欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

高二数学论文范文

时间:2023-03-20 16:23:05

序论:在您撰写高二数学论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

高二数学论文

第1篇

一、封面

题目:小二号黑体加粗居中。

各项内容:四号宋体居中。

二、目录

目录:二号黑体加粗居中。

章节条目:五号宋体。

行距:单倍行距。

三、论文题目:小一号黑体加粗居中。

四、中文摘要

1、摘要:小二号黑体加粗居中。

2、摘要内容字体:小四号宋体。

3、字数:300字左右。

4、行距:20磅

5、关键词:四号宋体,加粗。词3-5个,每个词间空一格。

五、英文摘要

1、ABSTRACT:小二号TimesNewRoman.

2、内容字体:小四号TimesNewRoman.

3、单倍行距。

4、Keywords:四号加粗。词3-5个,小四号TimesNewRoman.词间空一格。

六、绪论小二号黑体加粗居中。内容500字左右,小四号宋体,行距:20磅

七、正文

(一)正文用小四号宋体

(二)安保、管理类毕业论文各章节按照一、二、三、四、五级标题序号字体格式

章:标题小二号黑体,加粗,居中。

节:标题小三号黑体,加粗,居中。

一级标题序号如:一、二、三、标题四号黑体,加粗,顶格。

二级标题序号如:(一)(二)(三)标题小四号宋体,不加粗,顶格。

三级标题序号如:1.2.3.标题小四号宋体,不加粗,缩进二个字。

四级标题序号如:(1)(2)(3)标题小四号宋体,不加粗,缩进二个字。

五级标题序号如:①②③标题小四号宋体,不加粗,缩进二个字。

医学、体育类毕业论文各章序号用阿拉伯数字编码,层次格式为:1××××(小2号黑体,居中)××××××××××××××(内容用4号宋体)。1.1××××(3号黑体,居左)×××××××××××××(内容用4号宋体)。1.1.1××××(小3号黑体,居左)××××××××××××××××××××(内容用4号宋体)。①××××(用与内容同样大小的宋体)a.××××(用与内容同样大小的宋体)

(三)表格

每个表格应有自己的表序和表题,表序和表题应写在表格上方正中。表序后空一格书写表题。表格允许下页接续写,表题可省略,表头应重复写,并在右上方写“续表××”。

(四)插图

每幅图应有图序和图题,图序和图题应放在图位下方居中处。图应在描图纸或在洁白纸上用墨线绘成,也可以用计算机绘图。

(五)论文中的图、表、公式、算式等,一律用阿拉伯数字分别依序连编编排序号。序号分章依序编码,其标注形式应便于互相区别,可分别为:图2.1、表3.2、公式(3.5)等。

文中的阿拉伯数字一律用半角标示。

八、结束语小二号黑体加粗居中。内容300字左右,小四号宋体,行距:20磅。

九、致谢小二号黑体加粗居中。内容小四号宋体,行距:20磅

十、参考文献

(一)小二号黑体加粗居中。内容8—10篇,五号宋体,行距:20磅。参考文献以文献在整个论文中出现的次序用[1]、[2]、[3]……形式统一排序、依次列出。

(二)参考文献的格式:

著作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.引用部分起止页

期刊:[序号]作者.译者.文章题目.期刊名.年份.卷号(期数).引用部分起止页

会议论文集:[序号]作者.译者.文章名.文集名.会址.开会年.出版地.出版者.出版时间.引用部分起止页

十一、附录(可略去)

小二号黑体加粗居中。英文内容小四号TimesNewRoman.单倍行距。翻译成中文字数不少于500字内容五号宋体,行距:20磅。

十二、提示

论文用A4纸纵向单面打印。页边距设置:上2.5cm,下2.5cm,左3.0cm,右2.0cm。

高二数学论文范例欣赏:

数学思想方法是数学知识的精髓,也是引导和促进学生将知识转化为能力的桥梁.作为数学最基本的思想方法之一,“数形结合”思想始终贯穿于中小学数学教学的始终.《高中数学新课程标准》指出:教学中教师“要注重数与形的联系,在学习数学和应用数学中不断体会数形结合的思想方法.”然而在数学教学实践中,教师对数形结合思想的重要性认识不足,或因受教材编写所限,在具体教学时对数形结合思想的贯彻和落实就带有一定的盲目性和随意性.因此在高中数学教学中,教师要根据高中数学知识的特点,注重数与形的联系,强化数形结合思想方法的渗透与训练,恰到好处地向学生充分展示知识的形成过程,使学生在学会和掌握重要数学知识的同时,不断地体会数形结合的思想方法,学会用数学思想指导知识应用,获得必要的数学应用技能,形成优良思维品质,发展数学能力.

现代数学视角下的数形结合思想方法的内涵意义

所谓“数形结合”,就是把数学中两个非常重要的元素——数量关系和空间形式紧密结合起来,使代数问题与图形问题在抽象思维和形象思维的相互作用中彼此转化,代数问题几何化,几何问题代数化.由此可见,“数形结合”不仅是一种数学思想,而且也是一种数学解题工具,一种解决问题的策略意识.可以说“数形结合”的思想方法无时无刻不活跃在学生的数学学习活动之中.在高中数学教学始终围绕“形”“数”两个角度来引导学生进行数学学习,有利于使数学中的复杂问题简单化,抽象问题具体化,有利于学生形成完整的数学概念和深层次的把握数学概念的本质,加深对数学知识的理解和记忆,构建和优化数学认知结构.同时能使学生在积极参与教学活动的过程中,不断积累数学活动经验,提高数学思维,从而获得终身受益的数学思想方法和解决问题能力.[本文转自:dylw.net]

高中数学教学中渗透数形结合思想方法的必要性

1.渗透数形结合思想方法是落实课标精神的需求

《普通高中数学课程标准》指出:基本数学思想是学生的数学学习目标之一,要求学生在掌握数学基础知识的同时要掌握基本的数学技能和基本的数学思想.因此在数学教学中应以数学知识为载体,注重数与形的联系,将数和形完美地统一起来,促进学生数形转化能力和创造性思维能力的培养.

2.渗透数形结合思想方法是发展学生思维的需求[本文转自:dylw.net]

在数学教学中有效渗透数形结合思想方法,通过或是化抽象为直观,或是化技巧为程序操作,不仅能使学生数学的思考具有条理性,能多层次和多角度地来思考问题,而且可以帮助学生树立良好的现代数学思维意识,拓展学生寻找解决问题的途径和发散解题思维,促进学生在将来的学习中能自觉进行数学的思考.

3.渗透数形结合思想方法是处理好教与学的需求

在数学教学实践中,不少教师对数形结合思想的重要性认识不足,对数形结合思想的贯彻和落实带有一定的盲目性和随意性,在数学知识的教学过程中不能合理布点、由浅入深,从数到形的转换过程过于简单,致使高中生对“数”和“形”的理解比较狭隘,运用数形结合法解题时出现构图不当、转换失真、数与形不等价、条件理解不深刻等问题,未能有效提高学生的解题能力.

基于以上三方面的分析,可以看出,渗透数形结合思想方法既是落实课标精神的要求,也是学生发展的要求,更是彻底改善目前高中数学教与学现状的需要.在高中数学教学中只有效渗透数形结合思想方法,才能让学生在主动参与的学习过程中不断体会数形结合的意义所在,获得终身受益的数学思想方法和解决问题的能力,促进学生数学的发展.

高中数学教学中渗透数形结合思想方法的策略

1.恰当运用多媒体技术手段动态展现数形结合思想方法

信息技术具有动态可视化的效果,因此教学中可以利用多媒体技术来展现数形结合方法,动态变化的演示过程不仅能将抽象的数学知识直观形象、变化有序地展示在学生面前,验证发现数学规律,培养学生的动态感,而且为学生进行建构性学习提供了有利的平台,使学生学会利用动态的眼光去看待问题.

高中解析几何不仅是数和形的紧密结合,具有利用方程的性质来研究相应的几何图形的特点,而且它是把曲线,也包括直线看作按一定的几何条件运动的集合.因此教学中用多媒体把“数”和“形”的潜在关系动态地显示出来,并有针对性地加以讲解或组织学生讨论.通过观察、验证、对比等一系列探究性活动寻找到一般规律和特殊属性,从而充分揭示教学内容中内在的辩证关系,加深学生对几何图形的感知和理解,从而培养学生用运动、变化的观点分析和解决问题的习惯,最终理解和掌握所学知识的实质.

2.在探寻知识意义的实践活动中渗透数形结合思想方法

数学学习的过程不只是数学知识的习得,而应是引导学生在“经历”“体验”知识的产生、发展和形成过程中发展能力.因此在高中数学教学中教师要创设开展数学活动的良好情境,给予学生充分的从事数学活动的时间和空间,在亲历中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,发展数学思维.

如,在教学“函数的单调性”时,笔者安排了三个层次的教学活动:(1)以实际生活中的气温变化表、股市走势等让学生利用已有的知识经验进行思考;(2)出示函数图象,引导学生将图象中上升或下降的趋势用自己的语言描述出来;(3)用几何画板动态演示,让学生观察随着x值的变化,函数值f(x)是如何变化的,然后再用数学语言对图形中的上升或下降趋势加以描述.将图象语言、符号语言、文字语言相结合,在探究、经历“函数单调性”的数学活动过程中使学生对“函数单调性”本质内涵进行理解,体验数形结合的数学思想方法.3.在解题过程中合理引导学生使用数形结合思想方法

数学学习的目的,不仅是引导学生学会和掌握数学知识,更重要的是学会用数学思想指导知识的应用.作为解决数学问题时“由数思形”或“由形思数”的一种数学思想,它可以有效地将数字和图形相互转化,利用形象解决抽象,实现化难为易的效果.因此教师在平时的教学中应有意识地引导学生把数形结合的思想运用于解答数学问题中去,提高学生的分析及解决问题的能力.

(1)由数思形,以形得数

如:已知f(x)=x2+4x+3,求f(x)在闭区间[-3,1]上的最大值、最小值.

分析:f(x)=x2+4x+3=(x+2)2-1图象的开口向上,对称轴x=-2,作此二次函数的大致草图(如图1),对称轴在区间内,并在区间中点的左侧,故f(x)max=f(1)=8,f(x)min=f(-2)=-(2)由形思数,以数论形

如:如图2,AB为半圆O的直径,且AB=2,P是延长线上一点,且OP=2,Q为半圆上任一点,以PQ为一边向OPQ的外部作等边三角形PQR,求四边形OPRQ的面积的最大值,并求当四边形OPRQ面积最大值时∠QOP的值.

分析:要确定四边形面积的最大值,必须由题目条件结合图形,把面积的表达式写出来.

设∠QOP=θ,则在OPQ中,由余弦定理可得PQ2=5-4cosθ,故.四边形OPRQ面积的最大值为,此时θ-=,所以θ=.

在引导学生对知识的反思的过程中提炼数形结合思想

第2篇

1.教育观念有待提高对幼儿美术教学的重视程度随着素质教育的提出和全面普及越来越大,公办、私立等幼儿美术班如雨后春笋般涌现。但是纵观幼儿美术班中的幼儿美术教学,不难发现大多数教师采用的仍然是传统的美术教学模式进行幼儿美术教学活动。这样的教育观念和教育模式很难适应社会日新月异的发展,因此,幼儿美术教学中教师的教育观念有待提高,与时俱进。

2.对幼儿情感的培养常常被忽视对幼儿进行美术方面的教学并不仅仅是教授画画的技能和审美的视角,新课程标准提出的三维教学目标中既包括知识技能的学习与掌握,也包含情感、态度、价值观的引导和培养。因此,在幼儿美术教学的过程中,结合幼儿阶段的年龄特点,在美术教学中适当对幼儿进行情感方面的引导和培养,能够使幼儿不仅掌握美术知识与技能,同时能够使幼儿全面发展,形成全面的人格等。

二、提高幼儿美术教学的策略与方法

在新课程标准的引领下,幼儿美术教学逐渐形成新观念、新意识,出现了多元化的教学目标和教学内容。与传统美术教学相比,幼儿美术教学目标逐渐由知识技能型向审美型、实用型目标转变;教学内容也逐步与实际生活相联系,培养幼儿形成美从实际中发现并作用于实际、美化实际的美术思维;教学活动多样化趋势明显。结合教学经验及相关理论知识为依据,现提出如下幼儿美术教学的策略与方法,以供幼儿美术教育同仁共同探讨研究。

1.拓宽幼儿视野,丰富美术教学内容教师应有意识地在平时日常生活中引导幼儿去积累素材、积累内容,学会擅于捕捉生活中一点一滴值得珍藏的闪光点,从而丰富在美术教学过程中的教学内容和教学素材,同时也能够使幼儿在潜移默化中享受生活之美的熏陶和美的体验。例如,教师可以引导幼儿多关注电视上播放的内容,并以留作业的形式实现亲子活动,展开讨论和资料收集,从而拓宽幼儿的视野,与社会相联系。这也是幼儿逐渐完成社会化的重要手段之一。将对幼儿的美术教学与生活实际相联系,不仅丰富了教学内容和教学素材,更能够将幼儿美术教学的矛头指向使幼儿得到全面发展的目标上,突破单一的以美术知识技能教授目的,从而真正培养幼儿学习美术的兴趣,为幼儿今后在美术领域能够更深地发展打下良好的基础。

2.尝试开放式教学的运用传统美术教学在教室中进行,离不开各种画笔和画板,这在一定程度上影响了幼儿天马行空的创造力,也阻碍了他们想象的空间。随着现代美术教育理念的逐渐深入,幼儿美术教学活动可以尝试走出课堂,在课堂以外的广阔空间带领幼儿尽情翱翔、随意驰骋。以蓝天白云为背景,让幼儿在美术的独特课堂中亲身去体验、发现生活中、大自然中的美好,对美术教学目标的实现更有促进作用。同时,并不是只有传统意义上的水彩笔、蜡笔、铅笔等才是幼儿创造美术作品时的画笔,现实生活中的树叶、棉签等都可以作为手中的画笔创造美好的作品。因此,教师应引导幼儿到生活中去主动发现工具,充分展开想象并打开思维的禁锢,真正体验艺术的魅力。

第3篇

行政秘书应该理清思路,充分认清自身工作职责,本着为教学科研工作服务,在岗位职责范围内尽最大努力为学院师生创造和谐的氛围、提供优质的服务,做到沟通内外、联系左右、协调四方,更要发挥参谋、助手的作用,做好二级学院办公室的工作。

一、行政秘书的工作特点

第一,繁杂性。行政秘书的工作涉及到二级学院的方方面面,有着事务繁杂,范围广大,头绪众多的特点。从会议的布置安排、文件的整理传阅、来电来访的接待到领导交待的各项工作;从与教学秘书、学生辅导员及实验人员的配合到与学院各行职能部门及其它二级学院之间的协调联络,通常是多件事情交错在一起做,这就要求行政秘书耐心细致的工作,不得有半点马虎。第二,协调性。行政秘书的工作涉及的范围广,对上有各职能部门和各级领导,对下有教师和学生,对内有各行政职能部门和各二级学院,对外有实习基地、合作企业等相关单位,行政关系呈现纵横交错的网状关系,行政工作要多个方面、多个部门相互配合协作才能完成,行政秘书处在各个部门、广大师生的信息交汇点,这就要求行政秘书必须具备较强的沟通协调能力,要真正做到相互沟通交流、相互理解、相互配合,及时传递相关信息,落实各项日常工作。第三,服务性。行政秘书要在思想上牢固地树立服务意识。首先要服务领导。当好领导的参谋助手,协助领导办理具体事务,认真及时完成领导布置的各项工作任务,要掌握和熟知领导的工作程序,准确及时的把握领导意图,做好后勤服务工作,使二级学院的各项工作能够有条不紊地开展;其次要服务师生。要先其所想,急其所急,切实为师生做好后勤保障工作,为教学活动的顺利开展做好准备工作;还要服务各级相关行政部门。

二、行政秘书应具备的素质

具备过硬的政治思想素质和良好的工作作风

第4篇

A第3组B第4组C第5组D第6组分值: 5分 查看题目解析 >44.已知函数的最小正周期为,则函数的图象()A可由函数的图象向左平移个单位而得B可由函数的图象向右平移个单位而得C可由函数的图象向左平移个单位而得D可由函数的图象向右平移个单位而得分值: 5分 查看题目解析 >55.已知数列满足:,且,则等于()AB23C12D11分值: 5分 查看题目解析 >66.已知角的终边过点,若,则实数a等于()ABCD分值: 5分 查看题目解析 >77.执行如图的程序框图,若输入k的值为3,则输出S的值为()

A10B15C18D21分值: 5分 查看题目解析 >88.已知抛物线的焦点为,点是抛物线上一点,圆与轴相切且与线段相交于点,若,则等于()A1B2CD4分值: 5分 查看题目解析 >99.已知非零向量、满足,且与的夹角的余弦值为,则等于()ABCD分值: 5分 查看题目解析 >1010.如图是某几何体的三视图,则该几何体的体积为()

A12B15C18D21分值: 5分 查看题目解析 >1111.已知双曲线的左焦点为,M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为,则双曲线C的离心率为()ABCD分值: 5分 查看题目解析 >1212.已知函数,设表示p,q二者中较大的一个.函数.若,且,,使得成立,则m的最小值为()A﹣5B﹣4CD﹣3分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313.如果实数x,y满足约束条件,则的值为.分值: 5分 查看题目解析 >1414.在区间上任取一个实数,则曲线在点处切线的倾斜角为钝角的概率为.分值: 5分 查看题目解析 >1515.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为,现将该金杖截成长度相等的10段,记第段的重量为,且,若,则=.分值: 5分 查看题目解析 >1616.在正方体中,,点在棱上,点在棱上,且平面平面,若,则三棱锥外接球的表面积为.分值: 5分 查看题目解析 >简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。17在中,角所对的边分别为,且.17.求的值;18.若角为锐角,,,求的面积.分值: 12分 查看题目解析 >18某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:

下面的临界值表供参考:

(参考公式:,其中)19.能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;20.从该班第一次月考的数学优良成绩中和第二次月考的数学非优良成绩中,按分层抽样随机抽取5个成绩,再从这5个成绩中随机抽取2个,求这2个成绩来自同一次月考的概率.分值: 12分 查看题目解析 >19如图,在四棱锥中,底面,,,.

21.若是的中点,求证:EF平面;22.是棱的两个三等分点,求证:平面.分值: 12分 查看题目解析 >20已知分别是椭圆的左、右焦点,点是椭圆上一点,且.23.求椭圆的方程;24.设直线与椭圆相交于两点,若,其中为坐标原点,判断到直线的距离是否为定值?若是,求出该定值,若不是,请说明理由.分值: 12分 查看题目解析 >21已知函数,且.25.讨论函数的单调性;26.若,求证:函数有且只有一个零点.分值: 12分 查看题目解析 >22请考生在第22、23题中任选一题作答,如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).27.求曲线的直角坐标方程与直线的普通方程;28.设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积.分值: 10分 查看题目解析 >23[选修4-5:不等式选讲]设实数满足.29.若,求的取值范围;30.若,求证:.23 第(1)小题正确答案及相关解析正确答案

解析

根据题意,若,则,即,则由,可得,即,解可得.考查方向

绝对值不等式的解法解题思路

根据题意,由,则,则,可得,解可得x的范围,即可得答案.易错点

根据绝对值不等式的解法去掉绝对值符号23 第(2)小题正确答案及相关解析正确答案

略解析

,,即,,又由,则,即.考查方向

不等式的证明解题思路

第5篇

A﹣10B6C14D18分值: 5分 查看题目解析 >55.抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为A5B4CD分值: 5分 查看题目解析 >66.若满足约束条件,则的最小值是ABCD分值: 5分 查看题目解析 >77.是公差不为0的等差数列,满足,则该数列的前10项和ABCD分值: 5分 查看题目解析 >88.双曲线的一条渐近线与圆相切,则此双曲线的离心率为A2BCD分值: 5分 查看题目解析 >99.若将函数的图象向右平移个单位,所得图象关于y轴对称,则的最小正值是ABCD分值: 5分 查看题目解析 >1010.某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为源:]

ABCD分值: 5分 查看题目解析 >1111.在等腰直角中,在边上且满足:,若,则的值为ABCD分值: 5分 查看题目解析 >1212.设函数是奇函数的导函数,,当时, ,则使得成立的的取值范围是ABCD分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313.设函数,则分值: 5分 查看题目解析 >1414.已知||=2,||=2,与的夹角为45°,且λ-与垂直,则实数λ=________.分值: 5分 查看题目解析 >1515.给出下列命题:① 若函数满足,则函数的图象关于直线对称;② 点关于直线的对称点为;③ 通过回归方程可以估计和观测变量的取值和变化趋势;④ 正弦函数是奇函数,是正弦函数,所以是奇函数,上述推理错误的原因是大前提不正确.其中真命题的序号是________.分值: 5分 查看题目解析 >1616.设为数列的前项和,若,则分值: 5分 查看题目解析 >简答题(综合题) 本大题共70分。简答应写出文字说明、证明过程或演算步骤。17已知函数的部分图象如图所示.

17.求函数的解析式;18.在中,角的对边分别是,若,求的取值范围。分值: 10分 查看题目解析 >18已知是公比不等于1的等比数列,为数列的前项和,且19.求数列的通项公式;20.设,若,求数列的前项和.分值: 12分 查看题目解析 >19某车间20名工人年龄数据如下表:

21.求这20名工人年龄的众数与平均数;22.以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;23.从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率。分值: 12分 查看题目解析 >20如图,在四棱锥中,底面是边长为的正方形,分别为的中点,平面底面,且.

24.求证:∥平面25.求三棱锥的体积分值: 12分 查看题目解析 >21已知椭圆离心率为,左、右焦点分别为, 左顶点为A,.26.求椭圆的方程;27.若直线经过与椭圆交于两点,求取值范围。分值: 12分 查看题目解析 >22设函数,已知曲线 在点处的切线与直线垂直.28. 求的值.29.若函数,且在区间上是单调函数,求实数的取值范围.22 第(1)小题正确答案及相关解析正确答案

b=1解析

(1)曲线y=f(x)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,又f′(x)=ln x++1,即ln 1+b+1=2,所以b=1.考查方向

本题考查导数知识的运用,考查直线的垂直,考查学生的计算能力,属于基础题.解题思路

求导函数,利用函数的图象在x=1处的切线与直线垂直,即可求b的值.易错点

注意区别“在某点处”和“过某点处”的切线方程的求法.22 第(2)小题正确答案及相关解析正确答案

(-∞,1]解析

由(1)知 g(x)= = exln x-aex所以 g′(x)=(-a+ln x)ex (x>0),若g(x)在(0,+∞)上为单调递减函数,则g′(x)≤0在(0,+∞)上恒成立,即-a+ln x≤0,所以a≥+ln x.令h(x)=+ln x(x>0), 则h′(x)=-+=由h′(x)>0,得x>1,h′(x)<0,得0<x<1,故函数h(x)在(0,1]上是减函数,在[1,+∞)上是增函数,则+ln x∞,h(x)无值, g′(x)≤0在(0,+∞)上不恒成立,故g(x)在(0,+∞)不可能是单调减函数.若g(x)在(0,+∞)上为单调递增函数,则g′(x)≥0在(0,+∞)上恒成立,即-a+ln x≥0,所以a≤+ln x,由前面推理知,h(x)=+ln x的最小值为1,a≤1,故a的取值范围是(-∞,1].考查方向

本题考查导数的运用:求切线的斜率和单调性的判断,主要考查导数的几何意义和函数的单调性的运用,构造函数和不等式恒成立思想是解题的关键.解题思路

第6篇

ABCD分值: 5分 查看题目解析 >88.某校高三(1)班32名学生参加跳远和掷实心球两项测试。跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是( )ABCD分值: 5分 查看题目解析 >填空题 本大题共6小题,每小题5分,共30分。把答案填写在题中横线上。99.已知等差数列前n项和为.若,,则=_______, .分值: 5分 查看题目解析 >1010.圆C:的圆心到直线的距离是 .分值: 5分 查看题目解析 >1111.执行如图所示的程序框图,则输出的结果为_______.

分值: 5分 查看题目解析 >1212.在中,已知,则 .分值: 5分 查看题目解析 >1313.设D为不等式组表示的平面区域,对于区域D内除原点外的任一点,则的值是_______,的取值范围是___.分值: 5分 查看题目解析 >1414. 甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖。有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说: “丁获奖”;丁说:“丙说的不对”。若四位歌手中只有一个人说的是真话,则获奖的歌手是 .分值: 5分 查看题目解析 >简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。15已知函数.15.求的最小正周期;16.求在区间上的值和最小值.分值: 13分 查看题目解析 >16已知等比数列的各项均为正数,且,.17.求数列的通项公式;18.若数列满足,,且是等差数列,求数列的前项和.分值: 13分 查看题目解析 >17甲、乙两位学生参加数学文化知识竞赛培训。在培训期间,他们参加的5次测试成绩记录如下:甲: 82 82 79 95 87乙: 95 75 80 90 8519.用茎叶图表示这两组数据;20.从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;21.现要从甲、乙两位同学中选派一人参加正式比赛,从统计学的角度考虑,你认为选派哪位同学参加合适?并说明理由.分值: 13分 查看题目解析 >18如图,四边形是边长为的正方形,平面平面,, .

22.求证:平面;23.求证:平面;24.求三棱锥的体积.分值: 14分 查看题目解析 >19在平面直角坐标系中,动点与两定点,连线的斜率乘积为,记点的轨迹为曲线.25.求曲线的方程;26.若曲线上的两点满足,,求证:的面积为定值.分值: 13分 查看题目解析 >20设函数.27.当时,求曲线在点处的切线方程;28.若函数有两个零点,试求的取值范围;29.设函数当时,证明.20 第(1)小题正确答案及相关解析正确答案

解析

解:当时,函数,因为,所以.又则所求的切线方程为.化简得:.考查方向

本题考查导数的计算,考查导数的几何意义,考查切线方程的求法,本题是一道简单题.解题思路

先对函数求导,然后求出且切线的斜率以及切点的坐标,再利用点斜式求出切线方程即可.易错点

本题易错在求导数时计算错误.20 第(2)小题正确答案及相关解析正确答案

解析

因为①当时,函数只有一个零点;②当,函数当时,;函数当时,.所以在上单调递减,在上单调递增.又,,因为,所以,所以,所以取,显然且所以,.由零点存在性定理及函数的单调性知,函数有两个零点.③当时,由,得,或.若,则.故当时,,所以函数在在单调递增,所以函数在至多有一个零点.又当时,,所以函数在上没有零点.所以函数不存在两个零点.若,则.当时,,所以函数在上单调递增,所以函数在至多有一个零点.当时,;当时,;所以函数在上单增,上单调递减,所以函数在上的值为,所以函数在上没有零点.所以不存在两个零点.综上,的取值范围是 ……………………………………………………9分考查方向

本题考查利用导数判断函数的单调性以及判断函数的零点的应用,考查函数与方程的应用,考查分类讨论的数学思想,本题是一道难题,是高考的热点.解题思路

先求出函数的导数,通过讨论的范围,判断函数的单调性结合函数的零点个数求出的范围即可易错点

本题易错在不能够准确对的取值进行分类讨论.20 第(3)小题正确答案及相关解析正确答案

证明略.解析

证明:当时,.设,其定义域为,则证明即可.因为,所以,.又因为,所以函数在上单调递增.所以有的实根,且.当时,;当时,.所以函数的最小值为.所以.所以. …………………………………………………………14分考查方向

本题考查构造法求函数的最值,考查利用导数的应用,本题是一道难题.解题思路

第7篇

ABCD分值: 5分 查看题目解析 >88.已知函数的图象在点处的切线与直线垂直,若数列的前项和为,则的值为( )ABCD分值: 5分 查看题目解析 >99. 函数在处取得最小值,则( )A是奇函数B是偶函数C是奇函数D是偶函数分值: 5分 查看题目解析 >1010. 在中,,,为斜边的中点,为斜边上一点,且,则的值为( )AB16C24D18分值: 5分 查看题目解析 >1111. 设是双曲线的左、右两个焦点,若双曲线右支上存在一点,使(为坐标原点)且,则的值为( )A2BC3D分值: 5分 查看题目解析 >1212.对于实数定义运算“”: ,设,且关于的方程恰有三个互不相等的实数根,则的取值范围是( )ABCD分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313. 设函数,若,则实数的取值范围是 .分值: 5分 查看题目解析 >1414.若抛物线的焦点的坐标为,则实数的值为 .分值: 5分 查看题目解析 >1515.已知向量满足,,与的夹角为,则与的夹角为 .分值: 5分 查看题目解析 >1616.已知函数时,则下列所有正确命题的序号是 .①,等式恒成立;②,使得方程有两个不等实数根;③,若,则一定有;④,使得函数在上有三个零点.分值: 5分 查看题目解析 >简答题(综合题) 本大题共70分。简答应写出文字说明、证明过程或演算步骤。17已知数列的前项和为,且.17.证明:数列为等比数列;18.求.分值: 10分 查看题目解析 >18中,角所对的边分别为,且.19.求的值;20.若,求面积的值.分值: 12分 查看题目解析 >19命题实数满足(其中),命题实数满足.21.若,且为真,求实数的取值范围;22.若是的充分不必要条件,求实数的取值范围.分值: 12分 查看题目解析 >20在直角坐标系中,已知点,点在第二象限,且是以为直角的等腰直角三角形,点在三边围成的区域内(含边界).23.若,求;24.设,求的值.分值: 12分 查看题目解析 >21已知函数的一个零点为-2,当时值为0.25.求的值;26.若对,不等式恒成立,求实数的取值范围.分值: 12分 查看题目解析 >22已知函数的最小值为0,其中,设.27.求的值;28.对任意,恒成立,求实数的取值范围;29.讨论方程在上根的个数.22 第(1)小题正确答案及相关解析正确答案

解析

的定义域为.由,解得x=1-a>-a.当x变化时,,的变化情况如下表:

因此,在处取得最小值,故由题意,所以.考查方向

本题主要考查导数在研究函数最值中的应用.解题思路

首先求出函数的定义域,并求出其导函数,然后令,并判断导函数的符号进而得出函数取得极值,即最小值.易错点

无22 第(2)小题正确答案及相关解析正确答案

解析

由知对恒成立即是上的减函数.对恒成立,对恒成立, ……8分考查方向

本题主要考查导数在研究函数单调性中的应用.解题思路

首先将问题转化为对恒成立,然后构造函数,利用导数来研究单调性,进而求出的取值范围易错点

无22 第(3)小题正确答案及相关解析正确答案

时有一个根,时无根.解析

由题意知,由图像知时有一个根,时无根或解: ,,又可求得时.在时 单调递增.时, ,时有一个根,时无根.考查方向

本题主要考查分离参数法.解题思路