欢迎来到优发表网

购物车(0)

期刊大全 杂志订阅 SCI期刊 期刊投稿 出版社 公文范文 精品范文

视频监控论文范文

时间:2023-03-20 16:22:51

序论:在您撰写视频监控论文时,参考他人的优秀作品可以开阔视野,小编为您整理的7篇范文,希望这些建议能够激发您的创作热情,引导您走向新的创作高度。

视频监控论文

第1篇

(IDS)入侵检测系统的作用类似于现实生活中的监视摄像机。它们可以不间断地扫描网络流量,查找可疑的数据分组。利用一个跟踪特征数据库,它们可以记录任何不正常的情况,并采取相应的措施:发出警报,重置攻击者的TCP连接,或者禁止攻击者的IP地址再次登录网络。网络IDS(NIDS)检则器通常可以利用一个不可寻址的混和接口卡监听某个子网上的所有流量,并通过另外一个更加可靠的接口发送任何警报和记录的流量。本次设计准备在互联网入口和防火墙入口各部署一套入侵检测系统,一方面用于防御internet黑客对于网络的入侵,一方面保护核心服务器的应用及数据安全。

2网络准入控制系统

虽然安全技术多年来一直在发展且安全技术的实施更是耗资数百万美元,但病毒、蠕虫、间谍软件和其他形式的恶意软件仍然是各机构现在面临的主要问题。机构每年遭遇的大量安全事故造成系统中断、收入损失、数据损坏或毁坏以及生产率降低等问题,给机构带来了巨大的经济影响。

3网络视频监控系统

在控制室及调度室看不到现场的生产情况,对生产现场缺乏直观了解,为了加强生产管理,及时发现各种异常情况,可以采用工业电视技术来加强生产和安全管理。企业信息化建设中,视频监控系统是一个重要组成部分,其经济效益是潜在的,通过视频监控系统的建设,对企业的生产和经营存在潜在的、巨大的推动力,提高公司的管理水平。实施数字监控系统是一个很有利的管理手段,通过该系统,公司领导及管理人员可以很方便的监控到整个企业的运行状况,按照保证系统先进、实用、安全、可靠、经济、易扩展、易维护和高性价比的原则,为企业有效的进行生产管理和决策分析提供有效的手段。网络视频监控系统应当采用国际最先进的网络视频监控技术作为企业尤其是生产型企业的首选方案,以网络化、整合化、灵活化的特点搭建企业生产监控平台,同时将嵌入式网络视频技术与视频服务器技术进行有机的结合,通过与网络系统的结合保护用户的投资。对于不同特点的监控点位采用不同的监控方案,对于位置相对分散,监控主体比较多的点位采用数字网络视频监控方案,提高监控系统部署的灵活性和整合性,节省了大量布线工程,为企业节省了大量的资金。对于位置相对集中,图像的清晰性要求高,监控主体相对较少采用模拟视频监控系统,最大程度的减少视频信号的损失,保证视频图像的清晰性。

4企业数据库

第2篇

1.1医疗教学实况转播与录制:

我院曾利用安装在手术室内的监控系统的高清1080P摄像机,对眼科大型手术提供过全程大数据远程实况转播。过程中利用全方位摄相镜头旋转、变焦、变距、抓拍图像。将手术实况,传送到观摩演示会场,通过大屏幕提供给数百与会人员实况学习观摩。我院还曾利用特殊高灵敏摄像机、拾音器实现对疼痛科微创手术过程远程教学,通过多个摄像机拍摄的监控画面、录像。在监视器和音频下,实现专家对远程手术室内的医生进行技术指导。手术的直播过程,学员能够在示教室从多个角度清晰观看,当需要讲解时,通过客户端实现专家与学员互动交流。利用我院视频监控系统,配合卫生系统远程医疗会诊平台的医学视教、诊断医疗等转播应用实践。以上教学音视频我们都已经通过IPSAN的存储功能录制成教学资料,永久保存,方便以后对医疗手术过程进行研讨与学习。

1.2远程会诊中的应用:

我院的监控系统还具备会诊功能,主任医师需远程查房时,医护人员可将医疗车推入指定病房,并将医疗车上的摄像头对准患者,通过远程查房平台将医疗车上的视频终端与主任医师办公室内终端互通,此时主任医师就可以与患者进行病情的沟通。会诊的同时患者床边呼吸机、监护仪等生命体征数据可实时被采集并传送到主任医师桌面,方便主任医师了解患者的病情及实时状态。

1.3临床医学资料采集远程传递的应用:

通过与HIS、PACS医院信息化系统对接,将X光影像,电诊数据、病理医学影像远程传输,提供远程医学影像诊断。系统支持从标准DICOM3.0和HDMI接口获取患者的影像资料。

2医院行政管理中的应用

2.1监控系统便于领导运筹帷幄:

通过设置在院长、主管领导视频监控客户终端,指挥主控服务器导入医院平面图,可方便的将任一点摄像头所拍摄内容即时拉入屏幕;对院区内的所有监控点位,工作人员岗位情况进行监看,进行同步录制,期间并不影响所监控区域正常工作进行,便于领导运筹帷幄。

2.2人事考勤管理:

通过设置在医院各出入口的监控终端,统计职工出勤情况。根据需要制成录像保留,作为考勤依据。

2.3收费窗口及药房投药窗口的应用:

在医院的每个收费窗口及药房投药窗口安装高清摄像机,几年来化解了上百次的收费、投药过程产生的误差和误会。为工作人员和患者找回经济损失累计上万元。

2.4停车场管理子系统的应用:

医院是公共场所,人员密集流动性大,车来车往,停车场管理也是医院形象窗口。可通过非接触式卡或车牌识别来对出入此区域的车辆实施智能管理,在停车场安装高清抓拍摄像机,拾音器对进出停车场的车辆进行识别,该系统拍下车辆的外形以及车牌。一旦发生意外事件,可以立即触发监控系统进行实时的录像并向监控中心告警。

3视频监控在平安医院建设中的作用

院区门诊、疗区是医院文明工作的窗口,是来院就诊本院人员聚集的地方,这里也是犯罪分子扒窃的重要场所。特别是急诊,经常有凶酒患者或是疑似刀枪伤来院就诊患者,智能监控系统发现哪里人员聚集或是环境有危险时都会第一时间通知医院行政管理人员或是安保人员去处理,为来院人员提供良好的服务,智能监控系统在保护医护人员的安全起到非常重要的作用,对公安部门案件分析起到了辅助作用。实践中我院监控室就曾经多次视频实况扑抓到夜间进入财务室的盗窃人员,并配合公安科现场擒拿等案列。

3.1报警系统应用:

报警系统作为综合安防:系统中非常重要的子系统之一是由前端探测、传输和控制三部分组成。发生意外时医生或财务等只需按下报警按钮,(放射源、细菌室、毒麻库等特殊区安装闯入报警探头,不需人工),报警主机就会将报警信号上传至管理平台,联动摄像机转向事发现场,进行全程记录,并在大屏幕上弹出视频图像,联动声光报警器发出报警信号,提示管理人员立即处理。

3.2门禁子系统应用:

医院监控系统中包括门禁子系统,通过红外探测器、微波入侵探测器对医院无人布防的重点部位发挥作用。门禁系统是对出入口人员进行管理的重要设施,门禁系统可与视频监控系统联动,还可以与110联网,一旦发生非法入侵事件,如尾随,非法闯入、胁迫进入等,防盗报警系统、门禁系统就能立即在控制中心准确显示出事地点,快速报警和第一时间通知医院安保。

4结语

第3篇

关键词:监控系统分布式接入共享网络传输IP组播Windows套接字

随着计算机网络技术、多媒体技术、计算机视觉与模式识别技术的发燕尾服,一种以数字化、智能化为特点的多媒体远程数字监控系统应运而生,即基于IP的数字监控系统,实现了由传统的模拟监控到数字监控质的飞跃。与传统的模拟监控系统相比较,数字远程监控系统几个最主要的优势是:可以借助网络实现远程监控;在远程不同地点的分控中心或同个分控中心可同时调看某一个或者几个监控现场的音视频数据,从而实现分布式的音频频接入和音视频数据共享,同时,可以与监控现场人员进行对讲;可以对远程监控现场的云台、摄像机等设备进行控制。视频、音频的实时、分布式传输及控制指令的可靠传输是远程数字监控系统的一个关键问题。本文设计并实现了远程数字音频频监控系统,采用IPMulticast技术作为分布式音视频执着入和共享的解决方案,并针对视频、音频语音和控制数据不同的特点,对其所采用的不同传输技术进行了探讨,给出了具体实现方法。

1系统的总体结构

远程监控系统一般包括三部分:前端监控现场、通信设备和后端分控中心。整个系统基于Client/Server(客户机/服务器)模式。总体结构如图1所示。

(1)前端监控现场由监控现场主机及一些设备组成。设备包括摄像机、电动镜头、云台、防护罩、监视器、多功能解码器及报警器。监控现场主机运行客户前端软件,实现视频、音频数据的实时采集、压缩、解压缩(音频)(视频传输单向的,音频传输是双向的)及打包传送;对压缩的视(音)频数据进行经存储(也可在分近中心进行)。存储方式为循环存储、定时存储、手动存储及运动视频检测启动存储。接收来自分控中心的控制指令(也可在本地实施),对云台动作(上、下、左、右及自动)电动镜头的三可变(光圈、焦距和聚焦)。

(2)通信设备是指所采用的传输信道和相关设备,通信网络为LAN及WAN。

(3)后端设备由若干分控中心计算机组成。各分控计算机运行服务器端软件,接收来自前端压缩视(音)频、显示(播放);通过网络对前端云台、摄像机进行控制;采用组播技术,实现分布式视频执着入和分丰式视频共享:每个分控中心主机可以同时监控多个前端,即“一点对多点”;不同分控心也可以同时监控同一前端,即“多点对一点”。

2网络传输模块的设计与实现

2.1系统传输数据类型的特点及通信协议的选择

系统传输数据有:控制数据、音频、视频数据、后端分控中心通过网络向监控现场主机设备云台及摄像机发送控制信号,实现云台动作(上、下、左、右、自动)摄像机光圈、焦距及聚焦三可变,要求控制信号的传输准确无误;音频、视频是连续,数据量大,允许传输中存在一定的数据错误率及数据丢失率,但实时性要求很高。此外,在监控系统中,要实现音视频的分布式接入和数据共享,必须进行音视频的多点传输。样实现上述目标?首先是通信协议的选择,TCP/IP协议是广泛使用的网协议,其网络模型定义了四层(即网络接口层、网络层、传输层、应用层)网络通信协议。传输层包含两个协议:传输控制协议(TCP)和用户数据报协议(UDP)。IP是国际互联协议,位于网络层。TCP协议是面向连接的,提供可靠的流服务;UDP是无连接的,提供数据报服务;TCP采用提供确认与超时重发、滑动窗口机制等措施来保证传输的可靠性,正是这些措施增加了网络的开销。如果用TCP传输视(音)频数据,大量的数据容量引起重传。,使得网络负载大并会加大延迟;UDP协议是最简单的传输协议,不提供可靠性保证,正因为UDP协议不进行数据确认与重传国,大大提高了传输效率,具有高效快速的特点;Ipv4定义了三种IP数据包的传输:单播、广播及组播。要系统中实现视(音)频数据的多点传输,若采用单播,则同样的音、视频数据要发送多次,这样导致发送者负担重、延迟长、网络拥塞;若用广播,网络中的每个站点都将接收到数据,不管该结点否需要数据,增加了非接收者的开销;组播是一种允许一个或多个发送者(组播源)发送单一的数据包到多个接收者(一次的、同时的)的网络技术。组播源把数据包发送到特定组播组,而只有属于该组播组的地址才能接收到数据包。由于无论有多少个目的地址,在整个网络的任何一条链路上都只传送单一的数据包。因此组播提高了网络传输的效率,极大地节省了网络传输。组播方式只适用于UDP。综上所述,采用TCP/IP传输控制信号,即信令通道;采用UDP/IP传输音视频信号,即数据通道。

IP组播依赖一个特殊的地址组——“移播址”,即D类地址。范围在224.0.0.0-239.255.255.255之间(其中224.0.0.0-224.0.0.255是被保留的地址),D类地址是动态分配和恢复的瞬态地址。组播地址只能作为信宿地址使用,而不能出现在任何信源地址中。每一个组播组对应于动态分配的一个D类地址。组播的特点:组播组的成员是动态的,主机可以任何时间加入或离开组播组,主机组中的成员在位置上和数量旧没有限制的。

2.2Windows下,IP组播的Winsock2实现

Windows环境下组播通信是基于WindowsSocket的。WindowsSocket提供两种不同IP组播的实现方法:WindowsSocket提供两种不同的IP组播的实现方法:Winsock1与Winsock2。在Windows2000平台实现VC++6.0开发工具,在本系统中实现了基于Winsock2的组播通信编程。

发送端(前端、客户端)实现步骤:

(1)加载Winsock2库,完成Winsock2的初始化:

WSAStarup(MAKEWORD(2,2),&wsaData);(2)建立本地套接字(UDP):

m_socket=WSASocke(AF_INET,SOCK_DGRAM,IPPROTO_UDP,NULL,0,WSA_FLAG_MULTIPOINT_C_LEAF|

WSA_FLAG_MULTIPOINT_D_LEAF);

//组播通信具有两个层面的重要特征:控制层面和数据层面。控制层面决定一个多播组建立通信的方式,数据层面决定通信成员间数据传输的方式。每一个层面有两种形式,一种是“有限的”,另一种是“无根的”;数据报IP组播在两个层面上都是“无根”的。任一用户发送的数据都将被传送到组中所有其它成员。最后一个参数表明新创建的套接字在控制层面与数据层面都是“无根的”。

图2

可以通过setsocket函数设置套接字的属性,如地址重用,缓冲区是接收还是发送。

M_localAddr.sin_family=AF_INET;

M_localAddr.sin_port=m_iPort;//本地端口号

M_localAddr..sin_addr.S_un.S_addr=m_uLocalIP;//本地IP地址;

(3)绑定(将新创建的套字节与本地插口地址进行绑定):

bind(m_socket,(PSOCKADDR)&(m_localAddr),sizeof(m_localAddr);

(4)设置生存时间(即数据包最多允许路由多少个网段):

WSAIoctl(m_socket,SIO_MULTICAST_SCOPE,//设置数据报生存时间;

&iMcastTTL,//生存时间大小;

sizeof(iMcastTTL),NULL,0,&cbRet,NULL,NULL);

(5)配置Loopback,以决定组播数据帧是否回送:

intbLoopback=FALSE;

WSAIoct(m_socket,SIO_MULTIPOINT_LOOPBACK,//允许或禁止组播数据帧回送;

&bLoopback,sizeof(bLoopback),NULL,0,&cbRet,NULL,NULL);

(6)收发数据:

在发送方(前端、客户端)响应发送的消息函数中调用下面函数:

WSASendTo(m_socket,&stWSABuf,&cbRet,0,(structsockaddr*)&stDestAddr,//发送的目的地址;

sizeof(struct(sockaddr),NULL,NULL);

在发送方(前端、客户端)响应接收消息函数中调用下面函数:

WSARecvFrom(m_socket,&stWSABuf,1,&cbRet,&Flag,(structsockaddr*)&stSrcAddr,//源地址;

&iLen,NULL,NULL);

(7)将组播套接字设置为异步I/O工作模式,在该套节字上接收事件为基础的网络事件通知:

WSAEventSelect(m_socket,m_hNetworkEvent,//网络事件句柄;将此套字节与该事件句柄并联在一起;

FD_WRITE|FD_READ);//发生此两个事件之一,则将m_hNetworkEvent置为有信号状态;

(8)在工作线程中设置:

WSAWaitForMultipleEvent(3,//等待事件的个数);

p->m_eventArray,//存放事件句柄的数组;

FALSE,WSA_INFINITE,FALSE);

(9)关闭组播套字节:

closesocket(m_socket);

接收端(后端、服务器端)实现步骤:

(1)-(3)与发送端(客户端)相同;

(4)调用WSAJLoinLeaf加入组播组:

SOCKETNetSock=WSAJoinLeaf(sock,//必须为组播标志进行创建,否则调用失败;

(PSOCKADDR)&(m_stDestAddr,//组播导址,与发送方的目的地址相同;

sizeof(m_stDestAddr),UNLL,NULL,NULL,NULL,

JL_BOTH));//允许接收和发送;

(5)与客户端(6)相同;(6)与客户端(7)相同;(7)与客户端(8)相同;(8)离开组播组;closesocket(NewSock);//NewSock是调用WSAoinLeaf()返回的套节字。

2.3在监控系统中网络传输模块的设计

网络传输模块流程如图2所示。

发送端(前端监控现场主机、客户端)监控主机运行客户端程序。在主线程中,启动视同、音频两个线程分别对视频及音频进行采集,放入视(音)频缓冲区;视频在本地回放;同时,监听分控中心的连接请求,收到连接请求,TCP三次握手,建立TCP连接(信令通道);通过信令通道,向分控心发送二组组播地址及端口号(对应视频及音频,音频两个线程;分别在视(音)频线程中完成;利用Winsock2建立视(音)频数据通道(UDP)(源码前已述及);对视(音)频进行压缩编码、组播发送;音频线程接收分控中心的音频数据包,解码并播放;实现视频的单向传输和音频的双向传输。

接收端(后端分控中心、服务器端)分控中心主机运行服务器端程序,在主线程中向前端监控现场主机发出连接请求(CALL),三次握手建立TCP连接(信令通道);后端接收到组播地址及端口号后,启动视(音)频两个线程,完成;利用Winsock2建立视(音)频数据通道(UDP),加入视(音)频组播组,接收压缩视(音)频包,并解码显示(播放);其中音频线程,还要完成音频数据包解码显示(播放);其中音频线程,还要完成音频数据包的压缩、发送;实现视频的单向传输、音频的双向传输。

一个后端分控中心可同时监控12路前端视频及音频信号,在设计服务器端监控程序时,采用多线程技术,每建立一对前端监控主机与后端分控中心(服务器)的TCP连接,就开两个接收线程(一个接收视频线程;一个接收音频线程),视频线程接收视频数据包进行解压缩及回放;音频线程接收音频数据包进行解压缩及播放。对云台及摄像机的控制指令通过信令通道传输。

第4篇

1视频监控系统的运用

视频监控系统是依据轨道交通工程管控技术标准和安全风险管理体系而研制的专业信息化管理平台,综合了轨道交通工程参建各方所提供的数据和资料,利用物联网和云计算等现代高新技术,对工程进度、安全风险进行综合监控,向建设工程的决策层、管理层和实施层提供实时的安全信息,便于各方第一时间了解工程建设的各方面情况,及时而准确地应对安全隐患和突发事件。

2视频监控系统的各子系统功能运用分析

2.1地质地理信息监控

子系统地理信息管理系统是实现地理、地质和施工情况的收集、传送、分配、分析、决策和发放的集成化平台。如下所示:(1)空间数据管理功能。采用人工采集、设计文件格式转换和扫描矢量化等多种输入方式将工程范围内的地形图、设计图、影像图和施工工况等图形数据输进数据库内,其对数据的增加、删除、修改和查询等基本功能,亦可对数据进行准确合理的筛选检查。(2)综合查询功能。基于不同需求,使用地理图显去观看和查询资料两个子模块的功能,根据建筑面积,测量的点编号、项目编号、查询等各种组合条件查询,根据用户的查询结果显示出各种图表和文件输出的地质和地理信息系统。(3)统计分析功能。其主要功能是对施工现场的监测和检查数据,地质和水文数据的统计分析。(4)专题图制作功能。主要包括地质图、工程进度横道图、监测测点布置图、某时刻监测数据统计图等制作。(5)图形输出功能。可以提供专门地图、图表、数据报告在绘图仪文件、打印机输出硬拷贝,同时该系统还可以提供图形输出功能,例如:丰富的等值线图、配置文件、平面图形、图形、三维图。

2.2基础数据处理

子系统基础数据处理子系统的主要功能是提供增加、删除、修改和查询线路和参照过往的案例,点和点的风险事件、风险度量、风险段、支配风险和测量点相关的行径,包括项目管理运作、风险管理、项目风险事件的管理、单元测试管理、参考案例的支配和点的管理选项,属于后台操作模块,此模块中的管理设有权限。

2.3安全风险源视频监控

子系统实时监测的顺轨道项目而异,每个站点周边环境周围现场的照片,来源的风险分类、监测、检验对周围的环境,监测系统的实时监控和动态管理的项目,对周围环境的环境风险源的有效地避免或减少工程施工安全风险。

3视频监控系统运营和监视设备功能

3.1视频监控系统运营

进一步执行网络监测、结合一起处理、有权限者可使用任何一台电脑通过登陆互联网来远程监控、管理、视频播放搜索等手段对施工现场进行监测。还可用于介质管理服务、应用程序服务或使用者、授权管理、网络监控服务、数据的基本服务,前端设备控制服务;应该控制转录的功能而因此数字视频频率存储视频设备、摄相机每25帧/s,实时视频距离未间断块的24小时访问权力,摄像机基本记录的数据范围内这样继续存储为45天周期,一段短的相机监控系统监督记录继续存储15天后再循环,其记录图像达到D1格式以使循环功能视频分辨率较高值。

3.2视频监控设备功

能继续收集的实时视频图像监控点,视频监控系统是通过高速数据网络传输送,以方便用户实时查询。设置集成球类型电视录象上站基式对面角度监测建筑,针对每一个建设工地的施工区统一安放外球类型摄像装置,对该地区进行的实时的图像监控,这个工地地区图形和这地方仓库物料上进行继续记录7天,视频存储使用MPEG4或H.264形式进行存档(效果不是低于D1形式的)。每个电视录象控制由警卫室监控处理设备正常进行实时的操制,但接收的网络传输的各种导频信号来控制云台和电视录象的画面大小。控制台部署在一个平台液晶显示器采用为19英寸的。

3.3视频监控系统的设计

视频监控系统=现场监控设备+网络传输设备+指挥部监控中心设备+客户端+后台运营平台(摄像机、监视器、编码存储设备、网络传输设备、视频监控后台管理平台设备、电视墙等)如:宁波市轨道交通建设视频监控系统整体例如形成一张信息网。

二结束

第5篇

关键词:网络数字;监控;图像视频;传输方式;计算机论文

中图分类号:U491 文献标识码:A 

一、 数字非压缩传输方式   图像质量清晰,在传输过程中没有失真,多路图像可以复用一芯光纤传输,一定程度上节约了光纤资源,提高资源利用率,节约建设费用,在一定程度上可以满足了高速公路监控系统的需求。但是本质上还是要用到矩阵等设备,图像容量有限,单点同时多路上传方面技术还不完善,各厂家没有统一的通信标准,设备不能很好兼容互通,造成使用的局限性,不利于系统扩容升级和资源共享。 

二、网络数字化编码视频传输技术 

网络数字化编码视频传输技术是高速公路图像视频传输系统的新阶段,是目前比较先进的图像传输方式。高速公路管理体制对图像传输的要求是现场图像传到收费站,再到路段分中心,到省级监控管理中心。 

目前高速公路运营管理需要满足以下条件:(1)及时快速的处理突发事件。通过对现场图像的分析提出解决方案和行动部署。(2)为公众提供图像信息,出行交通道路状况参考,使人们在出行时能及时了解交通情况,避免通过交通拥堵路段,方便实施出行计划,使出行变得顺利通畅。因此,要求高速公路通信网络和视频图像传输网络能够很好地结合,使图像传输实现网路一体化,在全网内都可以调阅查看视频图像,而网络数字化编码视频传输技术正好能够使该需求得以实现。    网络数字化编码视频传输技术优点:(1)简化了系统结构,并且兼有视频矩阵、图像分割器、录像机等设备的多项功能,可通过管理软件对视频进行网络化操作,在媒体服务器实现视频图像面向公众服务,通过网管协议实现对全网及设备的管理,大大提高了网管功能和效率。(2)由于采用计算机网络技术,数字多媒体远程网络监控可实现远距离控制。(3) H.264编码压缩技术具有高标准、高质量特点,其能够以更低的数字码流实现更高质量的视频图像,支持高分辨率格式,可在普通电脑上或是监视器中进行观看,效果不亚于DVD的画面效果,也可以同时为交通事件检测设备提供视频图像进行事件的检测,CIF格式可用于视频存储,还采用了大容量的磁盘存盘器和光盘存储器,使得存储空间得以节约,节省了很多磁带介质,对实现系统的信息查询非常有利,带宽适应性较强,能有效减少通信系统带宽的占用,更好的适用网络传输。 

虽然数字网络编码图像传输方式有着以上的特性,但在实际应用中,也暴露一些问题,需要下一步继续解决,如:(1)系统进行24小时连续工作,其性能不稳定,硬盘上同时存储着系统文件、应用软件和图像文件,在视频处理时需要输入大量高密度数据,硬盘同时要进行多项工作,因此普通的硬盘已经不能适应高强度工作,致使系统很容易出现不稳定,进而发生死机问题,容易造成通信系统瘫痪。(2)各厂家视频图像编码方式和算法有所不同,编码后图像不能实现共享或互编互解,需要统一。 

为了解决上面阐述的问题,各生产厂家需要结合目前高速公路建设和运营情况进行相互的沟通,协调,对他们各自的编码算法进行开放,共同制定一个可以互编互解的编码程序或标准,才能更加适应现代管理的要求,才能真正追求到各自利益最大化。对于超过一定范围的图像路数,应设置视频转发服务器,用来分流解决网内传输组播视频图像风暴,避免引起通信系统瘫痪。 

第6篇

关键词:空间矢量;脉宽调制;变频器;专用芯片MR16

引言

随着拖动技术的不断发展以及大功率电力电子器件的不断更新,交流异步电机V/f控制PWM变频电源在工业上的应用越来越广泛。传统的SPWM变频调速技术理论成熟,原理简单,易于实现,但其逆变器输出线电压的幅值最大值仅为0.866Ud,直流侧电压利用率较低;而采用空间矢量PWM(SVPWM)算法可使逆变器输出线电压幅值最大值达到Ud,较SPWM调制方式提高了15%,且在同样的载波频率下,采用SVPWM控制方式的逆变器开关次数少,降低了开关损耗。为此,本文运用SVPWM算法,将逆变器和电机作为整体考虑,并综合三相电压,通过实时计算,利用MR16单片机实现了电机的恒磁通变频调速控制。

1空间矢量PWM基本工作原理

图1所示为三相电压型逆变器的工作原理图,它由6个开关器件组成。逆变器输出的空间电压矢量为

根据同一桥臂的上下两个开关器件不能同时导通的原则,其三相桥臂开与关可以有8种状态。在这8种开关模式中,有6种开关模式输出电压,在三相电机中形成相应的6个磁链矢量,另外2种开关模式不输出电压,不形成磁链矢量,称之为零矢量。各种状态形成的矢量在空间坐标系中的位置关系如图2所示。括号内的二进制数依相序A,B,C表示开关的不同状态,“1”表示上桥臂功率器件导通,下桥臂器件关闭;“0”表示的工作状态与此相反。任意一个电压空间矢量的幅值和旋转角度都表示此刻输出PWM波的基波幅值及频率大小,它的相位则表示不同的脉冲开关时刻。因此,三相桥式逆变器的目标就是利用这8种基本矢量的时间组合,去近似模拟合成这样一个磁链圆。

通常将一个圆周期6等份,并习惯地称之为扇区。每一扇区又可继续划分为任意的m个小等份。当理想电压矢量位于任一扇区之中时(如图2所示),就用该扇区的两个边界矢量和两个零矢量去合成该矢量,例如:当理想电压矢量处于第一扇区时就由和两个非零矢量以及零矢量合成,其他扇区依此类推。假设理想电压矢量位于图3所示的位置,依据正弦定理可以得到式(2)—式(4)。

式中:Us为逆变器输出电压矢量的幅值;

U1为非零矢量的幅值;

U2为非零矢量的幅值;

Ts为PWM周期;

t1为的作用时间;

t2为的作用时间;

t0为零矢量的作用时间;

|U1|=|U2|=…=Ud。

由于理想电压矢量是由位于该扇区边界的两个非零矢量和零矢量合成,在实际合成时可采用每一个非零矢量分别发出两次,零矢量则依次插入各个分割点的方法。例如:理想电压矢量为,其合成步骤可以是:先发非零矢量作用t1/2时间,再发零矢量作用t0/4时间,而后发出非零矢量作用t2/2时间,接着发出零矢量作用t0/4时间。然后再依此次序重发矢量一次,就完成了整个合成过程。之所以采用这种合成方法是因为系统工作到低频时,控制周期变长,而每个周期内非零矢量的作用时间又是一定的,也就是说零矢量的作用时间相应的变长了。于是就将一个周期中太长的零矢量分开成几个零矢量,而后把它们均匀地插入到非零矢量中去,这样既满足了合成的要求,又有效地抑止了低速转矩脉动。对于理想电压矢量位于扇区边界的这种情形,可以把它作为扇区的特例来处理,即有一个非零矢量的作用时间为0。

2系统实现

2.1主电路拓扑结构

主电路采用三相全桥逆变电路,其拓扑结构如图4所示,逆变DC/AC部分为全控式逆变桥,电容C为滤波电容,其电容值的选择与负载额定功率及直流侧输入电压有关。交流电机变频调速不仅要求输出电压为正弦波,而且要求电压和频率协调变化,即要求电压V和频率f要同时变化并满足一定的规律,如V/f为常数,这样才能保证异步电机转子磁通在变频调速过程中保持恒定。采用空间矢量PWM控制法驱动逆变桥,可以实现输出电压和频率分别按各自规律变化,而且正弦波畸变小,响应速度快,控制简单。2.2控制芯片

本系统采用MOTOROLA公司的电机控制专用单片机68HC908MR16(以下简称MR16)作为主控芯片,它是一种高性能,低成本的8位单片机。MR16内部集成有16K字节的可擦写片内闪速存储器FLASH,768字节的RAM;具有10位精度的10通道ADC模块,其AD转换时间最快仅需2μs,能够在极短时间内完成多路采样并进行高精度转换;同时MR16含有一个可编程时钟发生器模块(CGM),系统时钟不仅可以直接由外部晶振输入分频得到,也可以先将晶振电路的输出信号缓冲后再经内部锁相环(PLL)频率合成器提供;具有串行通信模块SCI,它有32种可编程波特率,可以工作在全双工或半双工模式,通过SCI模块能方便地实现系统与外部的实时通信。

MR16中颇具特色的部分是专门用于电机控

制的PWMMC模块。该模块可以产生3对互补的

PWM信号或6个独立的PWM信号,这些PWM信

号可以是中心对准方式也可以是边缘对准方式。

6个通道都有一个12位的PWM计时器,PWM分辨率在边缘对准方式时是一个时钟周期,而中心对准方式时是两个时钟周期,这样边缘对准方式的最高分辨率是125ns(内部工作频率为8MHz)而中心对准方式的最高分辨率为250ns。当PWMMC模块工作于互补模式时,模块功能部件自动地将死区时间嵌入到PWM的输出信号中,并可以根据感应电机的相电流极性轻易地翻转PWM数据。PWMMC模块还含有4个故障保护引脚FAULT1~FAULT4,当任意一个故障保护端口为高电平时就封锁相应的PWM输出引脚。例如,当系统过流时,就置位FAULT引脚封锁所有PWM输出,这样就封锁了IGBT的驱动电路,从而实现了过流保护功能。为了避免由干扰引起的误操作,MR16的每个故障引脚都带有一个滤波器,并且所有的外部故障引脚都可由软件配置来再使能PWM,这些都给软件设计带来了极大的方便。

2.3PWM波形成本系统利用MR16单片机中的PWMMC模块,实现PWM波形的生成。在初始化时将其设置为3对互补工作模式,即同一桥臂上的两路PWM信号是互补的。为了防止同一桥臂上的2个开关管直通,在无信号发生器DEADTIME的死区时间寄存器DEADTM中设置了2.5μs的死区时间。系统采用4MHz的外部晶振,由程序选择内部锁相环频率合成器产生8MHz内部总线时钟。同时设置载波频率为9kHz,并将其写入PMOD(H:L)寄存器。PWM波的实时脉冲宽度的计算都是在中断服务程序中完成的,每当PWMMC模块中的PCTN(H:L)计数器计数至PMOD(H:L)中的数值时就引起一次中断。预先将一个扇区(60°)的正弦值扩大一定倍数后制成正弦表格存入FLASH中,每次进入中断后都从表中取出一个正弦值,经过相?的计算后将结果送入PVALX(H:L)寄存器中,单片机将PCTN(H:L)中的值与PVALX(H:L)中的值进行比较后自动产生PWM波,而后依次送入相应的PWM输出通道,完成PWM波的输出。采用软件方法实现PWM波的原理如图5所示,它对应于图1的第1扇区。当位于不同的扇区,不同的PWM周期时,它们的值都不相同,都是实时变化的。同样,赋给每一个PVALX(H:L)寄存器的值也就不尽相同。这种产生对称PWM波形的方法,每个PWM周期都开始和结束于零向量,并且000和111的持续时间相同;同时,除了占空比0%和100%外,每个周期内各桥臂通断两次,而且对于一个扇区来讲,桥臂的通断都有一个固定的顺序。

2.4串行通信

系统采用串行通信设计了相应的监控系统,使其具有良好的人机界面。其中逆变系统和监控系统均采用MAXIM公司的串行接口芯片MAX3082,通过标准RS485总线准确实时地实现了相互的串行通信。同时,运用光耦隔离的办法增强了系统的抗干扰能力,提高了通信的可靠性。双方约定波特率9600bps,工作于半双工模式,并采用校验和的校验方法检验数据通信的准确性。MR16工作频率设为8MHz,初始化程序如下:

MOV#$50,SCC1;每一帧10位数据,

启动SCI模块

MOV#$0C,SCC2;发送器和接收器使能

MOV#$00,SCC3;屏蔽出错中断

MOV#$30,SCBR;设置波特率为9600bps

2.5软件设计

系统软件采用模块化设计,包括初始化模块,读X5043模块,保护模块,通信显示模块,PI调节模块,软启动模块以及中断模块等。其中除中断模块在中断服务程序中完成以外,其他均放在主程序中完成。主程序流程如图6所示。

初始化模块包括MR16内部寄存器初始化,变量存储单元定义,通信初始化设置等部分;芯片X5043把三种常见的电路,即看门狗电路,电压监视和EEPROM组合在单个封装内,它内含的4KbitEEPROM存储着上次关机时正常运行的参数值设置,每次开机时系统都将这些参数值读到MR16中,这样就使系统具有记忆功能,使用户不必每次开机时都要对系统参数进行重新设置。保护模块则实现了系统的过热,过载,过流以及系统低频保护等保护功能。其中过流保护由硬件完成,以保证系统能在过流产生后的极短时间内迅速封锁全部的PWM输出。调节模块主要完成稳压输出的功能,而通信显示模块则是方便人机交流的界面,通过它可以进行多种功能的设定,系统状态的显示以及各种参数的修改。

第7篇

1.1业务用房

11家疾控机构人均面积23.1~135.7m2,市级人均面积42.2m2、县级人均面积75.7m2,有4家机构人均面积低于60m2的国家标准。11家机构实验室面积占机构面积的比例为20.0%~42.3%,仅有5家机构达到国家相应规定标准要求,市级比例低于44%的副省级城市平均值。

1.2仪器设备

按照《食品安全风险监测能力(设备配置)建设方案》(发改社会〔2013〕422号)要求,市级机构食品检测设备数量不足,部分老化,且缺乏高端、精密检测设备;县级机构设备配置差异较大。

1.3食品检测能力

市级机构能开展食品、食品添加剂与食品相关产品检测共计295项,其中食品中理化参数204项、微生物参数47项,食品相关类产品共40项。县级能开展食品中理化参数检测12~152项,平均100项,微生物参数检测12~36项,平均26项。

2讨论

2.1人力资源现状

调查结果表明,市级机构人力资源配置较为合理,各岗位既有高职专家、中年骨干、又有高学历青年人才,可基本满足日常食品安全风险监测工作需要,但工作量已接近饱和;此外,无论从工作或是学科发展角度,市级机构缺乏食品安全领域高端人才与学科带头人。县级机构各岗位人员相对较少,平均不超过4人,且无专职人员,现有人员除从事风险监测外,还承担其他公共卫生监测或检测任务,工作投入精力有限,并且各岗位高级职称与高学历人员较少,阻碍风险监测工作进一步发展需要。

2.2业务用房

自2003年以来,市新建、翻建县级疾控机构4家,占总数36.4%,部分机构业务用房得到明显改善,人均面积平均达到66.9m2,人均面积达标率为63.6%(7/11)。另外,参照《疾病预防控制中心建设标准》(建标127-2009)要求,实验室面积占总建设面积比例为,市级不低于40%、县级不低于35%。调查显示,6家机构未达到标准,占54.5%,最低比例为标准的57%。结果表明,部分疾控机构的实验室用房比较紧张。

2.3检测资源配置

调查显示,市、县级疾控机构现有仪器设备均按照《疾病预防控制中心建设标准》(建标127-2009)要求配置,2011年食品安全风险监测工作启动时相应的食品检测设备未与之同步配置、补齐。各级机构现有的检测设备与仪器多为食品专业与其他专业共用,并且部分基础设备数量严重不足,部分检测设备处于落后淘汰状态。另外,参照《食品安全风险监测能力(设备配置)建设方案》(发改社会〔2013〕422号)要求,市级机构存在高端检测设备缺如,例如凝胶渗透色谱装置、气相色谱-四级杆串联质谱仪、液相色谱-电感耦合等离子体质谱仪、液相色谱-原子荧光光谱仪、加速溶剂萃取仪等。调查表明,实验室仪器设备配置不完善已严重制约很多食品中有害污染物项目监测工作开展。3.4实验室检测能力调查显示,全市10家机构已取得食品检验机构资质认定,其中市级能开展食品中理化、微生物项目检测251项,县级能开展理化、微生物检测项目平均126项。项目虽多,但大部分为重金属元素、食品质量指标、人工合成色素、亚硝酸盐等常规检测项目。依据国家食品安全风险监测工作需要,例如食品非食用物质、农药残留、稀土元素、兽药残留、真菌毒素、生物毒素、有机污染物等项目尚未列入资质检测范围。

3建议

《食品安全法》及其条例明确规定,食品安全风险监测是制定、修订国家和地方食品安全标准、开展食品安全风险评估的技术依据,是食品安全监管的重要基础。随着政府对食品安全风险监测工作的重视,对疾控机构工作也提出了新的要求与挑战。针对调查,提出以下建议:

(1)进一步明确、落实市食品安全风险监测工作职责,制订工作发展规划;

(2)加强专业人员培训力度,吸引食品安全领域的高、精、尖人才,最终形成一支人员配备合理、专业技术过硬的食品安全风险监测队伍,带动整体工作持续发展。