劳破坏与每次发现裂纹都在施工以后一定时期相符。因此,施工后的水稳碎石经检验合格后应尽早洒布透层或施工封层。

从路线方向看,可将其视为单向板(长宽比大于1. 5) ,其热胀冷缩将造成水稳层横向开裂,裂纹将从路肩边缘最薄弱处展开。当应力释放后板块处于稳定状态,裂纹不再发展。

半刚性板块强度越高,表明其抗变形的能力越低,即板块抗弯拉应力的能力越小。施工时因表面含水量不够而采用洒水碾压提浆的方法虽能提高表面平整度,但同时也在板块表面形成了一薄层高标号砂浆硬壳,其在高温下失水过快易形成风干裂纹。同时在温度梯度应力的作用下,将更易出现拉应力裂纹。

粗级料窝存在的部位,因其粒料间无粘接力而无法整体受力,其所在板块在温度梯度应力的作用下,应力会集中在该薄弱处。同时因其相对于板块来看相似于一个点,其应力释放有向四周发散的趋势。另外,在养护时,因该位置具有透水性而易使养护用水进人板底土层中使其出现过湿土而使其承载能力降低。该板块在车荷的作用下会加剧先前出现的放射性裂纹,从而出现裂缝。

三、水泥稳定碎石基层收缩裂缝的控制

(1)严格控制路基施工质量。为避免荷载型结构性破坏裂缝,施工中要严格控制路基填筑时各层压实度和填筑速度, 特别是三背回填位置、路基加宽结合部位、填挖交界处、半挖半填处、软基地段、填高差异较大的断面等的压实及沉降,都应采取措施加以控制,避免路面完工后产生不均匀沉降而引起路面开裂。路基填筑完工后,应预留一段沉降期,以便路基处于稳定状态。

(2)碎石加工时在破碎机、出料位置加设吸尘器, 清除各级碎石中0.075mm以下石粉的含量,同时在冷拌机上增加电子磅以确保各料斗的出料流量精确,达到混合料的级配曲线接近中值的目的;并严格控制级配料中水泥的用量。

水泥稳定碎石在施工中对粒料的级配要求非常高,尤其0.5mm以下细土的含量。集料的合成级配中小于0.075mm的颗粒含量控制为0~5%。水泥稳定碎石有一共性,在其他条件相同的情况下,混合料中小于0.075mm的颗粒含量越多,水泥稳定碎石的整体收缩能力也越大。因此, 限制收缩的最首要的措施是除去集料中的粉尘含量。这样,本身可以减轻裂缝,同时又为其它减轻裂缝的措施创造了充分的条件。

在施工中通过增加分级料料斗及加设电子磅的方法将碎石的级配控制在规范规定范围的中值附近,可以提高稳定料碾压后的密实度,既增大了板块的整体强度,也可以减小结构层内自由水的存在空间及含量,减少了裂纹出现的概率。

水泥稳定碎石压实后, 其间水泥与水间的水化作用以及由此而形成水泥石的过程会释放出大量的热量,使水稳层快速失水,产生体积收缩。稳定碎石产生收缩的主要部分为水泥石的结硬收缩。过多的水泥用量,将急剧增大失水量及产生过多的水泥石,结硬出现的体积收缩也会大大增加。但水泥用量增加,也会增加板体的整体刚度,从而降低其抗弯拉应力。因此,严格控制混合料中水泥的用量可达到控制干缩应变的目的。

(3)选用适宜的施工工艺,减少或消除微裂纹的出现机率。首先,在摊铺时应选派有施工经验的路面工跟踪检查,发现粗级料窝及时换以级配合格的稳定料,使成型后的板块不出现薄弱部位,且达到封水的目的。其次,选用适宜的碾压机具,以利压实,达到不过振、收滚平顺、无裂痕的目的。据施工总结,发现如下配置为最佳组合:一台12T的双钢轮压路机完成初压及最后终压光面,YZ22t振动压路机完成强振碾压。由此达到控制路面发生的微裂纹的目的。完工后立即封闭交通,养生期内严禁一切车辆通行,养生结束后,及时进行沥青面层施工,同时控制施工车辆的行驶,避免因行车造成开裂。

(4)严格控制水泥稳定层施工碾压时的含水量。水泥与各种粒料和水经拌和、压实后, 水泥和混合料内部发生水化作用,混合料的含水量会不断减少,从而会引起水稳粒料产生体积收缩。水泥混合料的最低水灰比约为0.26~0.2 9。过小的用量不能保证水泥完全水化,其在养护水、雨水的作用下会继续水化,由此会破坏已硬化的混凝土使抗裂能力降低;过大的用水量会增大水泥水化初期骨粒料的水膜厚度,影响稳定料的强度。据统计,含水量增大l % (大于最佳含水量后) 对干缩应变增大裂纹比水泥增加1%的影响大2~3倍。因此,施工应严格控制碾压时的含水量接近最佳含水量,用于控制干缩应变的目的。

(5)水泥稳定层碾压完成后,并采用覆盖土工布洒水再加盖塑料薄膜的方式及时进行养生,保护混合料的含水量不受损失,更不能让其曝晒变干开裂。半刚性基层材料的缺点是抗变形能力低,在温度或湿度变化时易产生收缩开裂。它的收缩分为温缩与干缩两种:对于含土较多的材料以干缩为主,对于含集料较多的材料以温缩为主。干缩主要发生在完工后初期阶段。当基层上铺筑沥青面层以后,基层的含水量一般变化不大,此时收缩转化为以温缩为主:对应裂缝起始于表面,逐渐向下延伸; 反射裂缝起始于底面并逐渐向上穿透直到表面。这两种裂缝都是由温度引起的,行车荷载仅在裂缝形成的后期发挥促进作用。国内外不同地区的实践都已证明,水泥稳定层施工后,如不及时养生而让其曝晒,其或迟或早都会产生干缩裂缝。因此充分了解水泥稳定层的缩裂特性,在施工中保持适宜的温度和湿度对于减轻裂缝的产生还是至关重要的。建议采用复合养生膜覆盖后洒水保湿的方法养生。

(6)施工沥青面层前对水稳层裂缝进行仔细排查,对于横向长度大于5m,且间距小于10m 的干缩或温缩横向裂缝须返工处理,对于横向长度大于5m,且间距大于10m 的干缩或温缩横向裂缝使用玻纤隔栅或土工布处理。处理方法:首先对裂缝两侧各1m 范围进行清扫、吹尘和清洗,清扫后,凿开合适1cm 宽度和2cm 深度的沟缝,用森林灭火器吹除裂缝内灰尘,然后向裂缝内灌AH-70 热沥青,最后将土工布或玻纤隔栅平铺在裂缝二侧各1m 或0.75m 范围内,用铁钉等固定。对于土工布,应用小型压路机碾压。

(7)水泥稳定基层最迟在检验合格后,应立即施工封层或应力吸收层。为确保水稳基层的含水量不受损失以及板块不受温度梯度应力的疲劳作用,在保湿养生至检验合格后,应立即施工封层或应力吸收层, 既可对水稳层实施最终保护,又可保证上层沥青混合料与水稳基层间有良好的粘结。

四、结语

总之,采用水泥稳定碎石基层符合我国的半刚性路面“强基薄面”的结构特点,并且应用范围广泛。要彻底解决水泥稳定碎石基层裂缝可能相当困难,但用完善施工工艺和施工方法来提高施工质量和采用新材料、新工艺来减少裂缝的措施应该会相当有效,技术也更合理。

参考文献

第5篇

【关键字】建筑施工;钢筋混凝土;温控;裂缝控制;技术

中图分类号:TU37文献标识码:A 文章编号:

随着我国国民经济的发展,我国建筑业施工技术取得了巨大的进步,建筑规模不断的扩大,大型的现代化施工实施、大型建筑物,以及重载的大工程与日俱增,大体积混凝土结构因其本身的刚度大、承载性强、施工方便等特点成为了建筑公司的主要建筑材料,大体积混凝土是大型工程项目的主要设施和构筑物的主体,对于混凝土在浇筑的过程中,由于受热不均,水化热的现象等,造成混凝土的体积变形,出现裂缝,裂缝的出现对于建筑物的美观、耐久性和整体性以及结构的承载力等都有较大的影响,因此,在建筑施工中大体积混凝土的温控和裂缝的控制是人们倍加关注的问题。

一、 大体积混凝土的概述

1、 大体积混凝土的定义

到目前为止,建筑行业尚没有为大体积混凝土提出明确的定义,大体积混凝土顾名思义是尺寸较大的混凝土,美国的混凝土学会给大体积混凝土下了定义:任何现浇混凝土,其尺寸达到必须解决水化热及随之引起的体积变形问题,以最大限度的减少开裂硬性的。

2、 大体积混凝土的特点

大体积混凝土的特点是结构厚实,混凝土量大,工程的条件较为复杂,一般采用的是地下现浇钢筋混凝土结构,施工技术要求较高,水泥水化热释放比较集中,内部升温比较快,混凝土的温差较大时,使得混凝土产生温度裂缝,影响结构安全和正常使用。

大体积混凝土是融合了钢筋混凝土和预应力混凝土的优点,所以在我国大型的土建工程中大体积混凝土得到了普遍的使用,尽管其最大限度的减少了开裂现象,但是它的开裂问题依然存在,因此要对大体积混凝土采用有效的措施。

二、 大体积混凝土的裂缝的分类

大体积混凝土出现的裂缝的主要的原因就是温差引起的,裂缝按照深度的不同可以分为贯穿裂缝、深层裂缝和表面裂缝三种。其中贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝,它切断了结构的断面,对于机构的整体性和稳定性有一定的破坏作用,危害较为严重;而深层裂缝部分地切断了结构断面,也会产生一定的危害;表面裂缝一般的危害是比较小的。大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但受拉力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝

三、 大体积混凝土裂缝产生的最主要的原因

大体积混凝土的开裂主要是由于温差造成的。首先,在混凝土浇筑的初期,会产生大量的水化热现象,由于混凝土本身是热的不良导体,水化热现象的发生会聚集在混凝土的内部而不会轻易的散发出来,混凝土内部的温度会逐渐的升高,而在混凝土的外表的温度就是正常的大气温度,这样就形成了混凝土内外的温度差,而在混凝土凝结的初期抗压力比较弱,而温差在混凝土内部引起的拉应力较强,从而导致了大体积混凝土裂缝的出现;其次,在混凝土完全的凝结以后,要把外面固定混凝土的模具拆除,在拆模的前后表面的温度会出现骤降的情况,这样会出现温度差,造成混凝土的开裂;最后在混凝土内部温度达到最高时,由于外部还是标准的大气温度,因此温度会随着时间的推移而逐渐的散发而达到最低的温度,这样和以前的最高温度相比,在混凝土的内部就形成了一个温度差,造成混凝土出现裂缝。

四、 建筑施工中大体积混凝土的主要温控技术

1、 合理的控制水泥水化热温度

合理的控制水泥水化热的温度是对混凝土实施温控的一个重要技术,在水泥的选用上要尽量使用低热或是中热的水泥配制混凝土;在水泥中渗加粉煤灰等渗和料或是渗加减水剂等用来改善水泥的和易性、降低水泥的水灰比,从而控制水泥的塌落度,降低水化热的现象;此外,在水泥和混凝土配置的过程中,预埋一个冷却水管,通入循环冷却水,从而降低配置好的混凝土的水化热温度,而在一些厚大的混凝土中,要掺入百分二十以下的块石进行吸热,从而达到节省混凝土的目的。

2、降低混凝土浇筑入模的温度

对大体积混凝土进行浇注入模的过程中,要尽量的避开夏季等温度较高的天气,而是选择温度较低的季节里进行浇注混凝土,对于浇筑量不大的块体,最好安排在下午三点以后或是夜间进行;如果由于工期的限制混凝土的浇筑在夏季,要选用低温水或是使用冰水配制混凝土,对骨料通过喷冷水经行降温,在运输中要加盖遮阳,从而降低混凝土拌合物的温度。

五、 建筑施工中大体积混凝土的主要裂缝控制措施

1、 原材料选择的控制

在原材料的购置上采用由预制混凝土供应商为主,项目部为辅的控制方式;混凝土搅拌单位应该和项目部签订合同,严格的执行相关的规范,混凝土搅拌单位应该根据混凝土性能决定用于制造工程中混凝土的原材料,保证工程所用的一切材料、设备、设施和技术复核所规定的种类标准。

2、 加入适量的添加剂

在混凝土中加入外加剂能够减少其收缩开裂的次数,其中减水剂能够起到改善混凝土的和易性、降低水灰比、提高混凝土的强度等作用,在混凝土中加入减水剂能够有效的防止其开裂的机会;引气剂在混凝土中的主要作用是改善混凝土的和易性、可泵性,提高混凝土的耐久性,因此在混凝土中加入引气剂能够防止混凝土裂缝在较短时间内出现。

3、 混凝土的浇筑控制措施

对于建筑物底板的大体积混凝土采用的是斜面式分层浇筑,利用自然流淌形成的斜坡,由远到近,自上而下的逐层沿着混凝土的流淌方向进行连续的浇筑,并且采用减小浇筑层的厚度和采用合理的浇筑顺序,来加快混凝土在凝结初期的水泥水化热的散失,进而有效的降低混凝土中心温度。避免混凝土因为受热不均或是温度下降过快而出现裂缝。

六、 总结

在建筑施工中,大体积混凝土的使用尽管最大限度的降低了裂缝的出现,但是由于混凝土的本身的特性,裂缝的出现依旧是无法避免的,只有对大体积混凝土在原材料的配置,浇筑,搅拌的过程中进行合理的温度控制,才能做到有效的降低裂缝的出现,从而提高建筑结构的安全性,实现建筑物的使用功能。

参考文献:

[1]朱华云,王静洁.大体积混凝土温控防裂技术[J].电力学报,2000年

第6篇

【关键字】桥梁承台,大体积,混凝土,温度控制,技术

中图分类号:K928.78 文献标识码:A 文章编号:

一.前言

某大桥设计为(104+2×168+112) 连续刚构,1 号~3 号墩跨沙湾水道设计为(104+2×168+112)m 连续刚构。设计时速100km。其中1 号、2 号、3 号主墩基础均采用12 根直径为250cm 钻孔桩,承台设计为低桩承台,尺寸为23.5m×17m×5m,混凝土量为1997.5m3。主桥承台属大体积混凝土施工。

二.桥梁承台大体积混凝土温度施工控制技术

水泥水化热产生较大的温度变化及收缩作用,是导致大体积混凝土出现裂缝的主要原因,合理的控制温差变化是保证不产生裂缝的根本。一般规定将非均匀温差应控制在25°C 内。施工中主要从降低水泥水化热、降低混凝土入模温度、降低混凝土内部温度通水散热保持混凝土表面温度严格控制拆模时间等方面做好混凝土温度控制工作,尽量降低混凝土内部温度的升降速率,确保内外温差控制在25°C 以内。

1.采用降温管降低混凝土内部温度技术

(一)采用 50 镀锌管材,经过计算单根管水流流量按3m3/h 控制。混凝土内部温度和水温差控制求在20°C ~25°C 之间。按承台温度应力场特征,水平布置散热管,主墩承台各设4 层,每层设15 道测温管,上下层距底面和表面均为1.0m; 采用 25.4 的钢管,散热管进出水口均露出承台侧面20cm; 同一层散热管的进水口连接在一根总管上,各设阀门,用1 台25-120 型离心式水泵,单根管水流流量按3m3/h控制,出水口汇于同一水箱内; 为便于控制温度,分别设3 个6m33的水箱供水。

(二)在降热过程中,若通过测温管实测混凝土内部温度与测量进水口水温差别大于25°C 时,应调整水温,若水温比混凝土内部温度低的多,则加热进水散热管采用耐腐蚀的镀锌钢管,与钢筋一起绑扎。在使用前要求通水进行密闭性试验,防止管道在焊接接头位置处漏水或阻塞。通水散热后对散热管作压浆处理。

(三)为提供可靠的数据控制混凝土内外温差,考虑承台平面对称性,在承台平面1/4 位置及对角线上布置温度应变片,用温度显示仪采集数据,测点布置与编号如图1 所示。采集的数据主要包括不同施工时段的入模温度、每个温度应变片处混凝土不同龄期温度、草袋内温度、外界气温、散热管进出水温度。综合考虑混凝土的入模温度、混凝土水化热的发展变化规律、养护条件、通水散热等因素,确定混凝土的温控标准为: 混凝土的内表温差不超过25°C,拆模时内外温差小于25°C,最大降温速率要小于20°C/天。

图一主墩测点布置与编号图(单位:mm)

2.采用混凝土配合比设计降低水泥水化热技术

(一)水泥选用山东铝业公司P.O32.5R 低碱普硅水泥,水泥中严格控制铝酸三钙含量小于6%,碱含量小于0.6%。骨料选用连续级配石子,细骨料选用中砂,施工中严格控制粗细骨料的含泥量小于1.5%,以提高混凝土的均匀性,增加抗裂能力混凝土中掺入复合多功能超细粉(A 粉) ,以保证混凝土的自密实,且不产生泌水和离析。经过多次试配,混凝土采用配合比如表1 所示,性能要求如表2 所示。

(二)掺入了1.9%的NOF-2A 型高效缓凝减水剂,延长了混凝土缓凝时间,改善混凝土的和易性,同时减少了拌和用水量,降低了水灰比,降低了水化热,起到了明显降低水化热的作用,还推迟了浇筑最高温度峰值出现的时间。

表一C30 混凝土配合比表(每m3用量)

表二混凝土主要性能指标表

3.采用材料预降温技术

了解每天、周、旬的气象资料,将承台施工避开阴雨、大风等恶劣天气,选择一天气温度较低的时间开始施工,利用冰水混合物搅拌混凝土,降低混凝土的入模温度,在浇筑过程中,根据现场实际情况采取控制水温(加冰块、吹风散热等)、加快水循环、覆盖集料、模板防晒等措施进行混凝土温度控制。

4.混凝土施工技术

(一)为避免施工缝造成混凝土腐蚀介质的侵入和处理钢筋接头工程量,利于钢筋施工质量控制; 提高混凝土耐久性,提高因桩基约束对混凝土造成不利影响的抵抗力,降低因混凝土收缩徐变出现裂缝的几率,混凝土的浇筑采用泵送一次性浇筑施工。施工中采用2 台布料杆分2 个区进行,保证混凝土均匀入模到位。每区按一定的厚度、顺序和方向分层进行浇筑,每层的浇筑厚度不大于50cm,相邻两区的交界处注意振捣,防止出现漏振。

(二)混凝土的浇筑顺序为自墩身预留钢筋位置向外浇筑,浇筑时要防止承台边部浮浆太多,造成表面收缩裂缝; 不断调整水灰比,尽量使混凝土的坍落度均匀一致,保证其和易性;在模板的一侧设置了预留孔,随时将泌水及浮浆排出,提高混凝土的密实性; 采用不同长度直径为200mm 的钢管作为导管将混凝土送入模板内部,保证混凝土下落高度小于1.5m,不产生离析现象,避免钢筋的污染。

(三)因承台的面积较大,表面收光需要的时间较长,将混凝土的结束时间控制在下午16:00 以后,以免表面的的水分散发较快,产生收缩裂纹; 混凝土浇筑前用一层毛毡外加两层草袋将侧面模板覆盖,降低混凝土的内外温差,并在最后一层混凝土终凝前即用一层毛毡外加两层草袋覆盖,在草袋表面洒水保湿,使表面覆盖层始终处于湿润状态,但不使草袋处于饱水状态,以免失去保温作用。

(四)根据测量的混凝土内部温度与外界气温的差值来决定拆模时间,若两者温差大于25°C,则不能拆模,继续通水散热; 直至外界气温与混凝土内部温差小于25°C 时才可拆模。

5.优化技术措施

(一)优化混凝土配合比,采取“双掺”措施,即掺加粉煤灰、矿粉来改善混凝土的和易性,适当减少水泥用量,以降低混凝土硬化时的水化热。

(二)冷却管被混凝土埋没3个小时后即开始通水,冷却水使用干净的井水,冷却管通水后,冷却水就不再中断,直到混凝土处于连续降温阶段(降温速度不应超过0.5~1.0℃/h)。

(三)通冷却水时,进水口的水温与混凝土实体内部测量温度的温差应不大于20℃;当冷却水出水口与进水口温差不大于5℃时方可停止通冷却水。

(四)冬季施工时,混凝土浇筑后及时搭棚进行保温养护,在冷却管停止通水后及时将冷却管内的水排出,防止冷却管内的水结冰。

(五)冷却管通水结束后及时对冷却管灌浆封闭,管口处凿楔形口进行封闭。

三.桥梁承台大体积混凝土施工的温控效果

图3为一组实际施工测温的承台混凝土内部温度峰值。从图中可以看出,承台施工中芯部最大温度不超过47℃,图4为一组实际施工测温的承台芯部和外部温差。图4显示混凝土芯部和表面最大温差不超过20℃,最大温差为19.2℃,承台芯部最高温度出现在混凝土浇筑完毕后3—4 天。施工中混凝土芯部最高温度出现时间比理论时间提前大约l 天,现场施工情况与理论分析情况基本吻合。

图三承台混凝土内部温度峰值/℃

图四台芯部和外部温差/℃

四.结束语

桥梁承台大体积混凝土施工的温度控制技术对于桥梁的质量具有重要的作用,如何做好桥梁承台大体积混凝土施工的温度控制就变得尤为重要了。因此,在实际的工程施工中,就要不断的探索新的温度控制技术,保证桥梁的质量,这是具有十分重要意义的。

参考文献:

[1]马晓佳 李林挺 桥梁承台大体积混凝土施工温度控制技术 [期刊论文] 《建设机械技术与管理》 -2011年1期

[2]张鹏 王婵危 媛丞 郑州黄河公铁两用桥大体积承台混凝土施工温控技术 (被引用 1 次) [期刊论文] 《科学技术与工程》 ISTIC -2010年30期

[3]马晓佳 李林挺 桥梁承台大体积混凝土施工温度控制技术 [会议论文],2010 - 第七届鲁粤辽湘路桥施工设备技术论坛

[4]秦文强 杜玉波 张德伟 黄草乌江大桥承台大体积混凝土温度控制技术 (被引用 3 次) [期刊论文] 《四川建筑》 -2003年6期

[5]欧阳效勇 任回兴 武汉白沙洲大桥2号主墩承台大体积混凝土配合比设计及温控制技术 [会议论文],2000 - 中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会

第7篇

【关键词】混凝土;温度裂缝;施工技术

引言

随着经济技术的突飞猛进,施工工艺水平也迅速提高,人们对于基础设施的要求也越来越高,超大体积的混凝土由于其结构厚实、数量大的特征,越来越多的被应用在桥梁、大坝以及高层建筑里面[1]。但是大体积混凝土在进行工程施工的时候,由于内部的水化热需要释放的原因,导致内部温度和外部温度的差异很大,从而导致温度裂缝的产生,混凝土温度裂缝会导致它的使用寿命直线下降,严重影响了混凝土在工程的使用,所以我们需要采取一些手段来控制温度裂缝的产生。本论文在翻阅大量文献的基础上,主要考虑从施工方面研究大体积混凝土温度裂缝控制技术。

1、总体研究思路

一般的建筑工程在施工时要求的工作周期比较短,因此浇筑混凝土的速度通常很快,一般我们使用交替的连续上升的方式对混凝土进行浇筑[2]。有时下面的老混凝土正处在水化热温升期,而上面刚刚浇筑的新混凝土又将老混凝土覆盖,因此会导致每个层的混凝土膨胀变形、温度变化在时间上不同步、温度应力比较复杂,从而导致混凝土发生温度裂缝,本论文从以下三个阶段来考虑分析混凝土温度裂缝控制措施。

1.1 浇筑前的温度控制-混凝土初始温度阶段

混凝土初始温度阶段我们主要是从混凝土材料品种及配比和环境气候的温度这些因素来分析[3],为了减少这些因素对混凝土温度参数的影响,我们主要是通过采用综合措施,尽量降低混凝土浇筑的温度。首先对于混凝土原材料品种的配比设计中,我们应该降低水泥的含量,主要是利用混凝土后期的强度;其次我们需要选择合适比例的骨料级配来增加混凝土的和易性;最后掺加粉煤灰以及掺减水剂来降低水化热。

在混凝土入仓的环节,主要采用快速平仓以及快速运输等方法降低温度在运输过程中的回灌,并且在已入仓的混凝土立即覆盖彩条布和草垫进行保湿工作,等到建筑开工时再揭开覆盖物,使得能够保持混凝土表面的湿度[4]。在混凝土浇筑环节,可以使用喷雾剂进行低温水喷雾降温工作。而且我们需要安排合适的混凝土施工的时间,最好是在低温季节和气温比较低的时段再浇筑混凝土。

1.2浇筑后初期的温度控制-混凝土水化热温升阶段

由混凝土裂缝成缝的机理克制,混凝土水化热温升阶段会经常出现裂缝现象,因此这个阶段是混凝土温度裂缝控制的重要阶段;针对混凝土水化热温升相对比较慢,温度峰值来的相对来说比较晚等特点,我们能够采用以碾压混凝土浇筑后的初、中期温度控制,当然使用的措施主要是加强混凝土浇筑后的表面养护,对于那些过流面以及暴露面使用水帘形式进行长远的流水养护工作,而对于普通的混凝土收仓仓面可以利用人工洒水的方式[5]。

1.3 浇筑后后期的温度控制-混凝土温降阶段

对于工程混凝土基础应力过渡区和基础约束区,可以在混泥土表面外掺一些氧化物,利用氧化物的膨胀性使得能够补偿混凝土的收缩应力,能够合理的防止混凝土拉裂。

2、具体施工措施

2.1 混凝土浇筑顺序

在大体积混凝土施工中我们考虑使用分块浇筑方法中的分段分层法,分段分层浇筑可以让混凝土均匀散热,且不容易生成垂直裂缝和水平施工裂缝,而且可以满足混凝土在初凝前的连续浇筑,针对一些大体积的抗渗要求不高的建筑物来说很合适。

2.2浇筑温度以及出机温度控制

对于在炎热季节,我们需要尽量降低混凝土在入模时温度,考虑向拌和水中增加冰水,使得整体温度可以保持在10摄氏度上下。另外要重点注意水泥的温度,特别对于散装类型的水泥在应用前需要测量温度,如过温度超过55摄氏度需要经过水冷却或者风冷却的方法。

另外在运输混凝土的过程中需要最大限度的连续、缩短运输和停留时间,降低运输过程中混凝土的吸热量。对于工作时间来讲,夜间施工是最好的选择,如果是在冬天的时候施工,通常情况下入模、出机的温度控制起来相对简单,但是我们必须要注意做好保温措施,特别是混凝土表面的防冻措施要做好。

2.3浇筑完成后的保温保湿措施

我们需要制定浇筑完成后的保温保湿措施使得混凝土的内外温差及温度降低的速度满足指标的要求;我们可以根据温度应力加以控制保温养护的持续时间,一般是不少于15天,而且对于保温层的拆除通常分层的逐步的进行;为了保证水分不蒸发,我们可以在混凝土表面先覆盖一层薄膜,并在薄膜下面洒水来保持混凝土表面保持湿润。

2.4表面的泌水处理

通常情况下大体积的混凝土表面都会出现泌水现象,而泌水量的多少跟拌和的时间、水泥的成分以及混凝土的坍落度等因素相关。当出现表面泌水现象时,我们需要及时的处理来保证混凝土的质量。

2.5养护期间制定针对天气变化的方案

当大体积的混凝土建筑在施工时,需要跟当地的气象部门联系,针对一些明显的降温、雷阵雨或猛烈的天气变化要做好应对方案。比如增加覆盖物品,防风物资,以达到控制裂缝的目的。

2.6混凝土温度实测值分析

本论文结合具体的工程实践,将设计的控制施工技术应用于某一高层房屋建筑施工设施中,通过在楼层混凝土结构内部埋设测温点来进行测温,我们分别在混凝土中心位置和表面位置进行测温,中心位置的测温点在浇灌混泥土一半厚度处,每隔5h进行一次温度测量。中心和表面温度相差的最大值为24.6,出现在浇筑后第三个小时。实测中心最高温度为六十三度,出现在浇筑后60h。混凝土中心最高温度在持续11h后开始下降,进行养护后温度下降到三十六度,施工中没有混凝土温度裂缝出现。

3、结束语

由于采用了比较合理的施工技术,从工程设施进行到现在的情况来看,混凝土的表面并没有出现任何裂缝,从外观上看质量良好。从施工时间方面来说,本次施工技术应用算是比较成功,为以后的混凝土工程施工积累了经验。

参考文献:

[1]金伟良,张亮,鄢飞.函数型神经网络法在混凝土碳化分析中的应用[J]. 浙江大学学报:工学版,1998,32 (5):519-525.

[2]潘洪科.基于碳化作用的地下工程结构的耐久性与可靠度[D]. 同济大学,2005.

[3]陈海斌,牛荻涛,浦聿修.应用人工神经网络技术评估混凝土中的钢筋锈蚀量[J].工业建筑,1999,29 (2):51-55.